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Nonparametric regression with doubly truncated data

Carla Moreira ∗ Jacobo de Uña - Álvarez § Lúıs Meira- Machado ††

Abstract

In this paper nonparametric regression with a doubly truncated response is introduced. Local
constant and local linear kernel-type estimators are proposed. Asymptotic expressions for the bias
and the variance of the estimators are obtained, showing the deterioration provoked by the random
truncation. To solve the crucial problem of bandwidth choice, two different bandwidth selectors based
on plug-in and cross-validation ideas are introduced. The performance of both the estimators and the
bandwidth selectors is investigated through simulations. A real data illustration is included. The main
conclusion is that the introduced regression methods perform satisfactorily in the complicated scenario
of random double truncation.
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biased data; mean squared error.
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1 Introduction

Random truncation is a well-known phenomenon which may be present when observing lifetime data. For

example, recruitment of lifetimes through a cross-section induces left-truncation, so larger event times

are observed with higher probability. Another example is found when analyzing data which correspond

to events taking place before some specific date; in this case, the time-to-event is right-truncated and,

therefore, small lifetimes are over-sampled. These two forms of truncation are one-sided, and relatively

simple estimators exist. See e.g. Klein and Moeshberger (2003). Nonparametric estimation methods

suitable for one-sided random truncation were developed in the last three decades, see for example

Woodroofe (1985), Tsai et al. (1987) or Stute (1993) for the estimation of a cumulative distribution

function, and for nonparametric regression, Gross and Lai (1996), Iglesias-Pérez and González-Manteiga

(1999), Akritas and LaValley (2005) or Ould-Säıd and Lemdani (2006).

In some applications, two-sided (rather than one-sided) random truncation appears. This occurs,

for example, when the sample restricts to those individuals with event falling between two particular

dates. This is the case of the sample provided by Moreira and de Uña-Álvarez (2010a), who reported

data corresponding to children diagnosed from cancer between 1999 and 2003; in this case, the age at

cancer diagnosis is doubly truncated, the truncation times been determined by the two specific limiting

dates of observation. The AIDS Blood Transfusion data in Kalbfleisch and Lawless (1989) is another

example of such a situation. These data are restricted to those cases diagnosed from AIDS prior January

1987. For this data set, the induction times are doubly truncated because HIV was unknown before

1982, so any case of transfusion-related AIDS before this time would not have been properly classified.

Efron and Petrosian (1999) investigated quasar luminosities which were doubly truncated by some detec-

tion limits. See Section 4 for more details about the AIDS Blood Transfusion data and quasar luminosities

data. Under double truncation, the observational bias is not so evident as in the one-sided truncated

setup. Generally speaking, one may say that, under double truncation, large and small inter-event times

will be less probably observed. Unlike for one-sided truncation, the nonparametric maximum-likelihood

estimator (NPMLE) of the lifetime distribution has no explicit form under double truncation; this com-

plicates the practice and the theoretical developments. We mention that censoring is a problem different

to random truncation, because with censored data the researcher as at least some partial information on

the censored lifetimes.

Compared to the huge literature devoted to one-sided truncation, there are only few papers devoted

to the random double truncation model. Efron and Petrosian (1999) introduced the NPMLE of a cu-

mulative distribution function (df) under double truncation. The asymptotic properties of this NPMLE

were further investigated by Shen (2010). Moreira and de Uña-Álvarez (2010b) introduced a semipara-

metric estimator of a doubly truncated df, while Moreira et al. (2010) presented an R package to compute

the NPMLE and confidence bands. Methods for testing a quasi-independence assumption between the

lifetime of interest and the truncation times were investigated by Martin and Betensky (2005). Despite

of the existence of these papers, random double truncation is a phenomenon which is still quite unknown
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nowadays. In some applications, the goal is the estimation of a smooth curve such as the density function,

the hazard rate function, or the regression function. The estimation of these curves crucially depends on

the selected bandwidth or smoothing parameter (Wand and Jones, 1995). For the best of our knowledge,

the only paper dealing with smoothing methods under double truncation is Moreira and de Uña-Álvarez

(2012), who considered kernel density estimation. In this paper we rather focus in nonparametric kernel

regression.

Let (X∗, Y ∗) be the two-dimensional variable of interest, where Y ∗ is the lifetime or the inter-event

time of main interest, and X∗ is a one-dimensional continuous covariate. The goal is the estimation of

the regression function m(x) = E[Y ∗|X∗ = x]. Due to the presence of random double truncation, we

are only able to observe (X∗, Y ∗) when U∗ ≤ Y ∗ ≤ V ∗, where (U∗, V ∗) are the truncation times; in that

case, (U∗, V ∗) are also observed. On the contrary, when U∗ ≤ Y ∗ ≤ V ∗ is violated, nothing is observed.

As usual with random truncation, we assume that the truncation times are independent of (X∗, Y ∗). Let

(U1, V1,X1, Y1), ..., (Un, Vn,Xn, Yn) be the observed sample, these are iid data with the same distribution

as (U∗, V ∗,X∗, Y ∗) given U∗ ≤ Y ∗ ≤ V ∗, and let mT (x) = E[Y1|X1 = x] be the observed regression

function. In general, mT (x) and the target m(x) will differ; see e.g. Figure 8, in which these two curves

are estimated for the AIDS Blood Transfusion data. This is because of the truncating condition which

introduces an observational bias. Similar features were reported in the context of length-biasing, in which

the relative probability of sampling a given value of (X∗, Y ∗) is proportional to the length of Y ∗, see

e.g. Cristóbal and Alcalá (2000). In the doubly truncated setup, this relative probability of observing

(X∗, Y ∗) = (x, y) is given by G(y) = P (U∗ ≤ y ≤ V ∗). This function G can be estimated from the data

by maximum likelihood principles, see the iterative algorithm in Section 2.

The rest of the paper is organized as follows. In Section 2 we introduce the relationship between

the observed conditional distribution and that of interest. As it will be seen, by downweighting the

(Xi, Yi)’s with the largest values of Gn(Yi) (where Gn is an estimator for G), we are able to obtain a

consistent estimator of m(x). Weighted local polynomial type estimators are considered to this end. We

give the asymptotic bias and variance of the weighted Nadaraya-Watson (i.e. local constant) estimator

and the weighted local linear kernel estimator. We also propose two different methods to choose the

bandwidth for these estimators in practice. In Section 3 we investigate the finite-sample performance of

the estimators and the bandwidth selectors through simulations. Section 4 illustrates all the proposed

methods by considering AIDS Blood Transfusion data of Kalbfleisch and Lawless (1989) and also the

quasar luminosities of Efron and Petrosian (1999). Finally, in Section 5 we report the main conclusions

of our investigation. The technical proofs and details are deferred to the Appendix.

2 The estimators.

In this Section we introduce the proposed estimators. We also include the asymptotic results (Section

2.1) and the bandwidth selection algorithms (Section 2.2). Firstly we introduce the needed notations.
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Let F (.|x) be the conditional df of Y ∗ given X∗ = x, so m(x) =
∫∞
−∞ tF (dt|x), and let α(x) = P (U∗ ≤

Y ∗ ≤ V ∗|X∗ = x) =

∫ ∞

−∞
G(t)F (dt|x) be the conditional probability of no truncation. It is assumed

that α(x) > 0. Let F ∗(.|x) be the observable conditional df, that is F ∗(y|x) = P (Y1 ≤ y|X1 = x). We have

F ∗(y|x) = α(x)−1

∫ y

−∞
G(t)F (dt|x), y ≥ 0.

This means that, for a fixed value of the covariate, the response Y ∗ is observed with a relative prob-

ability proportional to G(Y ∗). Conversely, provided that G(t) > 0 for all t, one may write F (y|x) =

α(x)

∫ y

−∞
G(t)−1F ∗(dt|x), where α(x) = 1/α∗(x) with α∗(x) =

∫ ∞

−∞
G(t)−1F ∗(dt|x) = E

[
G(Y1)

−1|X1 = x
]
.

Therefore, the target m(x) is written as m(x) = m∗(x)/α∗(x) where m∗(x) = E
[
Y1G(Y1)

−1|X1 = x
]
.

Note that the functions m∗(x) and α∗(x) are conditional means of observable variables (once G

is replaced by a proper estimator) and, consequently, they can be estimated by standard methods

as, e.g., Nadaraya-Watson. Hence, a consistent estimator of m(x) may be introduced as m̂NW (x) =

m̂∗
NW (x)/α̂∗

NW (x), where

m̂∗
NW (x) =

n∑

i=1

Kh(x−Xi)YiGn(Yi)
−1

n∑

i=1

Kh(x−Xi)

and

α̂∗
NW (x) =

n∑

i=1

Kh(x−Xi)Gn(Yi)
−1

n∑

i=1

Kh(x−Xi)

are the Nadaraya-Watson estimators of m∗(x) and α∗(x) respectively. In these expressions, Gn stands

for a nonparametric estimator of the biasing function G, namely Gn(y) =
∫
u≤y≤v Tn(du, dv) where Tn is

the NPMLE of the joint df of the truncation times (Shen, 2010). Also, K and h are the kernel function

and the bandwidth respectively, while Kh(.) = K(./h)/h is the re-scaled kernel; see e.g. Wand and Jones

(1995) for more on kernel regression.

As mentioned, for the computation of Tn (and hence of Gn) an iterative algorithm is needed. To this

end, we have followed the algorithm proposed by Shen (2010), see also Moreira et al. (2010). Explicitly,

the steps are as follows:

Step S0 Compute Φ
(0)
i =

n∑

m=1

ϕ(0)
m I(Ui ≤ Ym ≤ Vi) where ϕ

(0)
m = 1

n , 1 ≤ m ≤ n, is the initial solution for F .
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Step S1 Compute the associated solution for T : ψ
(1)
j =

[
n∑

i=1

1

Φ
(0)
i

]−1

1

Φ
(0)
j

, 1 ≤ j ≤ n, and Ψ
(1)
i =

n∑

m=1

ψ(1)
m I(Um ≤ Yi ≤ Vm).

Step S2 Compute the improved solution for F : ϕ
(1)
j =

[
n∑

i=1

1

Ψ
(1)
i

]−1

1

Ψ
(1)
j

, 1 ≤ j ≤ n, and Φ
(1)
i =

n∑

m=1

ϕ(1)
m I(Ui ≤

Ym ≤ Vi).

Step S3 Repeat Steps S1 and S2 until a convergence criterion is reached.

As convergence criterion, we have used max
1≤j≤n

|ϕ(k−1)
j − ϕ

(k)
j | ≤ 1e − 06. Then, the estimated Tn is con-

structed from the k-th solution ψ
(k)
j , 1 ≤ j ≤ n, as Tn(u, v) =

n∑

i=1

ψ
(k)
j I(Ui ≤ u, Vi ≤ v). Accordingly, Gn

is computed as Gn(y) =
∫
u≤y≤v Tn(du, dv) =

n∑

i=1

ψ
(k)
j I(Ui ≤ y ≤ Vi).

An alternative way of introducing a consistent estimator for m(x) is through weighted local least

squares. Introduce the criterion function

n∑

i=1

{Yi − β0 − . . .− βp(Xi − x)p)}2Kh(x−Xi)Gn(Yi)
−1.

Let (β̂0, . . . , β̂p) be the minimizer of this criterion. Then, m̂(p)(x) = β̂0 is an estimator for m(x). Under

length-bias (G(y) = y), this is the (weighted) local polynomial estimator introduced by Cristóbal and Alcalá

(2000). For p = 0, we obtain the Nadaraya-Watson (i.e. local constant) type estimator m̂NW (x) intro-

duced above. For p = 1, we obtain the weighted local linear kernel regression estimator, say m̂LLK(x),

which (in the ordinary setting with no truncation) has been recommended in applications due to its

smaller bias and boundary adaptability when compared to the local constant estimator.

2.1 Asymptotic performance

Theorem below gives an asymptotic expression for the bias and the variance of m̂NW (x) and m̂LLK(x).

Some further notation is needed. We put f(x) for the density of the covariate X∗, and α = P (U∗ ≤ Y ∗ ≤
V ∗)(> 0) for the (unconditional) probability of no truncation, and we introduce

σ2(x) = E[(Y ∗ −m(X∗))2G(Y ∗)−1|X∗ = x].

We also put µ2(K) =
∫
t2K(t)dt and R(K) =

∫
K(t)2dt. The following conditions are assumed:
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(C1) The function m′′ is continuous and bounded in a neighborhood of x

(C2) The kernel function K is a density function symmetrical about zero, and with compact support

(C3) As n→ ∞, h→ 0 and nh→ ∞

(C4) The conditional expectations E[(Y ∗ −m(X∗))dG(Y ∗)−1|X∗ = x], d = 0, 1, 2, are finite

Theorem 2.1. Assume (C1)-(C4). The asymptotic bias and variance of m̂NW (x) and m̂LLK(x) are

given by

Bias(m̂NW (x)) ∼ 1

2
µ2(K)h2

[
m′′(x)f(x) + 2m′(x)f ′(x)

]
/f(x) ≡ h2BNW (x), (2.1)

Bias(m̂LLK(x)) ∼ 1

2
µ2(K)h2m′′(x) ≡ h2BLLK(x), (2.2)

and

V ar(m̂NW (x)) ∼ V ar(m̂LLK)(x) ∼ (nh)−1R(K)ασ2(x)/f(x) ≡ (nh)−1V (x). (2.3)

Proof. See the Appendix.

Theorem 2.1 shows that the asymptotic bias of the proposed estimators is the same as that correspond-

ing to the iid case and, therefore, it is unaffected by the double truncation issue. However, truncation may

influence the variance; the same happens under one-sided truncation (see e.g. Ould-Säıd and Lemdani,

2006, or Liang et al., 2011) and for length-biased data (Cristóbal and Alcalá, 2000). In the untruncated

situation, the asymptotic variance of both NW and LLK estimators is (nh)−1R(K)τ2(x)/f(x) where

τ2(x) = E[(Y ∗ − m(X∗))2|X∗ = x]. This quantity τ2(x) may be greater or smaller than ασ2(x), so

the estimation of m(x) could be performed with less variance under double truncation than under iid

sampling at particular points x. This can be explained by the fact that, because of truncation, specific

parts of the support of the variable of interest are over-sampled (while others not), thus introducing extra

information in some areas. However, by Hölder’s inequality we have
∫
ασ2(x)dx ≥

∫
τ2(x)dx, and hence

the doubly truncated scenario is ’more difficult’ (in the sense of having more variance in estimation) in

average. A similar feature was found when estimating a density function under double truncation, see
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Moreira and de Uña-Álvarez (2012).

Theorem 2.1 also informs about the relative asymptotic performance of Nadaraya-Watson and local

linear kernel smoothers. As usual when comparing both methods, it is seen that the NW involves and

extra bias term (2m′(x)f ′(x)) which is missing in the LLK. In practice, this will result in a poorer relative

performance.

2.2 Bandwidth choice

As always with kernel methods, the choice of the bandwidth sequence h is very important for the accuracy

of the proposed estimators. One possible criterion for choosing the bandwidth is to minimize the mean

integrated squared error (MISE), which for any estimator m̂(x) is defined as

MISE(m̂) = E
∫
(m̂(x)−m(x))2dx =

∫
Bias(m̂(x))2dx+

∫
V ar(m̂(x))dx.

Theorem 2.1 suggests the following asymptotic approximation to the MISE of the NW and LLK estima-

tors:

MISE(m̂NW ) ∼ h4
∫
BNW (x)2dx+ (nh)−1

∫
V (x)dx

and

MISE(m̂LLK) ∼ h4
∫
BLLK(x)2dx+ (nh)−1

∫
V (x)dx

respectively. The bandwidth minimizing these two functions is given by

hopt = n−1/5

[ ∫
V (x)dx

4
∫
B2(x)dx

]1/5
(2.4)

where V (x) is defined in (2.3) and B(x) is BNW (x) in (2.1) for the NW estimator and BLLK(x) in (2.2)

for the LLK estimator. Practical usage of (2.4) requires estimation of
∫
V (x)dx and

∫
B2(x)dx, which

can be performed on the basis of formulas (2.1), (2.2) and (2.3). To this end, we follow the direct plug-in

(DPI) method in Härdle and Marron (1995), which makes use of polynomials and histograms for the

preliminary estimation of the density and regression functions involved in B(x) and V (x). However,

these estimators must be adapted to the doubly truncated scenario. In the Appendix we give the most

relevant details behind this modified DPI bandwidth hDPI .

Alternatively, one may use a cross-validation (CV) criterion to compute the bandwidth in a data-

driven way. For any estimator m̂(x) of m(x) depending on a bandwidth h, a cross-validation function is

given by CV (h) =
n∑

i=1

(Yi − m̂−i(Xi))
2, where m̂−i(x) is the leave-one-out version of m̂(x) computed by
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removing the i-th datum from the initial sample (cfr. Härdle et al., 2004). Both the DPI and the CV

bandwidths are investigated in the simulations of the next section.

3 Simulation study

In this section, we illustrate the finite sample behaviour of the proposed estimators, through a simulation

study. We compare the global mean squared errors of NW and LLK estimators, and we explore their

graphical fit to the true underlying curve. We also investigate the performance of the two bandwidth

selectors introduced in Section 2. We generate the data according to three different patterns of truncation:

• Model 1:

1. Draw X∗ from Exp(λ), with λ = 4, and truncated to the support (0, 1);

2. Given X∗ = x, set Y ∗ = m(x) + ε with ε ∼ N(0, τ) independent of X∗.

3. Draw independently U∗ ∼ U(0, bU ) and V
∗ ∼ U(aV , 1), with bU = 0.5 and aV = 0.5.

4. We accept the (U∗, V ∗,X∗, Y ∗) satisfying the condition U∗ ≤ Y ∗ ≤ V ∗.

Models 2 and 3 are similar to Model 1 but with a different Step 3 for the simulation of the truncating

variables. Specifically, for Model 2 we take U∗ ∼ bUBeta(3, 1) and V ∗ ∼ U(aV , 3), with bU = 0.5 and

aV = 0.5; while for Model 3 we take U∗ ∼ U(aU , bU ) and V
∗ = U∗ + k, with aU = −0.25, bU = 0.5 and

k = 0.5. Given the covariate Xi (i = 1, . . . , n), the response Yi is generated in Step 2 by considering

as true regression function m(x) = E(Y |X = x) = 2+sin(2πx)
3 . The whole procedure Step 1-Step 4 is

repeated until a final sample with size n is obtained, with n = 50, 100, 250 and 500. We consider two

different values for the standard deviation τ of ε in each model, τ = 0.01 and τ = 0.1.

In Figure 1 the observational bias behind the simulated models is depicted. For Model 1, the biasing

function G(t) is symmetrical about 1/2, taking smaller values as t approaches to 0 and 1, and being zero

beyond 1 (top-left figure). As a consequence, the observable regression function separates from the target

for X around 1/4 and 3/4, corresponding to the maximum and minimum values of the sinus function.

This departure is hardly noticed for τ = 0.01 (middle-left figure), since in this case the response is roughly

constant and therefore the double truncation does not induce any bias; however, the separation becomes

very clear for τ = 0.1 (bottom-left figure), particularly around x = 1/4, when the observation of the

response occurs with a smaller probability. On the other hand, for Models 2 and 3 the biasing function

is asymmetrical (Figure 1, top-center and top-right, respectively). For Model 2 the main problems are

in the observation of small responses; this provokes the departure between the target and the observed

regression function around 3/4 (bottom-center figure). While for Model 3 the situation is the opposite,

with a large observational bias for the large responses (bottom-right figure). As for Model 1, the obser-

vational bias is almost negligible when τ = 0.01.
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We mention that there is no hope that the proposed estimators will solve the biasing problem around

the maximum of the sinus function in bottom-left (Model 1) and bottom-right (Model 3) figures. This

is because the zero value of G(t) for t > 1 does not allow for the observation of the response to the right

of 1 and, consequently, no information on the conditional distribution of Y ∗ around X∗ = 1/4 will be

available. However, the biases around the minimum of m(x) (bottom-left and bottom-center figures) will

be corrected by the estimators up to a certain extent. See Figure 7.

The global performance of m̂NW (x) and m̂LLK(x), both based on a Gaussian kernel, was assessed

along M = 500 Monte Carlo trials. To this end we used the global mean squared error (GMSE) as a

measure of fit, which for any given estimator m̂h is defined as

GMSE(h) =
1

Mn

M∑

l=1

n∑

k=1

[m̂h,l(Xk,l)−m(Xk,l)]
2.

where m̂h,l(x) is the estimator m̂h(x) based on the l-th trial, and Xk,l is the k-th covariate value in the

l-th trial. In Tables 1 to 3 we report the optimal bandwidth hGMSE (defined as the bandwidth leading

to the smallest GMSE) and the minimum GMSE for NW and LLK estimators and Models 1 to 3. The

functions which are minimized are depicted in Figure 2 (τ = 0.01) and Figure 3 (τ = 0.1) for n = 250

(the other sample sizes report similar figures). As expected, the optimal bandwidths and the GMSE

decrease as the sample size increases, and they increase with the noise (τ). On the other hand, the error

of the LLK estimator is always smaller than that of NW, so the local linear smoother will be preferred in

practice. Interestingly, by comparing the GMSE for the three different biasing functions, it is seen that

the error of the estimator under Models 1 and 3 are larger than under Model 2. These relative difficul-

ties agree with the deterioration level of the regression function shown in Figure 1 for the largest value of τ .

The median and the interquartile range (IQR) of CV and DPI bandwidths hCV and hDPI along the

Monte Carlo simulations are also provided in Tables 1 to 3. Generally speaking, it is seen that the CV

bandwidth tends to oversmooth. On the other hand, the DPI method tends to choose a bandwidth

smaller than optimal for LLK and n=50, 100. However, for LLK and n=250, 500 and for NW, the DPI

bandwidth is in general greater than hGMSE , the distance between hDPI and hGMSE being larger for

NW than for LLK. It is also seen from the Tables that CV is more variable than DPI; this agrees with

previous comparative studies on both bandwidth selectors.

In Figures 4 and 5 the attained MSE’s (for each simulated sample) of the NW and LLK estimators

when based on CV and DPI bandwidths are described by using boxplots. These Figures correspond to

n = 250, other values of n reported similar results (not shown). It is clear that the error of the NW

estimator is smaller than that of LLK when using the CV algorithm, while the contrary occurs for DPI.

In this sense, one may say that DPI provides results in agreement with the better performance of the

LLK estimator. Interestingly, the error of the LLK estimator is smaller when using the DPI bandwidth;

therefore, one practical conclusion from our simulations is that one should use the LLK estimator rather

than NW, and that one should take the DPI bandwidth for the computation of the LLK.
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Figure 1: Biasing function G for Model 1 (top-left figure), for Model 2 (top-center figure) and for Model

3 (top-right figure). Observational bias behind the simulated models 1 to 3; Model 1 (bottom-left figure);

Model 2 (bottom-center figure) and Model 3 (bottom-right figure). Target (dashed line) and observed

regression function (solid line).
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The relative behaviour of NW and LLK estimators is further illustrated in Figures 6 and 7, where

we report for each model the estimators averaged along the 500 Monte Carlo trials, in the cases n = 250

and n = 500. For the computation of the estimators we used the optimal bandwidths (hGMSE) in Tables

1 to 3. The quality of fit tends to improve when increasing the sample size. However, a systematic bias

is visible in the case τ = 0.1 for Models 1 and 3, even with n = 500. This is because of the absence of

sampling information on the response around x = 1/4, as discussed above, see Figure 1. We also note

that values of X close to 1 are less represented in the sample because of the exponential model taken for

the covariate. Therefore, the bias around x = 3/4 under Model 2, case τ = 0.1, is still visible for n = 500.

In this case, however, this bias will decrease when considering larger sample sizes (not shown).

Table 1: Minimum GMSE’s of the NW and LLK estimators, and corresponding optimal bandwidths for

Model 1. The median and the interquartile range of CV and DPI bandwidth selectors are also reported.

m̂NW

τ n hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0060 5.2959 × 10−5 0.0110 7.0000 × 10−3 0.0178 4.2103 × 10−3

100 0.0060 3.9501 × 10−5 0.0090 4.0000 × 10−3 0.0183 3.0197 × 10−3

250 0.0060 2.2629 × 10−5 0.0070 2.0000 × 10−3 0.0164 1.8303 × 10−3

500 0.0050 1.3223 × 10−5 0.0060 1.0000 × 10−3 0.0146 1.7519 × 10−3

0.01 m̂LLK

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0270 2.6223 × 10−5 0.0280 1.4000 × 10−2 0.0244 3.8596 × 10−3

100 0.0240 1.6791 × 10−5 0.0260 8.0000 × 10−3 0.0232 2.4707 × 10−3

250 0.0190 8.6523 × 10−6 0.0220 4.0000 × 10−3 0.0204 1.3200 × 10−3

500 0.0170 4.7123 × 10−6 0.0190 3.0000 × 10−3 0.0181 1.2630 × 10−3

m̂NW

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0310 3.3139 × 10−3 0.0310 2.5000 × 10−2 0.0381 1.3787 × 10−2

100 0.0280 2.3607 × 10−3 0.0260 1.4250 × 10−2 0.0436 1.1005 × 10−2

250 0.0240 1.5297 × 10−3 0.0220 8.2500 × 10−3 0.0405 7.9349 × 10−3

500 0.0200 1.1792 × 10−3 0.0190 5.0000 × 10−3 0.0364 4.7742 × 10−3

0.1 m̂LLK

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0610 2.6875 × 10−3 0.0790 3.5500 × 10−2 0.0459 1.5335 × 10−2

100 0.0520 1.9447 × 10−3 0.0750 2.8250 × 10−2 0.0508 1.0983 × 10−2

250 0.0410 1.2994 × 10−3 0.0770 1.7000 × 10−2 0.0484 8.1262 × 10−3

500 0.0340 1.0249 × 10−3 0.0700 0.0000 × 10−2 0.0435 5.3420 × 10−3
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Table 2: Minimum GMSE’s of the NW and LLK estimators, and corresponding optimal bandwidths for

Model 2. The median and the interquartile range of CV and DPI bandwidth selectors are also reported.

m̂NW

τ n hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0080 4.9537 × 10−5 0.0130 9.0000 × 10−3 0.0171 6.6149 × 10−3

100 0.0070 3.4174 × 10−5 0.0110 6.0000 × 10−3 0.0168 5.1992 × 10−3

250 0.0070 1.8963 × 10−5 0.0080 2.0000 × 10−3 0.0176 4.1057 × 10−3

500 0.0060 1.1874 × 10−5 0.0070 2.0000 × 10−3 0.0168 2.7829 × 10−3

0.01 m̂LLK

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0230 2.5103 × 10−5 0.2400 1.2250 × 10−2 0.0241 3.8750 × 10−3

100 0.0200 1.5843 × 10−5 0.0220 9.0000 × 10−3 0.0224 3.5226 × 10−3

250 0.0170 8.3326 × 10−6 0.0190 8.0000 × 10−3 0.0213 3.2622 × 10−3

500 0.0150 5.0942 × 10−6 0.0165 3.0000 × 10−3 0.0201 2.0562 × 10−3

m̂NW

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0350 1.7077 × 10−3 0.0390 1.8000 × 10−2 0.0395 1.7868 × 10−2

100 0.0310 1.1060 × 10−3 0.0320 1.3000 × 10−2 0.0377 1.4368 × 10−2

250 0.0260 6.3582 × 10−4 0.0270 9.0000 × 10−3 0.0397 1.2556 × 10−2

500 0.0230 3.9048 × 10−4 0.0230 6.2500 × 10−3 0.0397 8.1604 × 10−3

0.1 m̂LLK

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0600 1.3355 × 10−3 0.0680 3.8000 × 10−2 0.0489 1.5610 × 10−2

100 0.0530 8.1070 × 10−4 0.0600 2.5000 × 10−2 0.0466 1.4155 × 10−2

250 0.0450 4.4170 × 10−4 0.0520 1.4000 × 10−2 0.04677 1.1123 × 10−2

500 0.0400 2.6572 × 10−4 0.0470 1.0000 × 10−2 0.0471 8.8781 × 10−3
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Table 3: Minimum GMSE’s of the NW and LLK estimators, and corresponding optimal bandwidths for

Model 3. The median and the interquartile range of CV and DPI bandwidth selectors are also reported.

m̂NW

τ n hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0060 5.3897 × 10−5 0.0120 8.0000 × 10−3 0.0179 4.1690 × 10−3

100 0.0060 3.9785 × 10−5 0.0090 4.0000 × 10−3 0.0178 3.0842 × 10−3

250 0.0060 2.2461 × 10−5 0.0070 2.0000 × 10−3 0.0164 1.9815 × 10−3

500 0.0060 1.4003 × 10−5 0.0060 2.0000 × 10−3 0.0148 1.3820 × 10−3

0.01 m̂LLK

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0270 2.6537 × 10−5 0.0290 1.4000 × 10−2 0.0241 3.4288 × 10−3

100 0.0230 1.6545 × 10−5 0.0250 8.0000 × 10−3 0.0229 2.2151 × 10−3

250 0.0190 8.6117 × 10−6 0.0210 4.0000 × 10−3 0.0202 1.3066 × 10−3

500 0.0160 5.1441 × 10−6 0.0180 2.0000 × 10−3 0.0179 8.9016 × 10−4

m̂NW

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0310 3.2685 × 10−2 0.0310 2.4000 × 10−2 0.0409 1.5634 × 10−2

100 0.0290 2.3049 × 10−3 0.0270 1.4000 × 10−2 0.0426 1.1020 × 10−2

250 0.0230 1.5559 × 10−3 0.0210 9.0000 × 10−3 0.0392 5.8629 × 10−3

500 0.0200 1.1263 × 10−3 0.0180 6.0000 × 10−3 0.0353 4.6045 × 10−3

0.1 m̂LLK

hGMSE GMSE hCV IQR(hCV ) hDPI IQR(hDPI)

50 0.0590 2.6569 × 10−3 0.0730 4.0000 × 10−2 0.0479 1.4737 × 10−2

100 0.0510 1.8975 × 10−3 0.0670 3.0250 × 10−2 0.0509 1.1565 × 10−2

250 0.0410 1.2763 × 10−3 0.0650 1.9000 × 10−2 0.0470 7.1083 × 10−3

500 0.0340 9.7927 × 10−4 0.0640 1.2000 × 10−2 0.0421 5.1815 × 10−3
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Figure 2: GMSE’s for Nadaraya-Watson estimator (left) and local linear kernel estimator (right), with

vertical lines representing hGMSE (dashed line), hCV (dotted line) and hDPI (dashed-dotted line), for

Models 1 to 3 (from top to bottom), sample size is n=250 and τ = 0.01.
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Figure 3: GMSE’s for Nadaraya-Watson estimator (left) and local linear kernel estimator (right), with

vertical lines representing hGMSE (dashed line), hCV (dotted line) and hDPI (dashed-dotted line), for

Models 1 to 3 (from top to bottom), sample size is n=250 and τ = 0.1.
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Figure 4: Box-plot of the M=500 mean squared errors obtained using the cross-validation selector (left

panels) and direct plug-in selector (right panels) for each estimator (Nadaraya-Watson and local linear

kernel), for Models 1 to 3 (from top to bottom), with sample size n = 250 and τ = 0.01.
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Figure 5: Box-plot of the M=500 mean squared errors obtained using the cross-validation selector (left

panels) and direct plug-in selector (right panels) for each estimator (Nadaraya-Watson and local linear

kernel), for Models 1 to 3 (from top to bottom), with sample size n = 250 and τ = 0.1.
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4 Data analysis

For illustration purposes, in this section we consider the analysis of AIDS Blood Transfusion Data and

also the quasar luminosities data set.

4.1 AIDS incubation time analysis

In this Subsection we consider epidemiological data on transfusion-related Acquired Immune Deficiency

Syndrome (AIDS). The AIDS Blood Transfusion Data are collected by the Centers for Disease Control

(CDC), which is from a registry data base, a common source of medical data (see Kalbfleisch and Lawless,

1989; Bilker and Wang, 1986). The variable of interest (X∗) is the induction or incubation time, which

is defined as the time elapsed from Human Immunodeficiency virus (HIV) infection to the clinical man-

ifestation of full-blown AIDS. The CDC AIDS Blood Transfusion Data can be viewed as being doubly

truncated. The data were retrospectively ascertained for all transfusion-associated AIDS cases in which

the diagnosis of AIDS occurred prior to the end of the study, thus leading to right-truncation. Besides,

because HIV was unknown prior to 1982, any cases of transfusion-related AIDS before this time would

not have been properly classified and thus would have been missed. Thus, in addition to right-truncation,

the observed data are also truncated from the left. See Bilker and Wang (1986), section 5.2, for further

discussions.

The data include 494 cases reported to the CDC prior to January 1, 1987, and diagnosed prior to

July 1, 1986. Of the 494 cases, 295 had consistent data, and the infection could be attributed to a

single transfusion or short series of transfusions. Our analyses are restricted to this subset, which is

entirely reported in Kalbfleisch and Lawless (1989), Table 1. Values of U∗ were obtained by measuring

the time from HIV infection to January 1, 1982; while V ∗ was defined as time from HIV infection to the

end of study (July 1, 1986). Note that the difference between V ∗ and its respective U∗ is always 4.5 years.

More specifically, our goal is to study the relationship between AIDS incubation time and age at

infection. In Figure 8 we depict the scatterplot of the CDC AIDS blood transfusion data (age at the

infection vs. time of incubation) together with the regression function estimators. Figure 8, left, gives

the NW estimator computed from the CV and DPI automatic bandwidth selectors. For the CDC AIDS

blood transfusion data these bandwidths gave the values 14.4 and 6.12 respectively. Figure 8, right, gives

the LLK estimator, for which CV and DPI algorithms gave bandwidths 20 and 7.59 respectively. Overall,

the four estimators coincide in that the mean incubation (or induction) time is an increasing-decreasing

function of age at infection; this agrees with previous analysis reported for this data set, see e.g. Table 4

in Kalbfleisch and Lawless, 1989.

For comparison purposes, we include in Figure 8 the ordinary Nadaraya-Watson and LLK estima-

tors, which ignore the truncation problem. These estimators were computed by using the respective DPI

bandwidth values indicated before. The first thing one sees is that these naive curves underestimate the

regression function all along its domain. This is explained by the fact that large incubation times are
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Figure 6: Target regression function (solid line), Nadaraya-Watson estimator (dashed line) and local

linear kernel estimator (dashed-dotted line), averaged along 500 Monte Carlo trials, for Models 1 to 3

(top from bottom) and sample sizes n = 250 and n = 500 (from left to right), with τ = 0.01.
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Figure 7: Target regression function (solid line), Nadaraya-Watson estimator (dashed line) and local

linear kernel estimator (dashed-dotted line), averaged along 500 Monte Carlo trials, for Models 1 to 3

(top from bottom) and sample sizes n = 250 and n = 500 (from left to right), with τ = 0.1.
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Figure 8: Left panel: NW estimator with different bandwidth selectors: CV bandwidth (h=14.4) (dashed-

dotted line), DPI bandwidth (h=6.115472) (dashed line) and its ordinary version (solid line) for random

sampling with the same bandwidth as DPI bandwidth. Right panel: LLK estimator with different

bandwidth selectors: CV bandwidth (h=20) (dashed-dotted line), DPI bandwidth (h=7.592714) (dashed

line) and its ordinary version (solid line) for random sampling with the same bandwidth as DPI bandwidth.

AIDS Blood Transfusion data.

observed with smaller probability; see Figure 9, in which the function Gn for the AIDS Blood Transfusion

data is depicted. Secondly, the ordinary estimators of m(x) suggest a flat (or even a slightly decreasing)

shape of the regression function for 20 < x < 80, where the true m(x) is concave (according to the

corrected estimators). An explanation for this is that intermediate ages are associated to the largest

incubation times, which are under-sampled, and therefore the scatterplot gets empty at its top-central

part, where the pick of m(x) is located. Summarizing, it is very important to perform a correction for

the double truncation issue in regression analysis.

4.2 Quasar luminosities

In this Subsection we consider astronomical data on the quasars luminosity. In Astronomy, one of the main

goals of the quasar investigations is to study luminosity evolution. The motivating example presented

in the paper of Efron and Petrosian (1999) concerns a set of measurements on quasars in which there is

double truncation because the quasars are observed only if their luminosity occurs within a certain finite

interval, bounded at both ends, determined by limits of detection.

The original data set studied by Efron and Petrosian (1999), comprised independently collected

quadruplets (zi,mi, ai, bi), i = 1, . . . , n, where zi is the redshift of the ith quasar and mi is the ap-
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Figure 9: Biasing function for the CDC AIDS blood transfusion data.
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parent magnitude. Due to experimental constraints, the distribution of each luminosity in the log-scale

(yi = t(zi,mi)) is truncated to a known interval [ai, bi], where t represents a transformation which de-

pends on the cosmological model assumed (see Efron and Petrosian (1999) for details). Quasars with

apparent magnitude above bi were too dim to yield dependent redshifts, and hence they were excluded

from the study. The lower limit ai was used to avoid confusion with non quasar stellar objects. The

n = 210 quadruplets investigated by Efron and Petrosian (1999) are included in DTDA R package presented

in Moreira et al. (2010).
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Figure 10: Left panel: NW estimator with different bandwidth selectors: CV bandwidth (h=0.02)

(dashed-dotted line) and DPI bandwidth (h=0.01621) (dashed line). Right panel: LLK estimator with

different bandwidth selectors: CV bandwidth (h=0.3) (dashed-dotted line) and direct plug-in bandwidth

(h=0.03613) (dashed line). Log-luminosity quasar data.

In Figure 10 we depict the scatterplot of the quasar data (redshift vs. log-luminosity) together with

the regression function estimators. Figure 10, left, gives the NW estimator computed from the CV and

DPI automatic bandwidth selectors. For the quasar data these bandwidths gave the values 0.02 and

0.01621. Figure 10, right, gives the LLK estimator for which CV and DPI algorithms gave bandwidths

0.3 and 0.03613 respectively. In this application the more reasonable estimator seems to be the LLK

based on the cross-validation bandwidth, the other estimators providing wiggly curves.

In Figure 11 we report the estimated biasing function Gn for que quasar data, while in Figure 12 we

compare the LLK estimator adapted to double truncation and its ordinary version for random sampling.

For this comparison two bandwidths were used: the CV bandwidth (h = 0.3) and a slightly smoother

estimator (h = 0.4). The biasing function in Figure 11 indicates that small quasar luminosities are

observed with a very small relative probability. This results in a biased observation of the true regression

function at the left corner of the plot visible in Figure 12 for (h = 0.3, 0.4), where the luminosity is

expected to be small. At this corner, the observed scatterplot is shifted up, with respect to the scatterplot

one would have observed under random sampling. By the same reason, since the intermediate values of
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Figure 11: Biasing function for the quasar data.

the response are observed with a relatively larger probability, the scatterplot is shifted down at its central

part, something which becomes evident when using the largest bandwidth (h = 0.4). In sum, one may

say that it is important to use a correction for double truncation when performing a regression analysis.
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Figure 12: Local linear kernel regression estimator adapted to double truncation (dashed line) and its

ordinary version (dashed-dotted line) for random sampling with two bandwidths: the CV bandwidth

h = 0.3 (left) and a slightly smoother estimator h = 0.4 (right).

5 Conclusions

In this paper we have proposed two different nonparametric estimators for a regression function when the

response is subject to random double truncation. The proposed estimators are proper adaptations of the

Nadaraya-Watson and local linear kernel smoothers to the truncated setup. Without such an adaptation,

the ordinary kernel smoothers would be systematically biased.

Asymptotic expressions for the bias and the variance of the estimators have been obtained, and two

different bandwidth selectors based on cross-validation and plug-in ideas have been introduced. The

practical performance of the estimators and the bandwidth selectors has been investigated through sim-

ulations, and a real data analysis has been provided for further illustration. It has been demonstrated

that both estimators and both bandwidths selectors perform well, approaching to their targets as the

sample size increases. Besides, when comparing the several estimators, the local linear kernel estimator

based on the direct plug-in bandwidth seems to be the best one. The estimators, however, may be incon-

sistent around covariate values for which full observation of the response is not possible. This happens

when the truncation skips a relevant part of the support of the response, so its conditional distribution

can not be reconstructed. These possible inconsistencies have been illustrated in the simulation study too.

Although the results have been established for a single covariate, similar results can be provided for the

multivariate setting. However, as always with nonparametric regression, the practical performance of the

estimators will become poorer as the dimension grows. To this regard, the application of semiparametric

regression techniques (such as e.g. additive regression) to the randomly truncated scenario would be

interesting. Another issue which is left for future research is the construction of confidence bands for the

25



regression function.

6 Appendix: Technical proofs and details

Proof to Theorem 2.1

In this section we prove the asymptotic expressions given in Theorem 2.1. Note that these expressions

refer to the local polynomial kernel estimator m̂(p)(x), where the case p = 0 corresponds to the Nadaraya-

Watson estimator (NW), and p = 1 corresponds to the local linear kernel estimator (LLK). Note that

Theorem 1 is similar to Theorem 2.1 in Sköld (1999), where the biasing function here (Gn) is random

but independent of the covariate. Note also that conditions (C1)-(C4) imply those in Sköld (1999). As

mentioned in that paper, the result for NW follows by a linearization and standard Taylor-arguments

(once Gn is replaced by the true biasing function G), while for LLK one may apply techniques as for no

truncated data (e.g. Wand and Jones, 1995). For illustrative purposes, we give here a sketch of the proof

for the NW estimator.

Consider the Nadaraya-Watson estimator:

m̂NW (x) = m̂∗(x)
α̂∗(x)

where m̂∗(x) = m̂∗
NW (x) and α̂∗(x) = α̂∗

NW (x). Put for simplicity m̂(x) = m̂NW (x). We have:

m̂(x)−m(x) =
m̂∗(x)

α̂∗(x)
− m∗(x)

α∗(x)
=

=
1

α̂∗(x)
(m̂∗(x)−m∗(x)) +m∗(x)

(
1

α̂∗(x)
− 1

α∗(x)

)
=

=
1

α∗(x)
(m̂∗(x)−m∗(x)) +

(
1

α̂∗(x)
− 1

α∗(x)

)
(m̂∗(x)−m∗(x))−

− m∗(x)

α̂∗(x)α∗(x)
(α̂∗(x)− α∗(x)) =

=
1

α∗(x)
(m̂∗(x)−m∗(x))− m∗(x)

α∗(x)2
(α̂∗(x)− α∗(x)) +R(x)

where

R(x) =

(
1

α̂∗(x)
− 1

α∗(x)

)
(m̂∗(x)−m∗(x)) +

m∗(x)

α∗(x)
(α̂∗(x)− α∗(x))

(
1

α∗(x)
− 1

α̂∗(x)

)
=

=

(
1

α̂∗(x)
− 1

α∗(x)

)[
m̂∗(x)−m∗(x) +

m∗(x)

α∗(x)
(α̂∗(x)− α∗(x))

]
.
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This shows the asymptotic equivalence m̂(x)−m(x) ∼ φ̂(x) where

φ̂(x) = 1
α∗(x) (m̂

∗(x)−m∗(x))− m∗(x)
α∗(x)2

(α̂∗(x)− α∗(x)) .

Since Gn is a
√
n−consistent estimator of G (Shen, 2010; Moreira and de Uña-Álvarez, 2012), and

since both m̂∗(x) and α̂∗(x) are only
√
nh−consistent estimators, one may replace Gn byG in the formulae

to compute the asymptotic bias and variance in a simple way. This leads to the well-known asymptotics

for the NW-type estimators m̂∗(x) and α̂∗(x), namely (cfr. Härdle et al., 2004)

Em̂∗(x)−m∗(x) ∼ 1

2
µ2(K)h2

1

f∗(x)

[
m∗′′(x)f∗(x) + 2m∗′(x)f∗′(x)

]
,

Eα̂∗(x)− α∗(x) ∼ 1

2
µ2(K)h2

1

f∗(x)

[
α∗′′(x)f∗(x) + 2α∗′(x)f∗′(x)

]

(for the biases), and

V ar(m̂∗(x)) ∼ (nh)−1R(K)
V ar[Y 2

1 G(Y1)−1|X1=x]
f∗(x) ,

V ar(α̂∗(x)) ∼ (nh)−1R(K)V ar[G(Y1)−1|X1=x]
f∗(x) ,

Cov (m̂∗(x), α̂∗(x)) ∼ (nh)−1R(K)E[Y1G(Y1)−2|X1=x]−m∗(x)α∗(x)
f∗(x)

(for the variances and covariance), where f∗(x) stands for the density of the observed covariate (X1).

Therefore, we obtain as n→ ∞

E[φ̂(x)] ∼ 1
2µ2(K)h2B0(x)

where

B0(x) =
1

α∗(x)

1

f∗(x)

[
m∗′′(x)f∗(x) + 2m∗′(x)f∗′(x)

]
− m∗(x)

α∗(x)2
1

f∗(x)

[
α∗′′(x)f∗(x) + 2α∗′(x)f∗′(x)

]

and
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V ar φ̂(x) =
V ar (m̂∗(x))

α∗(x)2
+
m∗(x)2

α∗(x)4
V ar (α̂∗(x)) − 2

m∗(x)

α∗(x)3
Cov (m̂∗(x), α̂∗(x))

∼ (nh)−1R(K)
1

f∗(x)

{
V ar(Y1G(Y1)

−1|X1 = x)

α∗(x)2
+
V ar(G(Y1)

−1|X1 = x)

α∗(x)4
m∗(x)2

− 2
m∗(x)

α∗(x)3
[
E(Y1G(Y1)

−2|X1 = x)−m∗(x)α∗(x)
]}

= (nh)−1R(K)
1

f∗(x)

{
E

[
Y 2
1 G(Y1)

−2

α∗(x)2
|X1 = x

]
+E

[
G(Y1)

−2

α∗(x)4
m∗(x)2|X1 = x

]

− 2E

[
Y1G(Y1)

−2

α∗(x)3
m∗(x)|X1 = x

]}

= (nh)−1R(K)
1

f∗(x)α∗(x)2
E
[
(Y1 −m(X1))

2G(Y1)
−2|X1 = x

]
.

Now, it is easily seen that the densities of X∗ (f(x)) and X1 (f∗(x)) are linked through α−1f(x) =

α∗(x)f∗(x). Compute the second derivative of both sides of the equation to get

α∗′′(x)f∗(x) + 2α∗′(x)f∗′(x) = α−1f ′′(x)− α∗(x)f∗′′(x).

Similarly, compute the second derivative of equation m∗(x)f∗(x) = α−1m(x)f(x) to get

m∗′′(x)f∗(x) + 2m∗′(x)f∗′(x) = α−1(m′′(x)f(x) + 2m′(x)f ′(x)) + α−1m(x)f ′′(x)−m∗(x)f∗′′(x).

From these relationships we get B0(x) = [m′′(x)f(x)+2m′(x)f ′(x)]/f(x) and the result on the asymp-

totic bias of the NW estimator is obtained. For the variance, just note

ασ2(x)/f(x) = E
[
(Y1 −m(X1))

2G(Y1)
−2|X1 = x

]
/f∗(x)α∗(x)2 to conclude.

DPI bandwidth

Histograms are constructed by first partitioning the design interval [a, b] into interval blocks Bj , j =

1, . . . , N . In this paper we have always use N = 3, as suggested by Härdle and Marron (1995). Let

B denote a generic block Bj , and let r and l denote the right and left boundaries of this block. The

proportion of Xi’s falling in each interval reflects the height of the density near the center of the block.

Let c = r+l
2 denote the blockcenter and rb =

r−l
2 denote the block radius. The histogram density estimate

(adapted to double truncation) is given by

f̂(c) =
1

2

n∑

i=1

Gn(Yi)
−1rb

n∑

i=1

I(|c −Xi| ≤ rb)Gn(Yi)
−1.

To estimate the derivative of f on B we use a simple differencing method. This requires two estimates of
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f so we split the block into left and right halves. Estimate the frequencies on each half of the block by

nl = n

n∑

i=1

I(l ≤ Xi ≤ c)
Gn(Yi)

−1

n∑

j=1

Gn(Yj)
−1

and

nr = n

n∑

i=1

I(c ≤ Xi ≤ r)
Gn(Yi)

−1

n∑

j=1

Gn(Yj)
−1

.

Forming a difference quotient based on histograms at the center of the two subblocks gives the derivative

estimate

f̂ ′(c) =
(nr − nl)/(nrb)

rb
.

These two estimates are combined into the score function f̂ ′

f (c) and, together with estimates of m′

and m′′, they are used to construct an estimate of
∫
B2(x)dx. A natural and straight forward method

for estimating m, m′ and m′′, is least-squares polynomial regression. The simplest version of this is a

parabola, and to avoid lost of flexibility (see Härdle and Marron, 1995 for more details), we fit block-

wise parabolas. To deal with the double truncation issue, the squares in the least-squares criterion

are weighted by the 1/Gn(Yi)’s. Explicitly, by assuming m(x) = β1 + β2x + β3x
2 locally, one sets

B̂(cj) = 2β̂3j + 2
[
2β̂3j(cj) + β̂2j

] (̂
f ′

f

)
(cj), where cj is the center of the block Bj. The final estimate of

B2 =
∫
B2(x)dx is given by B̂2 =

n∑

j=1

2rbB̂
2(cj).

The estimation of V (x) in (2.4) requires an estimator for
(
σ2(x)
f(x)

)
. An estimate of this value at the

center of a generic block B is given by

(̂
σ2

f

)
(c) =

σ̂2(c)

f̂(c)
,

where σ̂2(c) = 1∑

Xi∈B

Gn(Yi)
−1

∑

Xi∈B

(Yi − m̂(Xi))
2Gn(Yi)

−2, which leads to V̂ (c) = α̂
(̂
σ2
f

)
(c)(2π1/2)−1

when K is the Gaussian kernel and α̂ =

(
n∑

i=1

Gn(Yi)
−1

)−1

. The blockwise approach (based on local

parabolic pilot fits) leads to the following estimate of V =
∫
V (x)dx:

V̂ =
n∑

j=1

2rbV̂ (cj).

Finally, the DPI bandwidth is computed as hDPI = (V̂ /(4B̂2n))
(1/5).
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Härdle, W. and J. Marron (1995). Fast and simple scatterplot smoothing. Computational Statistics &

Data Analysis 20, 1–17.
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Iglesias-Pérez, M. and W. González-Manteiga (1999). Strong representation of a generalized product-

limit estimator for truncated and censored data with some applications. Journal of Nonparametric

Statistics 10, 213–244.

Kalbfleisch, J. D. and J. F. Lawless (1989). Inference based on retrospective ascertainment: An analysis

of the data on transfusion-related aids. American Statistical Association 84, 360–372.

Klein, J. P. and M. L. Moeshberger (2003). Survival Analysis. Techniques for Censored and Truncated

Data. New York: Springer.
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