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Abstract

This article studies a new procedure to test for the equality of k regression curves
in a fully nonparametric context. The test is based on the comparison of empirical
estimators of the characteristic functions of the regression residuals in each popula-
tion. The asymptotic behaviour of the test statistic is studied in detail. It is shown
that under the null hypothesis the distribution of the test statistic converges to a
combination of χ2

1 random variables. Under certain restrictions on the populations,
the asymptotic null distribution of the test statistic is χ2

k−1. The practical perfor-
mance of the test based on the asymptotic null distribution is investigated by means
of simulations.
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1 Introduction

Testing the equality of the means of k populations (k ≥ 2) is a classical problem in
statistics. When the populations are assumed to follow a normal distribution with equal
variance, then the ANOVA F-test is the classical way to perform the test.

In this paper we consider a more general setting. We assume that in each population
along with the response variable, Y , it is also observed another variable, X, the covariate,
so that the mean and the variance of the response variable depend on the values of the
covariate. More specifically, let (Xj, Yj), 1 ≤ j ≤ k, be k independent random vectors
satisfying general nonparametric regression models

Yj = mj(Xj) + σj(Xj)εj, (1)

where mj(x) = E(Yj | Xj = x) is the regression function, σ2
j (x) = V ar(Yj | Xj = x) is

the conditional variance function and εj is the regression error, which is assumed to be
independent of Xj. Note that, by construction, E(εj) = 0 and V ar(εj)=1. The regression
functions, the variance functions, the distribution of the errors and the distribution of the
covariates are unknown and no parametric models are assumed for them. Under this
framework our approach is fully nonparametric.

In this conditional setting, the hypothesis of equality of means is stated in terms of
the conditional means or regression functions

H0 : m1 = m2 = . . . = mk,

or, in other words, the mean effect of the covariates over the responses is equal in the k
populations. Since the objective is to compare the regression curves, it is reasonable to
assume that the covariates have common compact support. The alternative hypothesis is

H1 : H0 is not true.

Note that this testing problem contains the simpler case described in the first paragraph
as a particular case by only eliminating the covariates in the models.

The problem of testing for the equality of regression curves in nonparametric settings
has been previously treated in the statistical literature. The papers by Delgado (1993),
Kulasekera (1995), Neumeyer and Dette (2003), Neumeyer and Pardo-Fernández (2009)
and Srihera and Stute (2010), among others, are devoted to the comparison of two curves.
Pardo-Fernández et al. (2007) deal with the comparison of k (k ≥ 2) regression curves.
Their approach is based on comparing the distribution functions of the regression errors.
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More specifically, let εj = {Yj −mj(Xj)}/σj(Xj) be the regression error in population j.
Let m0 be the common regression curve under the null hypothesis, and define

ε0j = {Yj −m0(Xj)}/σj(Xj) = εj + {mj(Xj)−m0(Xj)}/σj(Xj), (2)

1 ≤ j ≤ k. It turns out that the null hypothesis H0 is true if and only if, for all 1 ≤ j ≤ k,
the random variables εj and ε0j have the same distribution (see Theorem 1 in Pardo-
Fernández et al., 2007). This assessment can be interpreted in terms of the cumulative
distribution function (cdf) or in terms of any other function characterizing the probability
law of the errors. Pardo-Fernández et al. (2007) restricted their attention to the cdf.

The probability law of any random variable X is also characterized by its characteristic
function (cf), ϕ(t) = E{exp(itX)}. Recent years have witnessed an increasing number
of proposals for hypothesis testing whose test statistics measure deviations between the
empirical characteristic function (ecf) of the available data and an estimator of the cf
under the null hypothesis. In the line of the setting considered in this paper, that is, by
assuming that the data are generated by regression models, are the papers by Jiménez-
Gamero et al. (2005) and Hušková and Meintanis (2007, 2010), for testing goodness of fit
(gof) for the errors, and Hušková and Meintanis (2009) for testing gof of the regression
function to a parametric function. An advantage of the cf approach over the one based on
the cdf, as observed in Hušková and Meintanis (2009), is that the former usually requires
less stringent assumptions for its validity. In addition, from the simulation results for
finite sample sizes in these and other related papers, the tests based on the ecf compete
very satisfactorily with those based on the empirical cdf (ecdf).

Having in mind the reasons above, the purpose of the present paper is to test H0 by
comparing consistent estimators of the cfs of the random variables εj and ε0j, 1 ≤ j ≤ k.
With this aim, the paper is organized as follows. Section 2 introduces the test statistic,
which is of a Cramér-von-Mises type, and provides also an alternative expression, which is
useful from a computational point of view. Asymptotic properties are studied in Section
3. It is shown that, under certain weak conditions on the distributions of the errors and
of the covariates, the null distribution is proportional to a χ2

k−1 distribution. When such
conditions do not hold, the null distribution of the test statistic as well as its asymptotic
null distributions are both unknown. In order to approximate the null distribution of the
test statistic, consistent null distribution estimators are proposed. The behaviour of the
test under fixed and local alternatives is also studied. Section 4 contains some numerical
results based on simulations to study the practical performance of the test and to compare
it with other existing methods. Section 5 concludes. All proofs of the theoretical results
are deferred to the Appendix.
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The following notation will be used along the paper: P0 denotes probability assuming
that H0 is true; E0 denotes expectation assuming that H0 is true; P∗ denotes the condi-
tional probability law, given the data; all limits in this paper are taken when n → ∞;
L→ denotes convergence in distribution; P→ denotes convergence in probability; a.s.→ denotes
the almost sure convergence; if x ∈ Rk, with x′ = (x1, . . . , xk), then diag(x) is the k × k
diagonal matrix whose (i, i) entry is xi, 1 ≤ i ≤ k; for any complex number z = a + ib,
Re(z) = a is its real part, z̄ = a − ib is its conjugate and |z| is its modulus; Nk(µ,Σ)

denotes de multivariate normal distribution with mean vector µ and variance-covariance
matrix Σ. An unspecified integral denotes integration over the whole real line R.

2 The test statistic

Let (Xjl, Yjl), 1 ≤ l ≤ nj, be independent and indentically distributed (iid) observations
from (Xj, Yj), 1 ≤ j ≤ k. Let fj(x) be the probability density function (pdf) of Xj, n =∑k

j=1 nj, and let fmix(x) =
∑k

j=1 pjfj(x) be the pdf of the mixture of covariates according
to the weights p1, . . . , pk, where pj = limnj/n. In order to estimate the errors, we first
need to estimate the regression functions, mj(x) = E(Yj|Xj = x), the variance functions,
σ2
j (x) = E[{Yj−mj(x)}2|Xj = x], and the common regression function underH0,m0(x) =∑k
j=1 pj{fj(x)/fmix(x)}mj(x). With this aim we use nonparametric estimators based on

kernel smoothing techniques. Let K denote a nonnegative kernel function defined on
R (normally, a symmetric pdf), let 0 < hn ≡ h → 0 be the bandwidth or smoothing
parameter and Kh(x) = h−1K(x/h). We use the following estimators for the functions
mj, σ2

j and m0:

m̂j(x) =

nj∑
l=1

wjl(x)Yjl, σ̂2
j (x) =

nj∑
l=1

wjl(x)Y 2
jl − m̂2

j(x), m̂0(x) =
k∑
j=1

nj
n

f̂j(x)

f̂mix(x)
m̂j(x),

where

f̂j(x) = n−1j

nj∑
l=1

Kh(x−Xjl), f̂mix(x) =
k∑
j=1

nj
n
f̂j(x),

1 ≤ j ≤ k. The quantities wjl are, for example, Nadaraya-Watson weights

wjl(x) =
Kh(Xjl − x)∑nj

v=1Kh(Xjv − x)
,

which are a particular case of local polynomial weighting (see Fan and Gijbles, 1996).
Under the model assumptions that will be stated in the next section, the results in this
article are valid for local constant (Nadaraya-Watson) and for local linear estimator.
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Based on these estimators, for each population j, 1 ≤ j ≤ k, we construct two samples
of residuals:

ε̂jl =
Yjl − m̂j(Xjl)

σ̂j(Xjl)
and ε̂0jl =

Yjl − m̂0(Xjl)

σ̂j(Xjl)
, (3)

1 ≤ l ≤ nj, whose ecfs are

ϕ̂j(t) =
1

nj

nj∑
l=1

exp(itε̂jl) and ϕ̂0j(t) =
1

nj

nj∑
l=1

exp(itε̂0jl), (4)

respectively. These ecfs are nothing but (consistent) kernel based nonparametric estima-
tors of the population cfs ϕj(t) = E{exp(itεj)} and ϕ0j(t) = E{exp(itε0j)}, respectively,
where ε0j is as defined in (2). The testing procedure consists of comparing ϕ̂j(t) and
ϕ̂0j(t), 1 ≤ j ≤ k, using a weighted L2−distance. More precisely, following the work of
Hušková and Meintanis (see Hušková and Meintanis, 2007, 2009, 2010) we define the test
statistic

T1n ≡ T1n(w) =
k∑
j=1

nj
n

∫
|ϕ̂j(t)− ϕ̂0j(t)|2w(t)dt, (5)

where w is any given non-negative weight function.

The motivation behind the test statistic T1n is the following: T1n converges in proba-
bility to (see Theorem 7 below)

T1 ≡ T1(w) =
k∑
j=1

pj

∫
|ϕj(t)− ϕ0j(t)|2w(t)dt. (6)

Under H0, ϕj(t) = ϕ0j(t) for all t and for 1 ≤ j ≤ k, and thus T1 vanishes. As a
consequence, under H0, T1n should be “very small”. We then conclude that, any value of
T1n which is “significantly large” should lead to the rejection of H0. In practice, given a
significance level, a threshold value above which H0 is rejected needs to be established. To
this end we need to study the null distribution of T1n. Since this distribution is unknown,
as an approximation to it we derive the asymptotic null distribution. This will be done
in the next section.

Remark 1 From Lemma 1 in Alba-Fernández et al. (2008), an alternative expression
for T1n, which is useful from a computational point of view, is given by

nT1n =
k∑
j=1

1

nj

{
nj∑
l,s=1

Iw(ε̂jl − ε̂js) +

nj∑
l,s=1

Iw(ε̂0jl − ε̂0js)− 2

nj∑
l,s=1

Iw(ε̂jl − ε̂0js)

}
,

where Iw(t) =
∫

cos(tx)w(x)dx. If w is a pdf with cf ϕw then Iw(t) = Re{ϕw(t)}, which
clearly coincides with ϕw when w is a symmetric pdf.

5



3 Asymptotics

In order to study the limit behaviour of the test statistic T1n we first need to introduce
some assumptions on the models (1) and on the available data. Recall that we are
assuming that {(Xjl, Yjl), 1 ≤ l ≤ nj} are iid observations from (Xj, Yj) and the sets
{(X1l, Y1l), 1 ≤ l ≤ n1}, . . ., {(Xjk, Yjk), 1 ≤ l ≤ nk} are independent.

Assumption (A):

(A.1) For 1 ≤ j ≤ k: (i) Xj has a compact support R. (ii) fj, mj and σj are two
times continuously differentiable on R. (iii) infx∈R fj(x) > 0 and infx∈R σj(x) > 0.

(A.2) For 1 ≤ j ≤ k: the samples sizes satisfy limnj/n = pj, where 0 < pj < 1.

(A.3) K is a twice continuously differentiable symmetric pdf with compact support.

(A.4) The weight function satisfies w(t) ≥ 0, for all t ∈ R, and
∫
t4w(t)dt <∞.

(A.5) nh4n → 0 and nh2n/ lnn→∞.

These assumptions are mainly needed to guarantee the uniform consistency of the
kernel estimators f̂j, σ̂j, m̂j and m̂0. Observe that no restriction on the distribution of
the errors have been done, like the existence of a pdf. So the results in this paper could
be used to compare two or more regression functions when the distribution of the errors
is arbitrary: continuous, discrete or mixed. This is not the case for many methods that
can be found in the literature, which usually assume continuity of the errors.

The following theorem gives an asymptotic approximation for √nj{ϕj(t) − ϕ0j(t)},
1 ≤ j ≤ nj, that will let us derive the asymptotic null distribution of the test statistic
T1n, given in the subsequent corollary. Let Σ = (σjv)1≤j,v≤k be the matrix whose elements
are

σjj = 1− 2pjE

{
fj(Xj)

fmix(Xj)

}
+ pj

k∑
r=1

prE

{
σ2
r(Xr)

σ2
j (Xr)

f 2
j (Xr)

f 2
mix(Xr)

}
,

σjv =
√
pjpv

k∑
r=1

prE

{
σ2
r(Xr)

σj(Xr)σv(Xr)

fj(Xr)fv(Xr)

f 2
mix(Xr)

}
−√pjpvE

{
σv(Xv)

σj(Xv)

fj(Xv)

fmix(Xv)
+
σj(Xj)

σv(Xj)

fv(Xj)

fmix(Xj)

}
, j 6= v.

(7)

Theorem 2 Under Assumption (A), if H0 is true, then
√
nj {ϕ̂j(t)− ϕ̂0j(t)} = itϕj(t)Zj + tR1j(t) + t2R2j(t),
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where sup
t
|Rsj(t)| = op(1), s = 1, 2, and Z := (Z1, . . . , Zk)

′ ∼ Nk(0,Σ).

Define the diagonal matrix A = diag(a1, . . . , ak), where aj =
∫
t2|ϕj(t)|2w(t)dt, 1 ≤

j ≤ k. The results the Theorems and Corollaries below will hold whenever trace(AΣ) > 0.
Before stating the results, we briefly discuss this condition. Observe that

trace(AΣ) =
k∑
j=1

ajσjj > 0 if and only if aj > 0 and σjj > 0 for some j , 1 ≤ j ≤ k.

The quantities σjj in (7) can be also expressed as

σjj = pj

k∑
l=1

plE

[
σ2
l (Xl)

σ2
j (Xl)

{
fj(Xl)

fmix(Xl)
− I(l = j)

pl

}2
]
,

where I(A) denotes the indicator function of the set A. From the expression above and
Assumption A, it is clear that σjj > 0, for all j. Therefore, to ensure trace(AΣ) > 0

we only need to ensure that aj > 0 for some j. An easy way to get aj > 0 is by taking
w(t) > 0, for t in a neighborhood of the origin.

The following assumption will appear in the statement of some of the results below:

Assumption (B): aj > 0 for some 0 ≤ j ≤ k.

Corollary 3 Under Assumptions (A) and (B), if H0 is true, then nT1n
L−→ W1 = Z ′AZ,

where Z is as in Theorem 2.

In other words, the limiting distribution of nT1n under H0 is a linear combination of
independent chi-square variables,

∑k
j=1 βjχ

2
1,j, where χ2

1,1, . . . , χ
2
1,k are independent chi-

square random variates with one degree of freedom and β1, . . . , βk are the eigenvalues
of AΣ. Unfortunately, the quantities βj in this linear combination are unknown. They
depend on the distribution of the errors through the aj’s, and on the distribution of the
covariates through σjv’s. They also depend on the unknown design densities, fj, and the
conditional variance functions, σ2

j . So to use Theorem 2 in practice, one first need to
find a consistent estimator, say β̂j, for every βj, 1 ≤ j ≤ k. This can be easily done
via plug-in method using the kernel estimators (as defined above) instead of the unknown
functions ϕj, fj, fmix and σ2

j . In order to perform the test we also need to approximate the
distribution of

∑k
j=1 β̂jχ

2
1,j which can be done via Monte Carlo method or some numerical

method (see for example Kotz et al, 1967, Castaño-Martínez et al, 2005). With such a
distribution, we can finally get the critical value and/or the p-value for the test based on
T1n. The next result states the validity of this procedure.
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Let W1n =
∑k

j=1 β̂jχ
2
1j, where χ2

11, . . . , χ
2
1k are independent chi-square variables with

one degree of freedom and β̂1, . . . , β̂k are the eigenvalues of ÂΣ̂, with Â = diag(â1, . . . , âk),
Σ̂ = (σ̂jv)1≤j,v≤k,

âj =
−1(
nj

2

) ∑
1≤r<s≤nj

D2Iw(ε̂jr − ε̂js), 1 ≤ j ≤ k, (8)

D2Iw(t) = ∂2

∂t2
Iw(t), Iw as defined in Remark 1, σ̂jj = 1 − 2p̂jµ̂j + p̂j

∑k
r=1 p̂rµ̂jjr,

σ̂jv =
√
p̂j p̂v

∑k
r=1 p̂rµ̂jvr −

√
p̂j p̂v(µ̂jv + µ̂vj), j 6= v, with

p̂j =
nj
n
, µ̂j =

1

nj

nj∑
l=1

f̂j(Xjl)

f̂mix(Xjl)
, µ̂jv =

1

nv

nv∑
l=1

σ̂v(Xvl)

σ̂j(Xvl)

f̂j(Xvl)

f̂mix(Xvl)
,

µ̂jvr =
1

nr

nr∑
l=1

σ̂2
r(Xrl)

σ̂j(Xrl)σ̂v(Xrl)

f̂j(Xrl)f̂v(Xrl)

f̂ 2
mix(Xrl)

,

1 ≤ j, v, r ≤ k.

Theorem 4 Under Assumptions (A) and (B),

sup
x
|P0{nT1n(w) ≤ x} − P∗(W1n ≤ x)| P−→ 0.

Remark 5 If all the covariates have the same distribution, f1 = . . . = fk, and all variance
functions are equal, σ1 = . . . = σk, then

Σ = Ik − pp′, p′ = (
√
p1, . . . ,

√
pk).

In this case, it is easy to see that Σ has two different eigenvalues: 0, with multiplicity 1,
and 1, with multiplicity k − 1. Therefore, if it is also assumed that the laws of the errors
are such that a = a1 = . . . = ak (for instance, if they also have the same distribution),
then a−1nT1n(w)

L→
∑k−1

j=1 χ
2
1j = χ2

k−1, which coincides with the null distribution of the
classical ANOVA test for comparing means. To get a consistent null distribution estimator
of nT1n(w) in this case, it suffices to have a consistent estimator of a.

Corollary 6 Suppose that Assumptions (A) and (B) hold. If all covariates have the
same distribution, all variance functions are equal and the laws of the errors are such that
a = a1 = . . . = ak, then

sup
x
|P0{nT1n(w) ≤ x} − P∗(W01n ≤ x)| P−→ 0,

where W01n = âχ2
k−1, with â =

∑k
j=1 p̂j âj, and âj is as defined by (8).
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The result in Corollary 3 tells us that nT1n = OP (1). As a decision rule for testing H0

against H1 we propose to use Ψ1,α = I(nT1n > t1,α), where t1,α is the 1− α percentile of
nT1n or any consistent estimator of it. The following Theorem shows that, with probability
tending to 1, T1n behaves (asymptotically) like T1, see (6). This will allow us to derive
the consistency of our test.

Theorem 7 Suppose that Assumption (A) hold. Then, T1n = T1 + op(1), where T1 is as
defined in (6).

As an immediate consequence of this theorem, we conclude that, for adequate choices
of the weight function, the test Ψs,α is consistent against any fixed alternative, that is to
say, it will asymptotically reject H0 with probability one if it is not true. This property
is formally stated in the following corollary.

Corollary 8 Suppose that Assumption (A) hold. If w is such that T1 > 0 whenever
mr 6= ms, for some 1 ≤ r, s ≤ k, r 6= s, then limn→∞ P (Ψ1,α = 1) = 1, for any 0 < α < 1.

Since two distinct characteristic functions can be equal in a finite interval (see, for
example, Feller, 1971; p. 479), a general way to ensure that T1 > 0 whenever mr 6= ms,
for some 1 ≤ r, s ≤ k, r 6= s, is to take w(t) > 0, for all t ∈ R. For instance, one can take
w as the pdf of a normal law.

Finally, we study the limiting behaviour of the test statistic under local alternatives
converging to the null hypothesis at the rate n−1/2. Specifically, let us consider the
following local alternative hypothesis

H1,n : mj = m00 + n−1/2rj, 1 ≤ j ≤ k,

wherem00 verifies analogous conditions to those stated in assumption (A) for the functions
mj, and the functions rj satisfy

E{r2j (Xl)} <∞, 1 ≤ j, l ≤ k. (9)

Theorem 9 Under Assumption (A) and the alternative hypothesis H1,n, if (9) holds, then

√
nj {ϕ̂j(t)− ϕ̂0j(t)} = itϕj(t)(Zj +

√
pjµj) +Rj(t), with

∫
Rj(t)

2w(t)dt = op(1),

where Z = (Z1, . . . , Zk)
′ is as in Theorem (2) and µ′ = (

√
p1µ1, . . . ,

√
pkµk), with

µj =
k∑
v=1

pvE

{
fv(Xj)rv(Xj)

fmix(Xj)σj(Xj)

}
− E

{
rj(Xj)

σj(Xj)

}
, 1 ≤ j ≤ k.
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Corollary 10 Under Assumption (A) and the alternative hypothesis H1,n, if (9) holds,
then nT1n

L−→ (Z + µ)′A(Z + µ), where Z is as defined in Theorem 2 and µ is as in
Theorem 9.

Although the test based on the rule Ψ1,α is fully nonparametric, it is able to detect
local alternatives converging to the null hypothesis at the rate n−1/2 whenever µ′A 6= 0.

The paper by Pardo-Fernández et al. (2007) studies two Kolmogorov-Smirnov and
two Cramér-von Mises type statistics for testing H0. Our test statistic T1n can be seen
as the cf analogue of their first Cramér-von Mises type statistic. An ecf version of their
second Cramér-von Mises type statistic is

T2n =

∫
|ϕ̂(t)− ϕ̂0(t)|2w(t)dt,

where ϕ̂(t) =
∑k

j=1
nj

n
ϕ̂j(t) and ϕ̂0(t) =

∑k
j=1

nj

n
ϕ̂0j(t), which are consistent estimators

of ϕ(t) =
∑k

j=1 pjϕj(t) and ϕ0(t) =
∑k

j=1 pjϕ0j(t), respectively. The motivation of this
statistic is that the equality of ϕ(t) and ϕ0(t) also characterizes the null hypothesis.

The same steps followed in the analysis of T1n can be used to study T2n. In particular,
T2n can be computed as (see Remark 1)

n2T2n =
k∑

j,v=1

nj∑
l=1

nv∑
s=1

{Iw(ε̂jl − ε̂vs) + Iw(ε̂0jl − ε̂0vs)− 2Iw(ε̂jl − ε̂0vs)} .

The asymptotic null distribution of T2n is given in the following result, which is analogous
to Corollary 2.

Corollary 11 Let B = diag(p)Cdiag(p), where p = (
√
p1, . . . ,

√
pk)
′ and C = (cjv)1≤j,v≤k

is the matrix with elements

cjv =

∫
t2Re{ϕj(t)ϕv(t)}w(t)dt, 1 ≤ j, v,≤ k.

Under Assumption (A), if H0 is true and trace(BΣ) > 0, then nT2n
L−→ W2 = Z ′BZ,

where Z is as in Theorem 2.

In contrast to the case of T1n, there is no easy way of ensuring that trace(BΣ) > 0. To
see this fact, consider for example the case with f1 = . . . = fk and σ1 = . . . = σk. In this
situation we saw that Σ = Ik− pp′, with p′ = (

√
p1, . . . ,

√
pk); if in addition the errors are

such that c = cjv, 1 ≤ j, v ≤ k, then trace(BΣ) = 0, and thus the distribution of nT2n is
degenerate for any choice of the weight function w.
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The asymptotic distribution of T2n under H0 depends on certain properties of the
populations, which are typically unknown, and it can be summarized as

nT2n =

{
OP (1) if trace(BΣ) > 0,

oP (1) if trace(BΣ) = 0.

In the first case (trace(BΣ) > 0), the asymptotic null distribution of T2n is analogous to
the distribution of T1n, that is, a combination of chi-square random variables multiplied
by the eigenvalues of BΣ, which can be estimated as in Theorem 4. In the second case
(trace(BΣ) = 0), a deeper analysis of the asymptotic distribution is required. However,
from a practical point of view, this analysis is somehow useless since the practitioner
would not know which one of the two situations apply for a given data set. Because of
these reasons, we have focused on the test statistic T1n.

Remark 12 To approximate the null distribution of their test statistics, Pardo-Fernández
et al. (2007) employed a bootstrap procedure based on smoothed residuals (see also Neu-
meyer, 2009, for a theoretical justification). Of course, the same bootstrap procedure
could be used to approximate the null distribution of nT1n and nT2n. Nevertheless, from
a computational point of view, the estimators in Theorem 4 and Corollary 6 are less
time consuming. The finite sample performance of both approximations are numerically
investigated in Section 4.

4 Numerical results

In this section we report the results of an experiment carried out to study of the practical
behaviour of the proposed testing procedure by means of simulations. We investigate the
approximation given in Theorem 4 and also the bootstrap approximation used in Pardo-
Fernández et al. (2007) in order to compare their tests with ours. In all cases, the tables
display the observed proportion of rejections in 1000 simulated data sets.

Firstly, in a two-population (k = 2) framework, the following regression models are
considered:

(i) m1(x) = m2(x) = 1

(ii) m1(x) = m2(x) = x

(iii) m1(x) = m2(x) = sin(2πx)

11



(iv) m1(x) = m2(x) = exp(x)

(v) m1(x) = x, m2(x) = 1 + x

(vi) m1(x) = exp(x), m2(x) = exp(x) + x

(vii) m1(x) = sin(2πx), m2(x) = sin(2πx) + x

(viii) m1(x) = 1, m2(x) = 1 + sin(2πx)

Models (i)-(iv) are under the null hypothesis, and models (v)-(viii) are under the alterna-
tive. For the scale functions, in each case we study a homoscedastic and a heteroscedastic
scenario:

Homoscedastic models (S1): σ1(x) = 0.50; σ2(x) =
√

0.50.

Heteroscedastic models (S2): σ1(x) = 7
6
0.50x+ 1

2
0.50; σ2(x) = 7

8

√
0.50x+ 1

2

√
0.50.

The covariates X1 and X2 have distributions Beta(1.5, 2) and Beta(2, 1.5), respec-
tively. This choice of the distributions of the covariates motivates the models of the
scale functions in the heteroscedastic case, as they verify that E[σ1(X1)] = 0.50 and
E[σ2(X2)] =

√
0.50, so the homoscedastic case and the heteroscedastic case are somehow

comparable. The regression errors ε1 and ε2 are N(0, 1).

Nonparametric estimation of the regression functions is performed by the local-linear
estimator described in Section 2. For the estimation of the variance functions, we prefer
the local-constant estimator (Nadaraya-Watson), since the local-linear can produce neg-
ative values. In both cases the kernel function is the kernel of Epanechnikov K(u) =

0.75(1− u2)I(−1 < u < 1), which have some optimal properties.

The bandwidth selection is often a complicated issue in situations involving in non-
parametric smoothing. For a bandwidth of the form h = Cna, assumption (A.5) implies
that −0.5 < a < −0.25, so the optimal bandwidth in estimation (which corresponds
to a = −0.2 for the Nadaraya-Watson estimator and for the local-linear estimator)
is excluded. In these simulations we present results for fixed bandwidths of the form
h = Cn−0.375, with C = 1, 1.5, 2. This choice provides reasonable values for the consid-
ered setups.

As weighting function w(t) we take the pdf of a normal random variable with mean
zero and standard deviation σw. In Table 1 we briefly investigate the effect of changing
the parameter σw in models (iv) (level approximation) and (vi) (power) when the critical

12



Table 1: Observed rejection proportions of the test based on the asymptotic distribution
of T1n for homoscedastic models (iv) and (vi) and for different choices of the parameter
σw.

α: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
model σw (n1, n2) C: 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
(iv) 0.50 (50,50) 0.119 0.103 0.103 0.066 0.054 0.047 0.012 0.010 0.005

0.50 (100,50) 0.116 0.089 0.091 0.057 0.042 0.037 0.012 0.009 0.009
0.50 (100,100) 0.100 0.082 0.078 0.046 0.041 0.039 0.012 0.009 0.007
0.75 (50,50) 0.131 0.111 0.106 0.071 0.060 0.048 0.012 0.010 0.007
0.75 (100,50) 0.123 0.100 0.098 0.060 0.049 0.041 0.011 0.010 0.011
0.75 (100,100) 0.111 0.090 0.083 0.049 0.043 0.039 0.012 0.009 0.008
1.00 (50,50) 0.140 0.123 0.111 0.074 0.064 0.049 0.013 0.012 0.008
1.00 (100,50) 0.137 0.102 0.102 0.067 0.051 0.042 0.013 0.009 0.011
1.00 (100,100) 0.122 0.097 0.084 0.052 0.046 0.041 0.012 0.009 0.008

(vi) 0.50 (50,50) 0.972 0.972 0.960 0.945 0.940 0.919 0.829 0.814 0.775
0.50 (100,50) 0.993 0.996 0.996 0.984 0.988 0.987 0.956 0.951 0.931
0.50 (100,100) 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.996
0.75 (50,50) 0.973 0.974 0.967 0.947 0.945 0.929 0.838 0.824 0.796
0.75 (100,50) 0.993 0.997 0.996 0.985 0.992 0.989 0.961 0.952 0.938
0.75 (100,100) 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997
1.00 (50,50) 0.974 0.976 0.970 0.953 0.949 0.936 0.839 0.831 0.803
1.00 (100,50) 0.994 0.997 0.997 0.986 0.994 0.990 0.962 0.957 0.939
1.00 (100,100) 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997

values are approximated from the estimated asymptotic distribution of Tn1 as explained
in Theorem 4. The results are quite homogeneous, so this parameter does not seem to
have an important impact on the results. In the rest of the simulations we only show
results for σw = 1.

Tables 2 and 3 also show results for the test based on the estimated asymptotic distri-
bution of Tn1. The level (models i-iv) is slightly overestimated for small sample sizes, but
the approximation improves as the sample sizes increase, reaching a good approximation
for (n1, n2) = (100, 100). The test also reaches good power, both in the homoscedastic
and in the heteroscedastic cases.

As mentioned before, the tests proposed in Pardo-Fernández et al. (2007) are based
on a bootstrap approximation of the null distribution of the test statistics. In order
to establish a fair comparison, we have also applied the bootstrap to our test statistic.
Besides, we have also incorporated here the test statistic Tn2, for which the asymptotic
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null distribution is difficult to approximate. Table 4 shows the results of the tests based
on Tn1 and Tn2 and the four tests proposed in Pardo-Fernández et al. (2007), which are
denoted by T 1

KS, T 2
KS, T 1

CM and T 2
CM . For the sake of brevity of the presentation of the

table, we restrict ourselves to the significance level α = 0.05 and bandwidth with C = 1

(similar results have been obtained for other significance levels and other specifications
of the bandwidth). In terms of level, we see that the approximation of the level is good
for all test statistics, except for T 2

KS. Compared to the asymptotic approximation, the
bootstrap approximation improves the behaviour of the test statistic T1n for small sample
sizes. In terms of power, for models (v)-(vii), the test based on T1n is very similar to the
test based on T 1

CM , and both outperform the other ones. For model (viii), the best power
is achieved by T2n. Also note in that model T1n reaches a reasonable power and it is much
better than T 1

CM .

We have also briefly investigated the test based on the estimated asymptotic null
distribution of T1n in the case of three populations (k = 3). Now the regression models
are:

(ix) m1(x) = m2(x) = m3(x) = 1.

(x) m1(x) = m2(x) = m3(x) = x.

(xi) m1(x) = x, m2(x) = x+ 0.2, m3(x) = x+ 0.4.

(xii) m1(x) = x, m2(x) = x, m3(x) = x+ 0.25.

(xiii) m1(x) = 0.5, m2(x) = x, m3(x) = 1− x.

(xiv) m1(x) = 0, m2(x) = sin(2πx), m3(x) = − sin(2πx).

Models (ix)-(x) are under the null hypothesis, models (xi)-(xiv) are under the alternative.
We only consider homoscedastic models with scale functions σ1(x) =

√
0.25, σ2(x) =√

0.25 and σ3(x) =
√

0.50. The covariates X1, X2 and X3 are Beta(1.5, 2), Beta(2, 1.5)

and Beta(2, 2), respectively, and all regression errors are N(0, 1). As in the previous cases,
a bandwidth of the form h = Cn−0.375 is chosen, but now the C = 2, 2.5, 3 are displayed.
Other choices for C were also tried, but better results where obtained for these values.
The results are shown in Table 5. As in Tables 2 and 3, the level is well approximated for
large sample sizes and the behaviour in terms of power is correct.
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Table 2: Observed rejection proportions of the test based on the asymptotic distribution
of T1n under models (i)-(viii). The models are homoscedastic.

α: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
model (n1, n2) C: 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
(i) (50,50) 0.148 0.135 0.133 0.081 0.070 0.072 0.015 0.013 0.011

(100,50) 0.143 0.118 0.114 0.069 0.058 0.058 0.014 0.010 0.012
(100,100) 0.126 0.107 0.105 0.056 0.048 0.045 0.012 0.011 0.013

(ii) (50,50) 0.146 0.132 0.126 0.078 0.069 0.061 0.012 0.012 0.009
(100,50) 0.139 0.112 0.111 0.071 0.054 0.053 0.013 0.010 0.012
(100,100) 0.124 0.104 0.095 0.053 0.047 0.044 0.012 0.011 0.010

(iii) (50,50) 0.109 0.097 0.118 0.059 0.046 0.061 0.007 0.007 0.012
(100,50) 0.111 0.078 0.089 0.054 0.034 0.040 0.007 0.004 0.007
(100,100) 0.086 0.067 0.085 0.039 0.032 0.036 0.009 0.006 0.004

(iv) (50,50) 0.140 0.123 0.111 0.074 0.064 0.049 0.013 0.012 0.008
(100,50) 0.137 0.102 0.102 0.067 0.051 0.042 0.013 0.009 0.011
(100,100) 0.122 0.097 0.084 0.052 0.046 0.041 0.012 0.009 0.008

(v) (50,50) 0.999 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000
(100,50) 1.000 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000
(100,100) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(vi) (50,50) 0.974 0.976 0.970 0.953 0.949 0.936 0.839 0.831 0.803
(100,50) 0.994 0.997 0.997 0.986 0.994 0.990 0.962 0.957 0.939
(100,100) 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997

(vii) (50,50) 0.976 0.979 0.976 0.947 0.955 0.953 0.817 0.835 0.851
(100,50) 0.993 0.998 0.998 0.987 0.995 0.992 0.957 0.953 0.955
(100,100) 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.996 0.996

(viii) (50,50) 0.838 0.688 0.567 0.659 0.484 0.367 0.318 0.179 0.117
(100,50) 0.922 0.826 0.712 0.777 0.625 0.502 0.450 0.270 0.165
(100,100) 0.982 0.953 0.907 0.937 0.859 0.767 0.705 0.519 0.368
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Table 3: Observed rejection proportions of the test based on the asymptotic distribution
of T1n under models (i)-(viii). The models are heteroscedastic.

α: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
model (n1, n2) C: 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
(i) (50,50) 0.147 0.127 0.122 0.075 0.072 0.065 0.014 0.010 0.009

(100,50) 0.146 0.116 0.106 0.072 0.054 0.052 0.017 0.011 0.010
(100,100) 0.129 0.104 0.097 0.060 0.048 0.046 0.012 0.010 0.009

(ii) (50,50) 0.145 0.120 0.111 0.071 0.065 0.055 0.014 0.009 0.006
(100,50) 0.142 0.110 0.102 0.070 0.052 0.048 0.017 0.009 0.010
(100,100) 0.130 0.101 0.092 0.059 0.049 0.047 0.012 0.009 0.008

(iii) (50,50) 0.099 0.089 0.122 0.055 0.045 0.056 0.006 0.005 0.013
(100,50) 0.109 0.071 0.084 0.052 0.034 0.044 0.010 0.005 0.005
(100,100) 0.091 0.068 0.081 0.038 0.029 0.034 0.009 0.006 0.005

(iv) (50,50) 0.141 0.111 0.100 0.072 0.060 0.050 0.011 0.009 0.005
(100,50) 0.140 0.104 0.090 0.067 0.049 0.040 0.015 0.008 0.008
(100,100) 0.127 0.094 0.082 0.059 0.045 0.043 0.012 0.008 0.006

(v) (50,50) 0.999 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000
(100,50) 0.999 1.000 1.000 0.998 1.000 1.000 0.998 1.000 1.000
(100,100) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(vi) (50,50) 0.961 0.964 0.944 0.932 0.927 0.904 0.801 0.787 0.746
(100,50) 0.992 0.997 0.994 0.984 0.985 0.980 0.945 0.926 0.904
(100,100) 0.999 1.000 1.000 0.998 1.000 1.000 0.992 0.994 0.991

(vii) (50,50) 0.965 0.966 0.964 0.931 0.928 0.938 0.771 0.788 0.807
(100,50) 0.994 0.998 0.996 0.983 0.988 0.987 0.932 0.927 0.920
(100,100) 1.000 1.000 1.000 0.999 1.000 1.000 0.992 0.992 0.991

(viii) (50,50) 0.917 0.837 0.800 0.807 0.673 0.597 0.453 0.316 0.249
(100,50) 0.939 0.902 0.828 0.884 0.758 0.665 0.583 0.405 0.291
(100,100) 0.991 0.990 0.975 0.979 0.955 0.921 0.864 0.763 0.661
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Table 5: Observed rejection proportions of the tests based on the asymptotic distribution
of T1n under models (ix)-(xiv).

α: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
model (n1, n2, n3) C: 2.00 2.50 3.00 2.00 2.50 3.00 2.00 2.50 3.00
(ix) (50,50,50) 0.132 0.128 0.137 0.068 0.071 0.074 0.009 0.011 0.011

(100,50,50) 0.128 0.126 0.124 0.078 0.075 0.071 0.012 0.014 0.013
(100,100,50) 0.138 0.131 0.130 0.080 0.081 0.085 0.021 0.020 0.019
(100,100,100) 0.122 0.124 0.121 0.057 0.057 0.061 0.013 0.011 0.010

(x) (50,50,50) 0.125 0.114 0.112 0.062 0.059 0.062 0.008 0.008 0.007
(100,50,50) 0.116 0.116 0.113 0.065 0.069 0.068 0.008 0.012 0.011
(100,100,50) 0.127 0.123 0.121 0.076 0.072 0.070 0.018 0.017 0.016
(100,100,100) 0.109 0.105 0.099 0.055 0.054 0.054 0.012 0.010 0.009

(xi) (50,50,50) 0.909 0.899 0.899 0.839 0.830 0.815 0.620 0.608 0.588
(100,50,50) 0.971 0.966 0.960 0.925 0.923 0.918 0.782 0.764 0.757
(100,100,50) 0.975 0.970 0.968 0.952 0.949 0.946 0.837 0.832 0.818
(100,100,100) 0.996 0.996 0.996 0.995 0.991 0.990 0.956 0.953 0.953

(xii) (50,50,50) 0.657 0.635 0.622 0.528 0.507 0.496 0.269 0.249 0.244
(100,50,50) 0.647 0.638 0.624 0.535 0.518 0.517 0.306 0.294 0.289
(100,100,50) 0.694 0.676 0.669 0.590 0.568 0.558 0.350 0.329 0.322
(100,100,100) 0.889 0.883 0.885 0.823 0.813 0.804 0.643 0.630 0.619

(xiii) (50,50,50) 0.393 0.378 0.364 0.248 0.241 0.220 0.078 0.070 0.063
(100,50,50) 0.416 0.390 0.374 0.264 0.252 0.238 0.087 0.081 0.069
(100,100,50) 0.391 0.366 0.350 0.234 0.221 0.215 0.071 0.067 0.062
(100,100,100) 0.552 0.534 0.511 0.374 0.353 0.355 0.153 0.140 0.130

(xiv) (50,50,50) 1.000 1.000 0.999 1.000 0.999 0.997 0.996 0.986 0.972
(100,50,50) 1.000 1.000 1.000 1.000 1.000 0.999 0.995 0.992 0.981
(100,100,50) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(100,100,100) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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5 Conclusions

A test for the comparison of k regression functions has been proposed and studied. The
test can be seen as a cf version of a ecdf based test previously proposed in Pardo-Fernández
et al. (2007). Both tests are developed under a totally nonparametric setting, and they
share some desirable asymptotic properties such as consistency under both fixed and
contiguous alternatives. Nevertheless, the conditions required to develop our theory are
less restrictive, which is a quite desirable property. In addition, the simulations carried out
reveal that the behavior of both tests are very close in terms of power. An estimation of
the asymptotic null distribution has been proposed as an estimator of the null distribution
of the test statistic. In the cases tried in our numerical experiments it is observed that
this approximation works, in the sense of providing type I errors close to the nominal
values, specially when the sample sizes are at least 100. For smaller sample sizes it is
recommended to approximate the null distribution through a bootstrap mechanism.

6 Appendix

We now sketch the proofs of the results stated in Section 3. With this aim, we first observe
that under the considered assumptions, for 1 ≤ j ≤ k,

sup
t
|m̂j(t)−mj(t)| = op(n

−1/4
j ),

sup
t
|σ̂j(t)− σj(t)| = op(n

−1/4
j ),

sup
t
|f̂j(t)− fj(t)| = op(n

−1/4
j ).

Proof of Theorem 2 By Taylor’s Theorem,

√
nj {ϕ̂j(t)− ϕ̂0j(t)} =

√
nj

{
1

nj

∑
l

exp(itε̂jl)−
1

nj

∑
l

exp(itε̂0jl)

}
= it

1√
nj

∑
l

(ε̂jl − ε̂0jl) exp(itε̂0jl) + t2R1nj
(t),

where
sup
t
|R1nj

(t)| ≤ √njOp(1){sup
t
|m̂j(t)− m̂0(t)|}2 = op(1).

Again by Taylor’s Theorem,
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it
1√
nj

∑
l

(ε̂jl − ε̂0jl) exp(itε̂0jl) = it
1√
nj

∑
l

(ε̂jl − ε̂0jl) exp(itεjl) + t2R2nj
(t),

with
sup
t
|R2nj

(t)| ≤ Op(1) sup
t
|m̂j(t)− m̂0(t)|

{
√
nj sup

t
|m0(t)− m̂0(t)|+

+ sup
t
|σ̂j(t)− σj(t)|

1√
nj

∑
l

|εjl|

}
= op(1).

From the definition of the residuals,

it
1√
nj

∑
l

(ε̂jl − ε̂0jl) exp(itεjl) = Âj(t) + tR3nj
(t),

where
Âj(t) = it

1√
nj

∑
l

m̂0(Xjl)− m̂j(Xjl)

σj(Xjl)
exp(itεjl), (10)

and
sup
t
|R3nj

(t)| ≤ Op(1)
√
nj sup

t
|m̂j(t)− m̂0(t)| sup

t
|σ̂j(t)− σj(t)| = op(1).

Under H0,

m̂0(x)−m0(x) =
k∑
v=1

wv(x) {m̂v(x)−mv(x)}+ op(n
−1/2),

uniformly in x, where wv(x) = nv

n
fv(x)
fmix(x)

. Therefore, Âj(t) = Â2j(t) − Â1j(t) + tR4nj
(t),

with sup
t
|R4nj

(t)| = oP (1),

Â2j(t) =
k∑
v=1

it√
nj

nj∑
l=1

wv(Xjl)

σj(Xjl)
{m̂v(Xjl)−mv(Xjl)} exp(itεjl), (11)

and

Â1j(t) =
it√
nj

nj∑
l=1

1

σj(Xjl)
{m̂j(Xjl)−mj(Xjl)} exp(itεjl). (12)

Standard arguments (see e.g. Masry, 1996) show that, under the assumed conditions,

m̂v(x)−mv(x) =
1

nvfv(x)

nv∑
s=1

Kh(x−Xvs)σv(Xvs)εvs + op(n
−1/2
v ),

uniformly in x. Thus,

Â2j(t) = it
1

n
√
nj

k∑
v=1

njnvUv,j(t) + tR5nj
(t),
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where sup
t
|R5nj

(t)| = oP (1) and

Uv,j(t) =
1

njnv

nj∑
l=1

nv∑
s=1

Sn(Xjl, εjl;Xvs, εvs; t),

with
Sn(Xjl, εjl;Xvs, εvs; t) =

σv(Xvs)

fmix(Xjl)σj(Xjl)
Kh(Xjl −Xvs)εvs exp(itεjl).

If j 6= v, then, for every t, Uv,j(t) is a two sample U-statistic of degree (1, 1) with kernel
Sn(Xjl, εjl;Xvs, εvs; t). Its Hájek projection is given by

Ûv,j(t) = ϕj(t)
1

nv

nv∑
s=1

εvsσv(Xvs)h̃n(Xvs),

where h̃n(x) = E
(

Kh(Xj−x)
fmix(Xj)σj(Xj)

)
. We have (see e.g. Theorem 11.1 and the proof of

Theorem 12.6 in van der Vaart, 1998)

E[{Uv,j(t)− Ûv,j(t)}2] = V ar{Uv,j(t)} − V ar{Ûv,j(t)} =
1

nvnj
E{S2

n(Xj, εj;Xv, εv; t)}.

Because E{S2
n(Xj, εj;Xv, εv; t)} = O(1/h) = o(n), uniformly in t, we obtain E[{Uv,j(t)−

Ûv,j(t)}2] = o(n−1), uniformly in t. This together with the fact that h̃n(x) =
fj(x)

fmix(x)σj(x)
+

O(h2), uniformly in x, implies

Uv,j(t) = ϕj(t)
1

nv

nv∑
s=1

fj(Xvs)σv(Xvs)

fmix(Xvs)σj(Xvs)
εvs +Rv,j(t), with sup

t
|Rv,j(t)| = op(n

−1/2).

(13)
If j = v, then Uj,j(t) can be written as

Uj,j(t) =
K(0)

n2
jh

nj∑
s=1

εjs exp(itεjs)

fmix(Xjs)
+
nj − 1

2nj
Uj(t),

where, for every t, Uj(t) is a one sample U-statistic of degree 2 with kernel Sn(Xjl, εjl;Xjs, εjs; t)+

Sn(Xjs, εjs;Xjl, εjl; t). Arguments very similar to those employed for the case j 6= v can
be used to show that Uj(t) = 2Ûj,j(t) +Rj(t), with sup

t
|Rj(t)| = op(n

−1/2). Since

√
n
K(0)

n2
jh

∣∣∣∣∣
nj∑
s=1

εjs exp(itεjs)

fmix(Xjs)

∣∣∣∣∣ ≤ M√
nh2

1

nj

nj∑
l=1

|εjl| = oP (1), ∀t,

for some constant M > 0, we get that Uj,j(t) also satisfies (13) with j = v, and thus

Â2j(t) = it
pj√
nj
ϕj(t)

k∑
v=1

nv∑
s=1

fj(Xvs)

fmix(Xvs)

σv(Xvs)

σj(Xvs)
εvs + tR2j(t), with sup

t
|R2j(t)| = op(1).

(14)
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Similarly, it can be proved that

Â1j(t) = it
1√
nj
ϕj(t)

nj∑
s=1

εjs + tR1j(t), with sup
t
|R1j(t)| = op(1). (15)

We conclude that, under H0,

√
nj {ϕ̂j(t)− ϕ̂0j(t)} = itϕj(t)Zn,j + tR1(t) + t2R2(t), with sup

t
|Rs(t)| = op(1), s = 1, 2,

with

Zn,j =

√
p
j√
n

k∑
v=1

nv∑
s=1

fj(Xvs)

fmix(Xvs)

σv(Xvs)

σj(Xvs)
εvs −

1√
nj

nj∑
s=1

εjs. (16)

The result follows by applying the CLT to Zn = (Zn,1, . . . , Zn,k)
′. 2

Proof of Corollary 3 From the definition of T1n and the result in Theorem 2 we
get,nT1n =

∑k
j=1 Z

2
j

∫
t2|ϕj(t)|2w(t)dt+ op(1) = ZtAZ + op(1)

L−→ W1. 2

Proof of Theorem 4 Since asymptotically, under H0, T1n(w) is a continuous function
of the quantities aj, pj and σ2

rj, 1 ≤ r, j ≤ k, to prove the result it suffices to prove
the consistency of the estimators of these quantities. From assumption (A.2), p̂j → pj,
1 ≤ j ≤ k. Next, to prove the consistency of âj we will consider the following equivalent
expression

âj =
nj

nj − 1

{∫
t2 |ϕ̂j(t)|2w(t)dt

}
− 1

nj − 1

∫
t2w(t)dt.

Observe that for 1 ≤ j ≤ k and l = 1, . . . , nj,

ε̂jl − εjl =

(
σj(Xjl)

σ̂j(Xjl)
− 1

)
εjl −

m̂j(Xjl)−mj(Xjl)

σ̂j(Xjl)
.

By Taylor’s Theorem,

n−1j
∑
l

exp(itε̂jl) = n−1j
∑
l

exp(itεjl) + tR1nj
(t), with sup

t
|R1nj

(t)| = oP (1), (17)

and thus,
âj = Uj + oP (1), 1 ≤ j ≤ k, (18)

with
Uj =

−1(
nj

2

) ∑
1≤r<s≤nj

D2Iw(εjr − εjs), 1 ≤ j ≤ k,

which is a degree-2 U -statistic and therefore (see Serfling, 1980)

Uj = aj + oP (1), 1 ≤ j ≤ k. (19)
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Now, from (18) and (19), we get âj = aj + oP (1), 1 ≤ j ≤ k.

From the assumed conditions and the SLLN, we get

µ̂j =
1

nj

nj∑
l=1

f̂j(Xjl)

f̂mix(Xjl)
=

1

nj

nj∑
l=1

fj(Xjl)

fmix(Xjl)
+ op(n

−1/4) = E

{
fj(Xj)

fmix(Xj)

}
+ oP (1),

1 ≤ j ≤ k. The consistency of µ̂jv and µ̂jvu can be analogously dealt with, 1 ≤ j, v, u ≤ k.
2

Proof of Theorem 6 The proof follows from the proof of Theorem 4, so we omit it. 2

Proof of Theorem 7 Under the assumed conditions (17) holds. Similarly, n−1j
∑

l exp(itε̂0jl)
= n−1j

∑
l exp(itε0jl)+tR2nj

(t), with sup
t
|R2nj

(t)| = oP (1), where ε0jl = {Yjl−m0(Xjl}/σj(Xjl)

Let ϕ̃j(t) = n−1j
∑

l exp(itεjl) and ϕ̃0j(t) = n−1j
∑

l exp(itε0jl). We conclude that

T1n =
k∑
j=1

nj
n

∫
|ϕ̃j(t)− ϕ̃0j(t)|2w(t)dt+ op(1) =

k∑
j=1

nj
n
Vj + op(1),

where Vj =
1

n2
j

nj∑
r,s=1

{Iw(εjr − εjs) + Iw(ε0jr − ε0js)− 2Iw(εjr − ε0js)}, with Iw as defined

in Remark 1. For 1 ≤ j ≤ k, Vj is a V -statistic of degree 2 with a bounded kernel and
thus (see Serfling, 1980) it converges to it expected value which is∫

|ϕj(t)− ϕ0j(t)|2w(t)dt.

This concludes the proof. 2

Proof of Theorem 9 We first note that under H1,n,

m0 = m00 +
1√
n
r0, with r0(t) =

k∑
v=1

pv
fv(t)

fmix(t)
rv(t).

Thus from (9),

1
√
nj

∑
l

{mj(Xjl)−m0(Xjl)}2 =
1

n
√
nj

∑
l

{rj(Xjl)−r0(Xjl)}2 = OP (n−1/2), 1 ≤ j ≤ k.

(20)
Now, taking into account (20) and following the same steps as those given in the proof of
Theorem 2, we get

√
nj {ϕ̂j(t)− ϕ̂0j(t)} = Âj(t) + tR1nj

(t) + t2R2nj
(t),
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with Âj(t) as defined in (10) and sup
t
|Rsnj

(t)| = op(1), s = 1, 2. Under H1,n,

m̂0(x)−m0(x) =
k∑
v=1

nv
n

fv(x)

fmix(x)
{m̂v(x)−mv(x)}+

1√
n

k∑
v=1

{
nv
n

f̂v(x)

f̂mix(x)
− pv

fv(x)

fmix(x)

}
rv(x) + op(n

−1/2),

uniformly in x. Therefore, Âj(t) = Ã2j(t)−Â1j(t)+Â3j(t)+ tR3nj
(t), with sup

t
|R3nj

(t)| =

oP (1), Â1j(t) as in (12) Â2j(t) = Â2j(t) + itÂ22j(t), Â2j(t) as in (11),

Â22j(t) =
1
√
nnj

k∑
v=1

∑
l

{
nv
n

f̂v(Xjl)

f̂mix(Xjl)
− pv

fv(Xjl)

fmix(Xjl)

}
rv(Xjl) exp(itεjl),

Â3j(t) = it
1
√
nj

∑
l

mj(Xjl)−m0(Xjl)

σj(Xjl)
exp(itεjl).

From (9), supt |Â22j(t)| = oP (1). Now let us consider the Hilbert space H = L2(R, w) of
(equivalence classes of) measurable functions g : R→ R, with ‖g‖2w =

∫
g(t)2w(t)dt <∞.

From the SLLN in Hilbert spaces, Â3j(t) = itϕj(t)
√
pjµj+R3j(t), with ‖R3j(t)‖w = oP (1).

Finally, taking into account (14) and (15), we conclude that under H1,n

√
nj {ϕ̂j(t)− ϕ̂0j(t)} = itϕj(t)(Zn,j +

√
pjµj) +Rj(t), with ‖Rj(t)‖w = op(1),

with Zn,j as defined in (16). The result follows from the CLT. 2

Proof of Corollary 11 Analogously to the proof of Corollary 3, from the definition of
T2n and the result in Theorem 2, we get

nT2n =

∫ ∣∣∣∣∣
k∑
j=1

√
pjtϕj(t)Zj

∣∣∣∣∣
2

w(t)dt+ op(1) =

∫ { k∑
j=1

√
pjtϕj(t)Zj

}{
k∑
v=1

√
pvtϕv(t)Zv

}
w(t)dt+ op(1) =

k∑
j,v=1

√
pjpvZjZv

∫
t2ϕj(t)ϕv(t)w(t)dt+ op(1).

Note that the coefficient of ZjZv in the non-negligible term in the above expression is

√
pjpv

{∫
t2ϕj(t)ϕv(t)w(t)dt+

∫
t2ϕv(t)ϕj(t)w(t)dt

}
=

2
√
pjpvRe

{
ϕj(t)ϕv(t)

}
= 2
√
pjpvRe

{
ϕv(t)ϕj(t)

}
.

Thus,
nT2n = ZtBZ + op(1)

L−→ W2. 2
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