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Abstract

One important goal in multi-state modeling is the estimation of transition
probabilities. In longitudinal medical studies these quantities are particularly
of interest since they allow for long-term predictions of the process. In recent
years significant contributions have been made regarding this topic. However,
most of the approaches assume independent censoring and do not account for
the influence of covariates. This paper introduces feasible estimation methods
for the transition probabilities in an illness-death model conditionally on
current or past covariate measures. These approaches are evaluated through a
simulation study, comparing two different estimators. The proposed methods
are illustrated using real data.

Keywords: Conditional Survival, Dependent Censoring, Illness-death
model, Kaplan-Meier, Multi-state model, Transition probabilities

1. Introduction

The so-called “illness-death” model plays a central role in the theory and
practice of multi-state models (Andersen et al. [5], Meira-Machado et al. [16]).
In the irreversible version of this model, individuals start in the “healthy”
state and subsequently move either to the “diseased” state or to the “dead”
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state. Individuals in the “diseased” state will eventually move to the “dead”
state without any possibility of recovery. See Figure 1. Many time-to-event
data sets from medical studies with multiple end points can be reduced to this
generic structure. Thus, methods developed for the three-state illness-death
model have a wide range of applications. From a theoretical standpoint,
this is the simplest multi-state generalization of the survival analysis model
that incorporates both branching (as in a multiple decrement/competing risk
model) and an intermediate state (as in a progressive tracking model). Thus,
unlike the survival or the competing risk model, this model is not necessarily
Markovian.

Various aspects of the model dynamics are captured by the transition
probabilities. In the presence of right censoring, these can be estimated
by the Aalen-Johansen product limit estimator (Aalen and Johansen [1])
provided the system is Markovian. However, as demonstrated by Meira-
Machado et al. [15], the Aalen-Johansen estimator is inconsistent when the
Markov assumption does not hold. They also illustrate through a real data
example that the Markovianity cannot be taken for granted. Meira-Machado
et al. [15] and Amorim et al. [4] provide alternative nonparametric estimators
specific to the three-state illness-death model that are consistent even without
the Markov assumption.

In this paper, we revisit the problem of estimation of the transition proba-
bilities of an irreversible, possibly non-Markov illness-death model. However,
unlike the previous attempts, we are interested in a regression setup where
we estimate these probabilities given a continuous covariate that could either
be a baseline covariate or a current covariate that is observed for an indi-
vidual before the individual makes a particular transition of interest. Our
methodology is motivated by the colon cancer data set originally investigated
by Moertel et al. [17] and subsequently reanalyzed by Lin et al. [14] to study
the joint distribution of gap times between enrolment (curative surgery), the
disease recurrence and death. These data can also be viewed as arising from
a three-state illness-death model where “recurrence” can be modeled as the
intermediate illness state. We are interested in the effect of a covariate (age
at surgery, or number of lymph nodes with detectable cancer), on the proba-
bilities of transitions between the several states. Standard regression models
in this setup (besides of imposing Markovianity) usually rely on a parametric
specification of the covariates’ effects on the intensity functions; therefore,
flexible effects of the covariates on the transition probabilities as those de-
picted in Figures 3 and 4 (Section 4) can not be estimated through standard
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techniques.
Another illustrative example is provided by the Bone-Marrow transplant

data (Copelan et al. [7]). In this data set, one major intermediate event of
interest is the development of acute graft versus host disease (GVHD). The
terminal state is “relapse of leukemia or death”. We may combine all the
earlier states into one initial state (cancer and cGVHD free living) and view
this as a three-state illness-death model. An interesting question to ask in
this context is does the time from bone marrow transplant to the onset of
acute GVHD affect the transition probabilities to the terminal state? We
return to these questions in Section 4.

We provide two competing nonparametric regression estimators of the
transition probability matrix of a three-state progressive illness-death model.
We show that both estimators are valid (e.g., consistent) under mid regular-
ity conditions even when the system is non-Markov or conditionally non-
Markov. In both estimators, local smoothing is done by introducing kernel
weights that are either based on a local constant (i.e. Nadaraya-Watson) or
a local linear regression. Right censoring is handled by appropriate reweight-
ing of the chosen summands and the differences between the two estimators
are somewhat subtle in this regard. The first estimator is based on observa-
tions that are completely uncensored (i.e., fully observed till death) whereas
the second estimator is based on observations that were uncensored till a
given time. Extensive simulation studies are provided comparing the two
estimators.

The rest of the paper is organized as follows. Section 2 introduces the
formal notations and the two estimators. Section 3 describes the simulation
setup and the findings of a number of simulation experiments. Illustrative
real data applications are provided in Section 4. The main body of the paper
ends with a discussion section (Section 5). Additional simulation results are
presented in the Appendix.

2. Conditional Transition Probabilities

2.1. Notation

A multi-state model is a stochastic process (X(t), t ∈ T ) with a finite
state space, where X(t) represents the state occupied by the process at time
t ≥ 0. In this paper we consider the progressive illness-death model de-
picted in Figure 1 and we assume that all the subjects are in state 1 at time
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t = 0. This model is encountered in many medical studies (cancer studies,
transplantations, etc) where State 1 is some initial stage of the disease (e.g.
healthy, disease-free, etc), State 2 is some intermediate stage of the disease
(e.g. alive with local recurrence, certain stage of a disease, transplantation,
etc) and State 3 is an absorbing state (e.g. dead) which at some future time
all subjects are expected to arrive. For this model the transitions allowed
are 1→ 2, 1→ 3 and 2→ 3. This means that an individual may visit State
2 or going directly to State 3 without visiting State 2.

For two states i, j and two time points s < t, introduce the so-called
transition probabilities

pij(s, t) = P (X(t) = j|X(s) = i) .

In the illness-death model we only need to estimate three different tran-
sition probabilities: p11(s, t), p12(s, t), and p22(s, t). The two other transition
probabilities (p13(s, t) and p23(s, t)) can be obtained from these ones since
p13(s, t) = 1− p11(s, t)− p12(s, t) and p23(s, t) = 1− p22(s, t).

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead
 

Figure 2: Illness-death model. 

 More examples of multi-state models can be found in books by Andersen et al. 

(1993) and Hougaard (2000), or in papers by Putter et al. (2007) and Andersen and 

Perme (2008).   

 Despite its potential, multi-state modeling is not used by practitioners as 

frequently as other survival analysis techniques. It is our belief that lack of knowledge 

of available software and non-implementation of the new methodologies in user-

friendly software are probably responsible for this neglect. One important contribution 

to this issue was given by the R/S-PLUS survival package. Thanks to this package, 

survival analysis is no longer limited to Kaplan-Meier curves and simple Cox models. 

Indeed, this package enables users to implement the methods introduced by Therneau 

and Grambsch (2000) for modeling multi-state survival data. In R (R Development Core 

Team 2008), multi-state regression can also be performed using the msm package 

(continuous-time Markov and hidden Markov multi-state models), the changeLOS 

package (Wrangler et al. 2006) implements the Aalen–Johansen estimator for general 

multi-state models, and the etm package has recently enabled the transition matrix to be 

computed, along with a covariance estimator.   

 This paper describes the R-based p3state.msm package's capabilities for 

analyzing survival data from an illness-death model. It extends existing semi-parametric 

regression capabilities included in many statistical software programs, such as R, S-

PLUS, SAS, etc. Moreover, p3state.msm enables several quantities of interest to be 

estimated, such as transition probabilities, bivariate distribution function, etc. In 

Figure 1: Illness-death model

In the framework of the progressive illness-death model, we may consider
three random variables T12, T13 and T23, that represent the potential transi-
tion times from one state to another one. According to this notation, subjects
not visiting state 2 will reach the absorbing state at time T13. This time will
be T12 + T23 if he/she passes through state 2 before, where the variables T12

and T23 are recorded successively, rather than simultaneously. In this model
we have two competing transitions leaving state 1. Therefore, we denote by
ρ = I(T12 ≤ T13) the indicator of visiting state 2 at some time, Z = T12∧T13

the sojourn time in state 1, and T = Z + ρT23 the total survival time of the
process.

Let C be the univariate censoring variable and put Z̃ = Z ∧ C and
T̃ = T ∧ C for the censored versions of Z and T . Then, let ∆1 = I(Z ≤ C)
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and ∆ = I(T ≤ C) denote the respective censoring indicators. Note that
ρ is observed only when ∆1 = 1. According to this notation, the transition
probabilities may be written as

p11(s, t) =
P (Z > t)

P (Z > s)
, p12(s, t) =

P (s < Z ≤ t, T > t)

P (Z > s)

p22(s, t) =
P (Z ≤ s, T > t)

P (Z ≤ s, T > s)
.

Note that p11(s, t) and the denominator of p12(s, t) only involve the Z
variable, while the remaining quantities involve expectations of particular
transformations of the pair (Z, T ), S (ϕ) = E [ϕ (Z, T )]. In Meira-Machado
et al. [15] and Amorim et al. [4] the authors proposed to estimate these quan-
tities using Kaplan-Meier weights pertaining to the distribution of the total
time to weight the data. They showed that their estimator may behave much
more efficiently than the competing ones, particularly when the underlying
process is not Markovian. However, their methods are only valid if the cen-
soring variable is assumed to be independent of the process. Furthermore,
they do not account for the influence of covariates.

In this work we are interested in estimating the conditional transition
probabilities: p11(s, t | X), p12(s, t | X), and p22(s, t | X) that can be com-
puted for any times s and t, s < t but conditional to some covariate value
which we denote by X. Again, following the notation introduced above, the
conditional transition probabilities are written as

p11(s, t | X) =
P (Z > t | X)

P (Z > s | X)
, p12(s, t | X) =

P (s < Z ≤ t, T > t | X)

P (Z > s | X)

p22(s, t | X) =
P (Z ≤ s, T > t | X)

P (Z ≤ s, T > s | X)
.

Now, the conditional transition probability p11(s, t | X) and the denomi-
nator of p12(s, t | X) only involve the conditional distribution of Z given X.
This conditional distribution can be estimated nonparametrically following
Beran [6]. The remaining quantities involve expectations of particular trans-
formations of the pair (Z, T ) given X, S (ϕ | X) = E [ϕ (Z, T ) | X] which can
not be estimated so simply. In particular, we need to estimate the expecta-
tions S (ϕs,t | X) and S (ϕ̃s,t | X), where ϕs,t(u, v) = I(s < u ≤ t, v > t) and
ϕ̃s,t(u, v) = I(u ≤ s, v > t).
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In the following, we discuss how these expectations can be empirically

approximated from the data
{(
Z̃i, T̃i,∆1i,∆i,∆1iρi, Xi

)
, 1 ≤ i ≤ n

}
, which

are assumed to form a random sample of the vector
(
Z̃, T̃ ,∆1,∆,∆1ρ,X

)
.

We will estimate these quantities assuming that the censoring variable C is
independent of (Z, T ) given X. Note that this assumption does not exclude
the possibility of dependent censoring (i.e., C unconditionally dependent on
(Z, T )). Markovianity will not be assumed.

2.2. The Estimators

In this section, we will introduce two estimators for the conditional transi-
tion probabilities, phj(s, t | X), in an illness-death model. Both methods are
based on Inverse Probability of Censoring Weighted (Lin et al., 1999; Satten
and Datta, 2001). As mentioned in Section 2.1, this can be done via esti-
mating the general conditional expectation E [ϕ (Z, T ) | X = x]. To estimate
this quantity we may use kernel smoothing techniques by calculating a local
average of the ϕ(Z, T ). This can be written as

∑i=n
i=1 W1i(x)ϕ(Zi, Ti) where

W1i(x) is a weight function which can be estimated using Nadaraya-Watson
(Nadaraya [19],Watson [22]) or local linear estimators. In our case, we have
to estimate f(x) = E [ϕs,t (Z, T ) | X = x], g(x) = E [ϕ̃s,t (Z, T ) | X = x]
and h(x) = E[ξs (Z) | X = x], where ϕs,t (u, v) = I(s < u ≤ t, v > t),
ϕ̃s,t(u, v) = I(u ≤ s, v > t) and ξs(u) = I(u > s).

To estimate these quantities, we need to estimate the d.f. of C given X,
GX . Let GXi

denote the conditional distribution function of C | X = Xi and

let ĜXi
stand for its estimator. The estimation of the conditional distribution

function of the response, given the covariate under random censoring has
been considered in many papers. This topic was introduced by Beran [6] and
was further studied by several authors (see e.g. papers by Dabrowska [8],
Dabrowska [9], Dabrowska [10], Dabrowska [11]; Akritas [2]; Van Keilegom
et al. [21] and Van Keilegom [20]). Recently, Beran’s estimator has been
extended to regression of state occupation probabilities of a multi-state model
by Mostajabi and Datta [18].Their proposals can also be used to estimate

the conditional distribution function of C | X = x, say Ĝx. This can be done
using the estimator introduced by Beran [6],

Ĝx(t) =
∏

Ti≤t,∆i=0

[
1− W0i(x, an)∑n

j=1 I(Tj ≥ Ti)W0j(x, an)

]
(1)
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with

W0i(x, an) =
K0 ((x−Xi)/an)∑n
j=1K0 ((x−Xj)/an)

where W0i(x, an) are the Nadaraya-Watson (NW) weights, K0 is a known
probability density function (the kernel function) and an is a sequence of
bandwidths. This estimator reduces to the so-known Kaplan-Meier (Kaplan
and Meier [13]) estimator when all the weights are equal. To cope with left-
truncated data, one can also use the estimator of the conditional distribution,
proposed by Iglésias-Pérez and González-Manteiga [12].

In order to introduce our estimators note that, assuming that the support
of the conditional distribution of T is contained in that of C | X, we have

E[ϕ(Z, T ) | X] = E[ϕ(Z̃, T̃ )∆/(1 − GX(T̃−)) | X)]. We propose to plug-
in Beran’s estimator ĜX and use NW or a local linear estimator (LLE) to
estimate f(x), i.e. to compute

f̂(x; s, t) =
n∑

i=1

W1i(x, bn)
ϕs,t(Z̃i, T̃i)∆i

1− ĜXi
(T̃−

i )
=

n∑
i=1

W1i(x, bn)
I(s < Z̃i ≤ t, T̃i > t)∆i

1− ĜXi
(T̃−

i )

where W1i(x, bn) are NW weights as introduced above, or using local linear
weights,

W1i(x, bn) =
K1 ((x−Xi)/bn) [Sn,2(x)− (x−Xi)Sn,1(x)]∑n
j=1K1 ((x−Xj)/bn) [Sn,2 − (x−Xj)Sn,1(x)]

with Sn,l =
∑n

i=1K1((x − Xi)/bn)(x − Xi)
l, l = 0, 1, 2 and where bn is a

sequence of bandwidths and K1 is a known kernel function.
Similarly, we can use Nadaraya-Watson estimators or local linear estima-

tors to estimate g(x) and h(x) i.e.

ĝ(x; s, t) =
n∑

i=1

W1i(x, bn)
ϕ̃s,t(Z̃i, T̃i)∆i

1− ĜXi
(T̃−

i )
=

n∑
i=1

W1i(x, bn)
I(Z̃i ≤ s, T̃i > t)∆i

1− ĜXi
(T̃−

i )

and
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ĥ(x; s) =
n∑

i=1

W1i(x, cn)
ξs(Z̃i)∆1i

1− ĤXi
(Z̃−

i )
=

n∑
i=1

W1i(x, cn)
I(Z̃i ≥ s)∆1i

1− ĤXi
(Z̃−

i )

where ĤX stands for the Kaplan-Meier estimator of the conditional distribu-
tion of C given X based on the (Z̃i, 1−∆1i)’s.

Then, we may introduce Inverse Probability Censoring Weighted estima-
tors (IPCW) for the conditional transition probabilities, as follows:

p̂11(x; s, t) = p̂11(s, t | X = x) =
ĥ(x; t)

ĥ(x; s)
,

p̂12(x; s, t) = p̂12(s, t | X = x) =
f̂(x; s, t)

ĥ(x; s)
,

p̂22(x; s, t) = p̂22(s, t | X = x) =
ĝ(x; s, t)

ĝ(x; s, s)
.

Alternatively, by noting that E[ϕs,t(Z, T ) | X] = E[I(Z ≤ s, T > t) |
X] = E[I(Z ≤ s, T > t)I(C > t)/(1 − GX(t−)) | X], a different set of
estimators may be introduced. This approach has been used previously by
Lin et al. [14] to estimate the bivariate distribution for censored gap times.
In our setup, alternative estimators of the transition probabilities will involve
the following estimators:

f̃(x; s, t) =
n∑

i=1

W1i(x, bn)
ϕs,t(Z̃i, T̃i)

1− ĜXi
(t−)

=
n∑

i=1

W1i(x, bn)
I(s < Z̃i ≤ t, T̃i > t)

1− ĜXi
(t−)

g̃(x; s, t) =
n∑

i=1

W1i(x, bn)
ϕ̃s,t(Z̃i, T̃i)

1− ĜXi
(t−)

=
n∑

i=1

W1i(x, bn)
I(Z̃i ≤ s, T̃i > t)

1− ĜXi
(t−)

and

h̃(x; s) =
n∑

i=1

W1i(x, cn)
ξs(Z̃i)∆1i

1− ĤXi
(s−)

=
n∑

i=1

W1i(x, cn)
I(Z̃i ≥ s)∆1i

1− ĤXi
(s−)

.
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These lead to the conditional transition probabilities (LIN-based) given by

p̃11(x; s, t) = p̃11(s, t | X = x) =
h̃(x; t)

h̃(x; s)
,

p̃12(x; s, t) = p̃12(s, t | X = x) =
f̃(x; s, t)

h̃(x; s)
,

p̃22(x; s, t) = p̃22(s, t | X = x) =
g̃(x; s, t)

g̃(x; s, s)
.

Consistency and further asymptotics for the proposed estimators can be
derived as usual. More focused in practical issues, the finite-sample per-
formance of IPCW estimators and the alternative LIN-based estimators is
investigated by simulations in the following section.

3. Simulation Study

In this section we carry out some simulations to investigate the behavior of
the proposed estimators for finite sample sizes. More specifically, the estima-
tors p̂11 (x; s, t), p̂12 (x; s, t), p̂22 (x; s, t), p̃11 (x; s, t), p̃12 (x; s, t) and p̃22 (x; s, t)
introduced in Section 2 are considered.

To simulate the data in the illness-death model, we follow closely the work
described by Amorim et al. [4], but including covariate effects. In summary,
the simulation procedure is as follows:

Step 1. Draw ρ ∼ Ber(p) where p is the proportion of subjects passing
through State 2.

Step 2. If ρ = 1 then:
(2.1) V1 ∼ U (0, 1) , V2 ∼ U (0, 1) and X ∼ U (0, 1) are independently

generated;
(2.2) U1 = V1, A = (2U1 − 1)− 1, B = (1− (2U1 − 1))2 + 4V2 (2U1 − 1)

(2.3) U2 = 2V2/
(√

B − A
)

(2.4) Z = ln (1/ (1− U1)) and λ(X) = 0.6X + 0.4
(2.5) Z(X) = Z/λ(X), T = ln (1/ (1− U2)) + Z(X)
If ρ = 0 then Z = Z(X).

Situations with p = 1 corresponds to the three-state progressive model,
in which a direct transition 1 → 3 is not allowed. In our simulation we
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consider p = 0.7. To allow for dependent censoring, we consider a different
scenario where C|X = x is generated from a exponential distribution with
rate λ(x) = 0.15 + 0.35x. This implies a censoring percentage of about 42%.

In Figure 2 we plot the IPCW and Lin-based conditional transition prob-
abilities, by fixing s = 0.2231 and considering two possible values for the
covariate information (first and third quartile). The results, which are esti-
mators averaged along 1,000 Monte Carlo trials of size n = 100, show that (a)
IPCW-type and Lin-based estimators are close to each other, and that (b)
the transition probabilities greatly depend on covariate information, partic-
ularly p11(x; 0.2231, t) and p12(x; 0.2231, t) (not so clear for p22(x; 0.2231, t)).
This influence of the covariate can be also seen from the simulation steps
described above: larger values of X are associated to smaller sojourn times
in state 1 and, consequently, to a smaller survival (T ).

The aim of this simulation study is to investigate the performance of the
two proposed estimators (IPCW and LIN-based) and to compare them to
each other. For measuring the estimates’ performance, we computed the
integrated mean square error (IMSE) of the estimates. For each simulated
setting we derived the analytic expression of pij(x; s, t) so the MSE of the
estimator could be computed. K = 1000 Monte Carlo trials were generated,
with two different sample sizes n = 100 and n = 200. Let p̂kij(x; s, t) denote
the estimated conditional transition probability based on the kth generated
data set. For each fixed (x, s, t) we computed the pointwise estimates of the
MSE as:

M̂SE(p̂ij(x; s, t)) =
1

K

K∑
k=1

[p̂kij(x; s, t)− pij(x; s, t)]2 (2)

To summarize the results we fixed the values of (s, t) using several quan-
tiles (the same pairs as those used in the paper by Lin et al. [14]) and we
calculated the IMSE as

ÎMSE =
∑
xl

M̂SE(p̂ij(xl; s, t))× δ (3)

where xl denotes a set of grid points for the covariate, going from 0 to 1 with
step δ = 0.025. The results are displayed in Tables 1 to 3. To compute the
conditional transition probabilities p̂ij(x; s, t) and p̃ij(x; s, t) we have used a
common bandwidth selector and Gaussian kernels. To this end we have used
the dpik function which is available from the R KernSmooth package. This
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is the data based bandwidth selector of Wand and Jones (1995). For the
computation of W1(x; bn) we have used Nadaraya-Watson (NW) and local
linear weights (for the weights W0 of the Beran’s estimator we simply used
NW). Since the results for NW weights were always superior to those based
on local linear weights, we only provide here the results corresponding to the
former. Additional simulation results are provided in the Appendix.

When using NW weights the two estimators (IPCW and LIN-based) for
p11(x; s, t) are equal and, therefore, in Table 1 we only give one set of results.
In general, both methods provide good results with IMSE values which de-
crease with an increasing sample size. It is also seen that the estimation of
the transition probabilities is performed with less accuracy as s and t grow
but for p22(x; s, t), for which the smallest values of IMSE are obtained for
large s and t. Results shown in Table 2 suggest that the IPCW method leads
to better results for p12(x; s, t) while the contrary occurs when estimating
p22(x; s, t) (Table 3). Therefore, no one of the proposed estimators seems to
be uniformly the best.

t 0.5108 0.9163 1.6094
s

n=100 0.2231 5.2206 8.8258 10.0934
0.5108 — 8.5920 13.3747
0.9163 — — 18.8724

n=200 0.2231 3.5581 5.9610 6.9856
0.5108 — 6.1066 9.3146
0.9163 — — 12.6278

Table 1: IMSE (×10000) of the estimated transition probabilities p̂11(x; s, t) along 1,000
trials for different sample sizes
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t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 3.2962 5.3945 7.3948
LIN-based 3.4047 5.7230 7.7928
IPCW 0.5108 — 5.6419 9.8266
LIN-based — 5.9080 10.3677
IPCW 0.9163 — — 12.8726
LIN-based — — 13.3364

n=200 IPCW 0.2231 2.1506 3.5847 4.9058
LIN-based 2.2024 3.7851 5.1341
IPCW 0.5108 — 3.8685 6.4965
LIN-based — 4.0774 6.9215
IPCW 0.9163 — — 8.6680
LIN-based — — 9.0572

Table 2: IMSE (×10000) of the estimated transition probabilities p̂12(x; s, t) along 1,000
trials for different sample sizes

t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 95.9706 92.1324 67.9388
LIN-based 90.1238 80.4370 34.2330
IPCW 0.5108 — 71.0090 60.3021
LIN-based — 65.9688 49.8399
IPCW 0.9163 — — 70.8846
LIN-based — — 63.2712

n=200 IPCW 0.2231 71.8374 68.8493 48.0180
LIN-based 63.7254 60.1681 29.1906
IPCW 0.5108 — 51.8131 41.8810
LIN-based — 45.2639 33.6916
IPCW 0.9163 — — 52.2701
LIN-based — — 45.1294

Table 3: IMSE (×10000) of the estimated transition probabilities p̂22(x; s, t) along 1,000
trials for different sample sizes
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4. Example of Application

To illustrate our estimators we consider two real data sets. One of these
data sets comes from the well-known colon cancer study which is freely avail-
able as part of the R survival package (Moertel et al. [17]). In addition to
this data set we also use data on 137 Bone-Marrow transplant patients for
leukemia (Copelan et al. [7]). In both data sets, non-fatal events (recurrence
and the development of acute graft-versus-host disease, respectively) are ob-
served during the disease course. These intermediate events can be modeled
using the progressive illness-death model depicted in Figure 1.

4.1. Colon cancer data

These are data from one of the first successful trials of adjuvant chemother-
apy for colon cancer. From the total of 929 patients, affected by colon cancer,
that underwent a curative surgery for colorectal cancer, 468 developed a re-
currence and among these 414 died. 38 patients died without recurrence.
The remaining 423 patients contributed with censored survival times. For
each individual, an indicator of his/her final vital status (censored or not),
the survival times (time to recurrence, time to death) from the entry of the
patient in the study (in days), and a vector of covariates including age (in
years), nodes (number of lymph nodes with detectable cancer) and recur-
rence (coded as 1 = yes; 0 = no) were recorded. The covariate recurrence
is a time-dependent covariate which can be used to identify an intermediate
event in an illness-death model with states “Alive and disease-free”, “Alive
with recurrence” and “dead”.

Using a Cox proportional hazards model, we verified that the transition
rate from state 2 to state 3 is affected by the time spent in the previous state
(p-value < 0.001). This allowed us to conclude that the Markov assumption
may be unsatisfactory for the colon cancer data set and that, consequently,
Aalen-Johansen type estimators should not be used. In this section we will
present estimated transition probabilities conditionally on current or past
covariate measures such as age or nodes (minimum = 0 and maximum =
13). These estimators were calculated using the IPCW method and/or LIN-
based procedures as explained above. Both approaches do not assume the
process to be Markovian, allowing for dependent censoring and flexible (i.e.
nonparametric) covariate effects otherwise.

Figures 3 and 4 depict respectively the IPCW estimates of p11(x; 379, 1000)
and p12(x; 379, 1000) as functions of the covariate age together with a 95%
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pointwise confidence bands based on simple bootstrap which resamples each
datum with probability 1/n. In both plots it is seen that these curves are not
constant; the effects of age depicted in these plots, which are purely nonpara-
metric, indicate the real influence of this covariate in the survival prognosis.
In fact, it would not be possible to include an horizontal line within the
confidence bands of Figure 4, suggesting a significative influence of age on
survival. More specifically, patients near forties have a larger probability of
recurrence than older patients. This is in agreement with Figure 5 where
it is shown, among other things, that 40 years old patients have a higher
probability of recurrence than patients with 68 years (bottom-left plot). In
Figure 6 we present similar plots for the covariate nodes, revealing that this
covariate has also a real impact on the conditional transition probabilities.

Figures 7 and 8 report the results corresponding to the Lin-based esti-
mator. Roughly speaking, conclusions from these plots are similar to those
obtained from Figures 5 and 6. However, a particular problem of Lin-based
estimator is appreciated at the bottom-left plots of Figures 7 and 8, be-
cause the displayed curves for p22(x; s, t) are not monotone decreasing in t
and, therefore, they are not admissible. This is a consequence of the specific
reweighting of the data which is used in this approach, which may lead to
problems of interpretation at the right tail of the distribution.
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4.2. Bone-Marrow transplant data

Bone-Marrow transplant data are discussed in (Copelan et al. [7]). In this
data set, one intermediate event of major interest is the development of acute
graft-versus-host disease (GVHD). Therefore, this data can also be viewed
as an illness-death model (Figure 1) where “relapse of leukemia or death”
is the absorbing state, GVHD is modeled as the intermediate illness state,
and earlier states are combined into one initial state (cancer and GVHD free
living).

The development of acute GVHD typically occurs within the first three
months following transplantation and may change the patient’s final prog-
nosis. Therefore, it is important to know how the time from bone marrow
transplant to the onset of acute GVHD affect the transition probability to
the absorbing state. In Figure 9 we show the plots for the two proposed
estimators of the transition probability p22(x; 120, t) for two times of GVHD
(x = 84 and x = 119). Results show few differences between the two curves,
particularly when looking at the IPCW estimator (left panel). This applica-
tion is also interesting because it illustrates that the proposed methods can
handle covariates which are not defined baseline (time to cGVHD is defined
only for those going through state 2). The absence of differences between the
depicted curves could be also interpreted as lack of evidence against Marko-
vianity for these data set. In Figure 10 we show similar plots for p22(x; 122, t)
according to age (again using first and third quantiles). In this case the two
curves obtained for different ages separate, indicating a poorer survival prog-
nosis for elderly people. Note that, as for the colon cancer data example,
Lin-based estimator provides a non-monotone curve which is not admissible;
the IPCW method may be preferable in practice due to this issue.
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5. Conclusions and final remarks

There have been several recent contributions for the estimation of the
transition probabilities in the context of multi-state models. However, most
of the approaches assume independent censoring and do not account for
the influence of covariates. In this paper we have proposed two estimation
methods for the transition probabilities given a continuous covariate. Both
methods are based on local smoothing which is introduced using regression
weights. Two different schemes of inverse censoring probability reweighting
have been used to deal with right censoring. In one approach, the correspond-
ing estimator (reweighting) is based on observations that are fully observed
till death, whereas the other estimator is based on observations that were
uncensored till a given time.

We have investigated the performance of the estimators through simu-
lations, showing that they are valid even when the system is non-Markov
or conditionally non-Markov. None of the two proposed methods seem to
dominate the other in all the possible scenarios. We have illustrated the
proposed methodology using two real data sets. In particular, it has been
illustrated that the introduced estimators may handle covariates which are
not defined baseline. Besides, one of the two approaches (Lin-based one)
has the drawback of occasionally providing non-monotone curves for transi-
tion probabilities which are indeed monotone and, therefore, its practical use
could be less recommended.

An interesting open question is if this idea can be generalized (and how) to
more complex multi-state models; this is left to future research. Another issue
is the application of the proposed methods to multiple covariates. Although
this could be formally done, the practical performance of the estimators
heavily depend on the dimensionality. The presence of a moderate or large set
of factors could recommend the application of some semiparametric technique
to avoid the curse of dimensionality. Feasible solutions to this problem will
be explored in the future.
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6. Appendix

In this Section we give the additional simulation results for the two es-
timators (IPCW and LIN-based) using local linear weights instead of NW
weights. The results were obtained using the dpik function which is avail-
able from the R KernSmooth package. See Tables 4 to 6 below. We also
performed additional simulations using other bandwidth selectors; for exam-
ple, the plug-in bandwidth of Altman and Leger [3], ALbw, available from
the R kerdiest package, was also used. This alternative bandwidth did not
provide better results (not shown). Results for independent censoring were
also obtained (not shown), leading to similar conclusions to those shown in
Section 4 and in this Appendix.

t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 5.5797 9.4730 10.9545
LIN-based 5.6912 9.5955 11.0527
IPCW 0.5108 — 9.3272 14.6103
LIN-based — 9.9418 14.7053
IPCW 0.9163 — — 20.7806
LIN-based — — 20.9202

n=200 IPCW 0.2231 4.0298 6.7622 8.1146
LIN-based 4.1739 6.9137 8.2597
IPCW 0.5108 — 6.9762 10.8897
LIN-based — 7.1208 11.0621
IPCW 0.9163 — — 15.0724
LIN-based — — 15.2672

Table 4: IMSE (×10000) of the estimated transition probabilities p̂11(x; s, t) along 1,000
trials for different sample sizes. Estimates based on the local linear estimators.
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t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 3.5132 5.7993 7.8780
LIN-based 3.6389 6.1431 8.4336
IPCW 0.5108 — 6.0819 10.3063
LIN-based — 6.4034 11.1962
IPCW 0.9163 — — 13.5681
LIN-based — — 14.5392

n=200 IPCW 0.2231 2.4565 4.0349 5.6119
LIN-based 2.5194 4.2707 5.9026
IPCW 0.5108 — 4.3742 7.3794
LIN-based — 4.6275 7.9227
IPCW 0.9163 — — 9.9804
LIN-based — — 10.4586

Table 5: IMSE (×10000) of the estimated transition probabilities p̂12(x; s, t) along 1,000
trials for different sample sizes. Estimates based on the local linear estimators.

t 0.5108 0.9163 1.6094
s

n=100 IPCW 0.2231 99.1081 96.2793 71.6886
LIN-based 95.5094 84.3036 35.2909
IPCW 0.5108 — 74.8428 64.7501
LIN-based — 71.3421 52.7878
IPCW 0.9163 — — 74.8350
LIN-based — — 68.3035

n=200 IPCW 0.2231 77.2416 74.7365 53.6386
LIN-based 71.5834 66.4441 31.3221
IPCW 0.5108 — 57.4873 48.5003
LIN-based — 52.4128 38.2466
IPCW 0.9163 — — 58.4093
LIN-based — — 52.1681

Table 6: IMSE (×10000) of the estimated transition probabilities p̂22(x; s, t) along 1,000
trials for different sample sizes. Estimates based on the local linear estimators.
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Figure 2: Conditional transition probabilities Phj(s, t;X) based on simulated data. IPCW
method (left hand-side) and Lin’s methods (right hand-side)
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Figure 3: Evolution of the transition probability p11(379, 1000) along the covariate age
with 95% bootstrap confidence bands. Colon cancer data.
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Figure 4: Evolution of the transition probability p12(379, 1000) along the covariate age
with 95% bootstrap confidence bands (IPCW method). Colon cancer data.
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Figure 5: Conditional transition probabilities for the colon cancer data (IPCW method)
for age = 40 and age = 68.
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Figure 6: Conditional transition probabilities for the colon cancer data (IPCW method)
for nodes = 1 and nodes = 4.
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Figure 7: Conditional transition probabilities for the colon cancer data (LIN-based
method) for age = 40 and age = 68.
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Figure 8: Conditional transition probabilities for the colon cancer data (LIN-based
method) for nodes = 1 and nodes = 4.
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Figure 9: Conditional transition probabilities for the Bone-Marrow transplant data ac-
cording to time to GVHD (left hand side - IPCW; right hand side - LIN-based method)
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Figure 10: Conditional transition probabilities for the Bone-Marrow transplant data ac-
cording age (left hand side - IPCW; right hand side - LIN-based method)
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