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Abstract

One major goal in clinical applications of multi-state models is the
estimation of transition probabilities. The usual nonparametric esti-
mator of the transition matrix for non-homogeneous Markov processes
is the Aalen-Johansen estimator (Aalen and Johansen (1978)). In this
paper we propose a modification of the Aalen-Johansen estimator in
the illness-death model based on presmoothing. The consistency of the
proposed estimators is formally established. Simulations show that the
presmoothed estimators may be much more efficient than the Aalen-
Johansen estimator. A real data illustration is included.

Keywords: Aalen-Johansen, Kaplan-Meier, Markov condition, Multi-
state models and semiparametric censorship

1 Introduction

The analysis of survival data may be described by the Markov process with
two states, ‘alive’ and ‘dead’ and a single transition between them. This is
known as the multi-state mortality model. Multi-state models (Andersen
et al. 1993; Meira-Machado et al. 2009) may be considered a generalization
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of survival analysis where survival is the ultimate outcome of interest but
where intermediate (transient) states are identified. For example, in cancer
studies more than one endpoint may be defined such as ‘local recurrence’,
‘distant metastasis’ and ‘dead’. A simple multi-state model is obtained by
splitting the ‘alive’ state of the mortality model into two transient states.
For example, the illness-death model is fully characterized by three states
and three transitions between them, see Figure 1. Graphically, multi-state
models are represented by diagrams with rectangular boxes and arrows be-
tween them indicating respectively possible states and possible transitions
for a given patient.

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead
 

Figure 2: Illness-death model. 

 More examples of multi-state models can be found in books by Andersen et al. 

(1993) and Hougaard (2000), or in papers by Putter et al. (2007) and Andersen and 

Perme (2008).   

 Despite its potential, multi-state modeling is not used by practitioners as 

frequently as other survival analysis techniques. It is our belief that lack of knowledge 

of available software and non-implementation of the new methodologies in user-

friendly software are probably responsible for this neglect. One important contribution 

to this issue was given by the R/S-PLUS survival package. Thanks to this package, 

survival analysis is no longer limited to Kaplan-Meier curves and simple Cox models. 

Indeed, this package enables users to implement the methods introduced by Therneau 

and Grambsch (2000) for modeling multi-state survival data. In R (R Development Core 

Team 2008), multi-state regression can also be performed using the msm package 

(continuous-time Markov and hidden Markov multi-state models), the changeLOS 

package (Wrangler et al. 2006) implements the Aalen–Johansen estimator for general 

multi-state models, and the etm package has recently enabled the transition matrix to be 

computed, along with a covariance estimator.   

 This paper describes the R-based p3state.msm package's capabilities for 

analyzing survival data from an illness-death model. It extends existing semi-parametric 

regression capabilities included in many statistical software programs, such as R, S-

PLUS, SAS, etc. Moreover, p3state.msm enables several quantities of interest to be 

estimated, such as transition probabilities, bivariate distribution function, etc. In 

Figure 1: Illness-death model.

A multi-state model is a stochastic process (X(t), t ∈ T ) with a finite
state space, where X(t) represents the state occupied by the process at
time t ≥ 0. For two states i,j and s < t, introduce the so-called transition
probabilities

pij(s, t) = P (X(t) = j|X(s) = i) .

Estimating these quantities is interesting, since they allow for long-term
predictions of the process. The inference in multi-state models is tradition-
ally performed under the Markov assumption, which states that past and fu-
ture are independent given the present state. Aalen and Johansen (1978) in-
troduced a nonparametric estimator of pij(s, t) for non-homogeneous Markov
models. Their estimation method extends the time-honored Kaplan-Meier
estimator (Kaplan and Meier 1958) to Markov chains. As for the Kaplan-
Meier, the standard error of the Aalen-Johansen estimator may be large
when the censoring is heavy, particularly with a small sample size.

Interestingly, the variance of the Kaplan-Meier estimator may be re-
duced by presmoothing. The idea of presmoothing (Dikta 1998) involves
replacing the censoring indicators by some smooth fit before the Kaplan-
Meier formula is applied. This preliminary smoothing may be based on a
certain parametric family such as the logistic (thus leading to a semipara-
metric estimator), or on a nonparametric estimator of the binary regression
curve. Successful applications of presmoothed estimators include nonpara-
metric curve estimation (Cao and Jácome 2004), regression analysis (de Uña
Álvarez and Rodŕıguez-Campos 2004; Yuan 2005), and the estimation of the
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bivariate distribution of censored gap times (de Uña-Álvarez and Amorim
2011). The main goal of the present work is to propose a presmoothed ver-
sion of the Aalen-Johansen estimator for the transition matrix of an illness-
death model, and to investigate its statistical properties.

The rest of the paper is organized as follows. In Section 2 we introduce
the new estimator and we formally establish its consistency. In Section 3
we compare by simulations the proposed estimator to the original Aalen-
Johansen curve. In Section 4 we illustrate the proposed method using data
from the Stanford heart transplant study. Main conclusions are reported in
Section 5. The Appendix contains the technical proofs.

2 The estimator: main result

In this paper we consider the (progressive) illness-death model depicted in
Figure 1. We assume that all subjects are in State 1 (‘healthy’) at time t = 0,
and that they may either visit State 2 (‘diseased’) at some time point; or
not, going directly to the absorbing (‘dead’) state. Given two time points
s < t, there are in essence three different transition probabilities to esti-
mate: p11(s, t), p12(s, t), and p22(s, t). The two other transition probabilities
(p13(s, t) and p23(s, t)) can be obtained from p13(s, t) = 1−p11(s, t)−p12(s, t)
and p23(s, t) = 1− p22(s, t).

The irreversible illness-death model is fully characterized by three tran-
sitions represented by the arrows in Figure 1. Let Tij denote the potential
transition time from state i to state j. In this model we have two competing
transitions 1 → 2 and 1 → 3. Therefore, we denote by ρ = I(T12 ≤ T13)
the indicator of visiting state 2 at some time, and introduce Z = T12 ∧ T13,
the sojourn time in state 1. A subject visiting State 2 will arrive at the
absorbing ‘dead’ state at time T12 +T23, while this time will be T13 for those
not visiting State 2 (i.e. ρ = 0). Finally, let T = Z + ρT23 denote the to-
tal survival time of the process. However, because of follow-up limitations,
lost cases and so on, rather than (Z, T, ρ) one observes (Z̃, T̃ ,∆1,∆,∆1ρ)
where Z̃ = Z ∧ C, T̃ = T ∧ C, ∆1 = I(Z ≤ C) and ∆ = I(T ≤ C). Here
C denotes the potential censoring time, which we assume to be indepen-
dent of the process (that is, C and (Z, T ) are assumed to be independent).
Under continuity, the information provided by 41ρ is superfluous since we
have 41ρ = I(Z̃ < T̃ ). With this notation, the transition probabilities are
written as

p11(s, t) =
P (Z > t)

P (Z > s)
, p12(s, t) =

P (s < Z ≤ t, T > t)

P (Z > s)
,

p22(s, t) =
P (Z ≤ s, T > t)

P (Z ≤ s, T > s)
.
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Under the Markov assumption, all these quantities are estimated non-
parametrically using Aalen-Johansen estimators. Explicit formulae of the
Aalen-Johansen estimator for the illness-death model are available (Borgan
1998). Here we give alternative expressions for this estimator suitable to
motivate our method of presmoothing below.

Assume that we have a sample of n individuals from the population
under study. Let (Z̃i, T̃i,∆1i,∆i,∆1iρi), i = 1, ..., n be the corresponding
sampling information. The Aalen-Johansen estimate of the transition prob-
ability p11(s, t) is the Kaplan-Meier estimator

p̂AJ11 (s, t) =
∏

s<Z̃i≤t

[
1− ∆1i

nM̃0n(Z̃i)

]
(1)

where

M̃0n(y) =
1

n

n∑
i=1

I(Z̃i ≥ y).

Then, Aalen-Johansen estimate of the transition probability p22(s, t) is
the Kaplan-Meier estimator

p̂AJ22 (s, t) =
∏

s<T̃i≤t,Z̃i<T̃i

[
1− ∆i

nM̃1n(T̃i)

]
(2)

where

M̃1n(y) =
1

n

n∑
i=1

I(Z̃i < y ≤ T̃i).

Finally, the estimator for p12(s, t) is given by

p̂AJ12 (s, t) =
1

n

n∑
i=1

p̂AJ11 (s, Z̃−i )p̂AJ22 (Z̃i, t)I(s < Z̃i ≤ t, Z̃i < T̃i)

nM̃0n(Z̃i)
(3)

where

p̂AJ11 (s, t−) = limu↑tp̂
AJ
11 (s, u)

Now, we discuss how to introduce modified estimators based on pres-
moothing. Presmoothing the Aalen-Johansen (AJ) involves replacing the
censoring indicators (in the transition probabilities p11(s, t) and p22(s, t))
by a smooth fit. The presmoothed version of p11(s, t) is obtained by replac-
ing the ∆1i’s in (1) by some smooth fit to the binary regression function
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m0(z) = P
(

∆1 = 1|Z̃ = z
)

(see e.g. Dikta 1998). Then, the corresponding

presmoothed Aalen-Johansen (P-AJ) estimator is given by

p̃PAJ11 (s, t) =
∏

s<Z̃i≤t

[
1− m0n(Z̃i)

nM̃0n(Z̃i)

]
(4)

where m0n(z) stands for an estimator of the binary regression function
m0(z). Then, m0(Z̃) is the conditional probability of censoring on Z given
Z̃. Since the pair Z̃,∆1 is observable, the function m0(z) can be estimated
by standard methods. For example, logistic regression may be performed.
Consider now the presmoothed version of (2) given by

p̃PAJ22 (s, t) =
∏

s<T̃i≤t,Z̃i<T̃i

[
1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
(5)

where m1n(z, t) stands for an estimator of the binary regression function

m1(z, t) = P
(

∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1
)

. Then, m1(Z̃, T̃ ) is the condi-

tional probability of censoring on T given (Z̃, T̃ ) and given that transition
1→ 2 is observed (∆1ρ = 1). Amorim et al. (2011) discussed the role of the
function m1(z, t) as a suitable presmoothing strategy for p22(s, t); although
these authors considered a different context in which the Markov assumption
may not hold, their discussion on the presmoothing issue remains valid here.
As before, Z̃, T̃ ,∆ and ∆1ρ are observable, allowing the function m1(z, t)
to be estimated by standard methods. Finally the transition probability
p12(s, t) can be estimated by plugging (4) and (5) into equation (3).

The estimator m0n(z) is based on the whole sample, while m1n(z, t) is
based on the subsample i : ∆1iρi = 1. We assume that these two empirical
functions approximate well their targets in a uniform sense; more specifically,
set

U1 : sup
z
|m0n(z)−m0(z)| → 0 w. p. 1,

and

U2 : sup
z,t
|m1n(z, t)−m1(z, t)| → 0 w. p. 1.

Conditions under which U1 and U2 can be fulfilled were investigated
in a number of papers, including Dikta (1998, 2000), Devroye (1978a,b),
Mack and Silverman (1982) and Härdle and Luckhaus (1984). The uniform
consistency of p̂PAJ11 (s, t) will hold on 0 ≤ s < t ≤ τ , where τ is strictly

smaller than the upper bound of the support of Z̃. Put M̃1(y) = P (Z̃ <
y ≤ T̃ ). For the uniform consistency of p̂PAJ22 (s, t) and p̂PAJ12 (s, t) we will
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refer to the following assumption:

M : M̃1 is bounded from below on [τ0, τ1] .

This condition allows to handle some denominators which appear in the
proofs. It can be interpreted as a ’non empty risk set’ assumption for the
transition from State 2 to State 3. By force, τ0 > 0, while τ1 is (similarly as
for τ) strictly smaller than the upper bound of the support of T̃ . We have
the following result. The proof is deferred to the Appendix.

Theorem 1. (a) Under U1 we have w. p. 1

sup
0≤s<t≤τ

∣∣p̂PAJ11 (s, t)− p11(s, t)
∣∣→ 0.

(b) Besides, under U2 and M , we have w. p. 1

sup
τ0≤s<t≤τ1

∣∣p̂PAJ22 (s, t)− p22(s, t)
∣∣→ 0.

(c) Finally, under U1, U2 and M we have w. p. 1

sup
τ0≤s<t≤τ

∣∣p̂PAJ12 (s, t)− p12(s, t)
∣∣→ 0.

3 Simulation study

In this section, we compare by simulations the presmoothed Aalen-Johansen
estimator for the transition probabilities to the original Aalen-Johansen esti-
mator. More specifically, the AJ and P-AJ type estimators p̂11 (s, t), p̂12 (s, t)
and p̂22 (s, t) introduced in Section 2 are considered. As presmoothing func-
tion we always take a parametric (logistic) family, so we actually have a
semiparametric Aalen-Johansen estimator.

To simulate the data in the illness-death model, we followed the work of
Amorim et al. (2011), which contains, among other things, a comprehensive
simulation study. We assume that all individuals are in State 1 (“healthy”)
at time t = 0. Therefore, the patients history (or course) may be divided
into two groups according to whether the disease occurred (that is, passing
through State 2) (1→ 2→ 3) or not (1→ 3). We separately consider these
two possible subgroups of individuals. For the first subgroup of individuals
(ρ = 1), the successive gap times (Z, T − Z) are simulated according to the
bivariate distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]
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with unit exponential margins. The parameter θ controls for the amount
of dependency between the gap times (Z, T − Z) and was set to 0 and 1,
corresponding to 0 and 0.25 correlation between Z and T−Z. For the second
subgroup of individuals (ρ = 0), the value of Z is simulated according to
an exponential with rate parameter 1. We also consider that 70% of the
individuals were in the first group. Details about the simulation procedure
can be obtained in Amorim et al. (2011).

The follow-up time was subjected to right censoring, C, according to
uniform models U [0, 4] and U [0, 3]. The first model results in 24% of cen-
soring on the first gap time Z, and in 47% of censoring on the second gap
time T − Z, for those individuals with ρ = 1. The second model increases
these censoring levels to 32% and about 57%, respectively.

After some algebra, it is seen that the function

m1(z, t) = P
(

∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1
)

is written as

m1(z, t) =
1

1 + η1(z, t)
, where η1(z, t) =

λG(t)

λ1T |Z=z(t|z)

and where λG(.) and λ1T |Z=z(.|z) stand respectively for the hazard rate of the
censoring variable and the hazard rate of T given Z = z under restriction
ρ = 1. Note that λG(t) = 1/(τG−t) when C ∼ U [0, τG] and that λ1T |Z=z(t|z)
is given by

λ1T |Z=z(t|z) =
2 + 4 exp(−t)− 2 exp(−z)− 2 exp(−t+ z)

2 + 2 exp(−t)− 2 exp(−z)− exp(−t+ z)
if θ = 1,

being 1 when θ = 0. The function m1(z, t) belongs to the logistic family
with some preliminary transformation of the conditioning variables, namely
we have (for β0 = 0 and β1 = 1)

m1(z, t;β) =
1

1 + exp(β0 + β1 ln(η1(z, t)))
.

This is the parametric model we fit to m1(z, t) in the simulations. For

m0(z) = P
(

∆1 = 1|Z̃ = t
)

, we have

m0(z) =
1

1 + η0(t)
, where η0(t) =

λG(t)

λZ(t)

and where λZ(t) stands for the hazard function of Z.
Similarly as above, we also perform logistic presmoothing for the function

m0(z), with the variable Z̃ transformed by −ln(τG − Z̃). This function
belongs to the logistic family with some preliminary transformation. To
estimate the function m0(z) in the simulations, we fit the logistic model
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m0(z; γ) =
1

1 + exp(γ0 + γ1 ln(η0(t)))

which contains the true presmoothing function m0 as a special case (γ0 =
0,γ1 = 1).

The β parameter in model m1(.;β) is estimated via maximization of the
conditional likelihood of the ∆i’s given the (Z̃i, T̃i)’s, for those subjects with
∆1ρ = 1 (see Dikta (1998, 2000)). Similarly, the γ parameter in model
m0(.; γ) is estimated via maximization of the conditional likelihood of the
∆1i’s given the Z̃i’s. Note that the β parameter is needed for estimating
p22(s, t) and p12(s, t), while γ enters the estimation of p11(s, t) and (again)
p12(s, t). The aim of this simulation study is to compare the Aalen-Johansen
estimator (1978) and the new estimator based on presmoothing (P-AJ).
Again, for measuring the estimates relative performance, we followed the
work of Amorim et al. (2011). As in Amorim et al. (2011), we computed
the integrated absolute bias, integrated variance and the integrated MSE of
the estimates. For each simulated setting (θ = 0 and θ = 1) we derived the
analytic expression of pij(s, t) so that the bias and the MSE of the estimator
could be examined. K = 1000 data sets were generated, with three different
sample sizes n = 50, n = 100 and n = 200.

Let p̂kij(s, t) denote the estimated transition probability based on the
kth generated data set. For each fixed (s, t) we obtained the mean for all
generated data sets, p̂ij(s, t) = 1

K

∑K
k=1 p̂

k
ij(s, t). We then computed the

pointwise estimates of the bias, variance and MSE as:

b̂ias(s, t) = pij(s, t)− p̂ij(s, t)

v̂ar(p̂ij(s, t)) =
1

K − 1

K∑
k=1

[p̂kij(s, t)− p̂ij(s, t)]2

M̂SE(p̂ij(s, t)) =
1

K

K∑
k=1

[p̂kij(s, t)− pij(s, t)]2

To summarize the results we also calculated the integrated absolute bias
(BIAS), integrated variance (VAR) and the integrated MSE (IMSE), defined
in Table 1. We fixed the values of s using the quantiles 0.25, 0.5 and 0.75
of the exponential distribution with rate 1. The results given in Tables 2 to
5 were obtained by numerical integration on the interval [s, t1] with t1 = 4,
taking a grid of step δ = 0.05.

In Tables 2 to 5 we report the results for the summary statistics attained
by the proposed estimator when based on several presmoothing functions
(P-AJ), for all scenarios. In all tables, the row labeled with m corresponds
to presmoothing with the true function which is unrealistic in practice, be-
cause this function will be typically unknown. However, this row represents
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Statistic Definition Estimator

Integrated Absolute Bias
∫ t1
s |bias(s, t)|dt

∑t1
t=s |b̂ias(s, t)|δ

Integrated Variance
∫ t1
s var(p̂ij(s, t))dt

∑t1
t=s v̂ar(p̂ij(s, t))δ

Integrated MSE
∫ t1
s MSE(p̂ij(s, t))dt

∑t1
t=s M̂SE(p̂ij(s, t))δ

Table 1: Summary statistics measuring bias, variance and mean square error.

a ‘gold standard’ the other methods can be compared to. The row labeled
with m(.;β, γ) corresponds to a semiparametric estimator which is obtained
using a presmoothing based on a parametric family which contains the true
m. Specifically, we consider a logistic model with the preliminary trans-
formation of the conditioning variables Z̃ = z, T̃ = t shown before. In
order to investigate the robustness of the proposed estimator with respect
to miss-specifications of the binary regression family, we considered also
presmoothing via standard logistic models, without any preliminary trans-
formation of the gap times. This is labeled with m(., ξ). Note that the true
m does not belong to this parametric family. Finally, we also report the
results pertaining to the Aalen-Johansen estimator, which corresponds to
the situation with no presmoothing at all. This is labeled in the Tables as
AJ.

It is obvious from the analysis of Tables 2 to 5, that presmoothing leads
to estimators with smaller variance and thus attaining better results with
regard to the integrated MSE. As expected, the (integrated) MSE, bias
and variance of the estimated transition probabilities always decrease with
an increasing sample size, while they increase with the censoring degree.
The estimator which makes use of the true m is the one with the best
performance. However, this estimator is unrealistic since in practice one has
to estimate the function m. In general, the lowest errors among the realistic
versions of the estimators correspond to the estimator based on the correctly
specified parametric family, m(.;β, γ). However, the presmoothed estimator
based on the wrong parametric model m(.; ξ) is still (much) better than AJ.
This means that it is worthwhile doing some presmoothing even when we
are not completely sure about the parametric family.

Results shown in the Tables 2 to 5 support the idea that presmoothing
leads to variance improvement. When compared to the estimators based
on presmoothing, the relative efficiency (defined as the quotient between
the two integrated MSEs) of the Aalen-Johansen estimator is always below
1. For higher values of s, where the censoring effects are stronger, the
relative efficiency can drop below 50%. These findings agree with the results
obtained by Amorim et al. (2011) and support the intuition that the use
of presmoothing for the estimation of transition probabilities will be more
clearly seen in the presence of large censoring degrees.

Tables 2 and 3 show a systematic bias for all estimators of the transi-
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tion probabilities p12(s, t) and p22(s, t). This is because these tables report
the results attained when generating data from a dependency scenario and
therefore reflects the failure of the Markov assumption. To illustrate these
features we present in Figures 2 to 7 the graphical average results for the
two methods (AJ and P-AJ corresponding to presmoothing via standard
logistic models, m(., ξ)). These figures plot the data generating functions
and pointwise 95% oscillation limits of the estimates p11(s, t), p12(s, t) and
p22(s, t), for sample sizes of n = 200 with percentages of censored data ob-
tained using C ∼ U [0, 3]. The good performance of the resulting estimates
(for both methods) is evident for independent gap times (θ = 0), recover-
ing the functional forms of the corresponding true curves very successfully.
However, a systematic bias of p12(s, t) and p22(s, t) in the dependent sce-
nario (θ = 1) is also clear, see Figures 4 and 6. This bias is much more
evident when s is large, in agreement with the amount of false informa-
tion introduced by the Markov condition (which increases with s). In all
scenarios, the use of the presmoothing yields estimators with less variability.
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Figure 2: True p11(s, t) (dotted line), average estimator (solid line), and 95%
oscillation limits of the AJ estimates (first row) and P-AJ (second row) for
s = 0.2877, s = 0.6931 and s = 1.3863. Estimates with n = 200 and U[0,3]
censoring. Dependency scenario.
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Figure 3: True p11(s, t) (dotted line), average estimator (solid line), and 95%
oscillation limits of the AJ estimates (first row) and P-AJ (second row) for
s = 0.1438, s = 0.3466 and s = 0.6931. Estimates with n = 200 and U[0,3]
censoring. Independency scenario.
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Figure 4: True p12(s, t) (dotted line), average estimator (solid line), and 95%
oscillation limits of the AJ estimates (first row) and P-AJ (second row) for
s = 0.2877, s = 0.6931 and s = 1.3863. Estimates with n = 200 and U[0,3]
censoring. Dependency scenario.
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Figure 5: True p12(s, t) (dotted line), average estimator (solid line), and 95%
oscillation limits of the AJ estimates (first row) and P-AJ (second row) for
s = 0.1438, s = 0.3466 and s = 0.6931. Estimates with n = 200 and U[0,3]
censoring. Independency scenario.
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Figure 6: True p22(s, t) (dotted line), average estimator (solid line), and 95%
oscillation limits of the AJ estimates (first row) and P-AJ (second row) for
s = 0.2877, s = 0.6931 and s = 1.3863. Estimates with n = 200 and U[0,3]
censoring. Dependency scenario.
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Figure 7: True p22(s, t) (dotted line), average estimator (solid line), and 95%
oscillation limits of the AJ estimates (first row) and P-AJ (second row) for
s = 0.1438, s = 0.3466 and s = 0.6931. Estimates with n = 200 and U[0,3]
censoring. Independency scenario.
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4 Stanford Heart Transplant data

For illustration purposes, we apply the proposed methods of Section 2 to
data from the Stanford Heart Transplant Study. The data are available as
part of the R survival package, and they are also reported in Crowley and
Hu (1977). This study covers the period from October 1967 to April 1974.
It includes 103 patients enrolled in the Stanford Heart transplant program,
from which 69 received a heart transplant and among these 45 died. The
total number of deaths was 75 (30 without transplantation); the remaining
28 patients contributed with censored survival times. The transplant can
be considered as an associated state of risk, and we may use the so-called
illness-death model with states “own heart”, “new heart” (or transplant)
and “dead”. In most applications, a Markov model is often assumed for the
multi-state model. A Cox model (Cox 1972) can be used to test this assump-
tion (Hougaard 1999; Andersen et al. 2000). This is usually performed by in-
cluding covariates depending on the history, such as the time of transition to
the current state or the time since entry into the current state. This assump-
tion was verified for the Stanford Transplant Study, e.g. by Hougaard (1999),
which conclude that there is no effect of time since transplant on mortality,
and thus that the Markov model is satisfactory. This is important, because
otherwise, the consistency of the Aalen-Johansen estimator and the new es-
timator based on presmoothing cannot be ensured. On the other hand, if
markovianity is fulfilled, the use of these methods is a wise choice. To deal
with ties, a re-definition of the empiricals M0n(y) and M1n(y) is needed. Put
Z̃i:n for the i-th ordered Z-statistics. Similarly, put T̃i:n for the i-th ordered
T-statistics. For y = Z̃k:n we define M̃0n(y) = 1

n

∑n
i=k I(Z̃i:n ≥ y) while for

y = T̃k:n we define M̃1n(y) = 1
n

∑n
i=k I(Z̃[i:n] < y ≤ T̃i:n) where Z̃[i:n] is the

i-th concomitant (i.e. the Z-value attached to T̃i:n). When there are no ties,
these empiricals reduce to those introduced in section 2.

Our aim with this application is to illustrate the differences between the
estimated transition probabilities from Aalen-Johansen estimator (AJ) and
the semiparametric estimator based on presmoothing (P-AJ). Figures 8 and
9 plot, for the two methods, the estimated transition probabilities pij(s, t),
1 ≤ i ≤ j ≤ 3 together with pointwise confidence bands based on the
bootstrap. The bootstrap estimates were obtained for B = 1000 replicates,
by randomly sampling the n items from the original data set with replace-
ment. The bootstrap estimates were used to obtain the 95% limits for the
confidence interval of p11(s, t), p12(s, t) and p22(s, t). The semiparametric
estimator was obtained using standard logistic regression for m0 and m1.
The values s were chosen to be the percentile 25 and 50 of the total time
(s = 32 and s = 90 days respectively). As expected, the P-AJ estimator
has less variability than the AJ estimator, which has fewer jump points as s
increases. For example, the extra jump points of the presmoothed AJ esti-
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Figure 8: Estimated transition probabilities for pij(s, t) with s = 32 based
on the Aalen-Johansen estimator (on the left) and based on the presmoothed
Aalen-Johansen estimator (on the right) with the corresponding 95% point-
wise confidence bands. Stanford Heart Transplant data.

mator of p22(s, t) correspond to transplanted patients with censored values
of the total time. However, both methods provide similar point estimates for
all values of time. In sum, the new approach provides more reliable curves
with less variability and accordingly narrower pointwise confidence bands.

5 Conclusions and final remarks

There has been several recent contributions for the estimation of the transi-
tion probabilities in the context of multi-state models. However, the Aalen-
Johansen estimator is still the standard method for estimating these quan-
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Figure 9: Estimated transition probabilities for pij(s, t) with s = 90 based
on the Aalen-Johansen estimator (on the left) and based on the presmoothed
Aalen-Johansen estimator (on the right) with the corresponding 95% point-
wise confidence bands. Stanford Heart Transplant data.

tities in Markov models. In this paper we propose a modification of Aalen-
Johansen estimator in the illness-death model, based on a preliminary esti-
mation (presmoothing) of the censoring probability for the total time (re-
spectively, of the sojourn time in state 1), given the available information.
An interesting open question is if this idea can be generalized (and how) to
more complex multi-state models.

We have derived the consistency of the proposed estimators. The consis-
tency result is not restricted to parametric presmoothing, but it also includes
the possibility of using some nonparametric estimators to this end. We ver-
ified through simulations that the method based on the presmoothing may
be much more efficient than the original Aalen-Johansen estimators, even
when there is some miss-specification in the chosen parametric family. The
relative benefits of presmoothing are more clearly seen in heavily censored
scenarios. We illustrated the proposed methodology using data from the
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Stanford heart transplant study.
The original and the presmoothed AJ estimators are consistent in Markov

models. If the Markov property is violated, then the consistency of the time-
honored Aalen-Johansen estimator and of its presmoothed version can not
be ensured in general. Exceptions to this are the estimator for p11(s, t) (for
which the Markov assumption is empty) or for pij(0, t) (the so-called stage
occupation probabilities, see Datta and Satten 2001). Alternative estima-
tors of the transition probabilities not relying on the Markov condition were
recently proposed (Meira-Machado et al. (2006); Amorim et al. (2011)). As
a drawback, these alternative methods will suffer from a larger variance in
estimation, particularly when the sample size is small and there is a large
censoring degree. Consequently, AJ-type estimators will be preferred when
there is no strong evidence against the Markov condition.
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6 Appendix: Technical proofs

In this Section we give the proof to Theorem 1. Throughout this Section
p̂ij(s, t) stands for the presmoothed Aalen-Johansen estimator p̂PAJij (s, t).
Theorem 1(a) is a consequence of Dikta 1998. Now we prove Theorem 1(b),
that is, the uniform strong consistency of

p̂22(s, t) =
∏

s<T̃i≤t

[
1− m1n(Z̃i, T̃i)I(Z̃i < T̃i)

nM̃1n(T̃i)

]

where (recall) m1n(z, t) is an estimator of m1(z, t) = P (∆ = 1|Z̃ = z, T̃ =

t, Z̃ < T̃ ) and where (recall) M̃1n(y) = n−1
∑n

i=1 I(Z̃i < y ≤ T̃i) is the em-

pirical counterpart of M̃1(y) = P (Z̃ < y ≤ T̃ ). Since continuity is assumed
throughout, note that ∆1ρ = I(Z̃ < T̃ ). The following notation will be used:

I(s, t) =
{
i : s < T̃i ≤ t, Z̃i < T̃i

}
and I∗(s, t) =

{
i : s < T̃i ≤ t, Z̃i < T̃i,m1n(Z̃i, T̃i) > 0

}
.

With this notation, we have

p̂22(s, t) =
∏

i∈I(s,t)

[
1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
=

∏
i∈I∗(s,t)

[
1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
.

Note that p̂22(s, t) = 0 may happen; indeed, this is the case whenever

nM̃1n(T̃i) = 1 and m1n(Z̃i, T̃i) = 1 for some i ∈ I(s, t). In order to avoid
problems when taking logarithms, introduce the following approximation to
p̂22(s, t):

p22(s, t) =
∏

i∈I(s,t)

nM̃1n(T̃i)

nM̃1n(T̃i) +m1n(Z̃i, T̃i)
.

Since
∣∣∣∏j aj −

∏
bj

∣∣∣ ≤∑j |aj − bj | for |aj | , |bj | ≤ 1, we have

|p̂22(s, t)− p22(s, t)| ≤
∑

i∈I(s,t)

m1n(Z̃i, T̃i)
2

n2M̃1n(T̃i)2
.
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We will refer to the following Lemma, which follows from e.g. Corollary
5.2.3 in de la Peña and Giné (1999).

Lemma 1. We have w.p. 1 supy

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣→ 0.�

Under condition M , from Lemma 1 we have eventually for y ∈ [τ0, τ1]
and some constant c > 0

M̃1n(y) ≥ inf
τ0≤y≤τ1

M̃1(y)− sup
τ0≤y≤τ1

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣ ≥ c.

Hence we have w.p. 1

sup
τ0≤s<t≤τ1

|p̂22(s, t)− p22(s, t)| = O(n−1). (6)

Now write

p22(s, t)− p22(s, t) = exp(ln p22(s, t))− exp(−Ψn(s, t))

+ exp(−Ψn(s, t))− exp(−Ψ(s, t))

where

Ψ(s, t) =

∫ t

s

H1(dy)

M̃1(y)
, with H1(y) = P (T̃ ≤ y,∆ = 1, Z̃ < T̃ ),

and

Ψn(s, t) =
∑

i∈I(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)
.

Note that p22(s, t) = exp(−Ψ(s, t)) because of the Markov condition, and
that

Ψ(s, t) = E

[
I(s < T̃ ≤ t)∆I(Z̃ < T̃ )

M̃1(T̃ )

]
= E

[
I(s < T̃ ≤ t)m1(Z̃, T̃ )I(Z̃ < T̃ )

M̃1(T̃ )

]
.

It will be shown that p22(s, t) = exp(−Ψ(s, t)) is indeed the limit of exp(−Ψn(s, t)).
This will follow from the mean-value theorem after proving the uniform
strong consistency of Ψn(s, t), which is the goal of the following Lemma.

Lemma 2. Under U2 andM we have w.p. 1 supτ0≤s<t≤τ1 |Ψn(s, t)−Ψ(s, t)| →
0.

Proof: Write

Ψn(s, t) =
∑

i∈I(s,t)

m1(Z̃i, T̃i)

nM̃1(T̃i)
+

1

n

∑
i∈I(s,t)

[
m1n(Z̃i, T̃i)

M̃1n(T̃i)
− m1(Z̃i, T̃i)

M̃1(T̃i)

]
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≡ Ψ0
n(s, t) +Rn(s, t).

By the SLLN we have Ψ0
n(s, t)→ Ψ(s, t) w.p. 1. Furthermore, under M we

have w.p. 1
sup

τ0≤s<t≤τ1

∣∣Ψ0
n(s, t)−Ψ(s, t)

∣∣→ 0. (7)

To see this, note that for s, t ∈ [τ0, τ1] we have under M

Ψ(s, t) ≤ 1

infτ0≤y≤τ1 M̃1(y)
E
[
I(τ0 < T̃ ≤ τ1)∆I(Z̃ < T̃ )

]
<∞.

Introduce

ϕs,t(u, v) =
I(s < v ≤ t)m1(u, v)I(u < v)

M̃1(v)
.

Now, {ϕs,t : τ0 ≤ s < t ≤ τ1} is a VC-subgraph class (see Proposition 5.1.12
and comments following Definition 5.1.14 in de la Peña and Giné (1999)),
and ϕτ0,τ1 is an integrable envelope for that class. Hence, (7) follows from
Corollary 5.2.3 in de la Peña and Giné (1999).

Now,

m1n(Z̃i, T̃i)

M̃1n(T̃i)
− m1(Z̃i, T̃i)

M̃1(T̃i)
=

1

M̃1n(T̃i)

[
m1n(Z̃i, T̃i)−m1(Z̃i, T̃i)

]

+
m1(Z̃i, T̃i)

M̃1n(T̃i)M̃1(T̃i)

[
M̃1(T̃i)− M̃1n(T̃i)

]
.

Under U2 and M we have

sup
τ0≤s<t≤τ1

|Rn(s, t)| ≤

supz<t,τ0≤t≤τ1 |m1n(z, t)−m1(z, t)|
c

+
supτ0≤y≤τ1

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣

c′

×
× 1

n

n∑
i=1

I(τ0 < T̃i ≤ τ1)I(Z̃i < T̃i) = o(1) w.p. 1.

Then the assertion of Lemma 2 follows.�

By the mean-value theorem,

exp(ln p22(s, t))− exp(−Ψn(s, t))

= (Ψn(s, t) + ln p22(s, t)) exp(−ξ∗n(s, t))
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for some ξ∗n between Ψn and − ln p22. Now:

ln p22(s, t) =
∑

i∈I∗(s,t)

ln

[
nM̃1n(T̃i)

nM̃1n(T̃i) +m1n(Z̃i, T̃i)

]

=
∑

i∈I∗(s,t)

ln

[
1− 1

xi

]
where

xi =
nM̃1n(T̃i)

m1n(Z̃i, T̃i)
+ 1.

Note that xi is well defined for i ∈ I∗(s, t) and that xi > 1 (because

nM̃1n(T̃i) ≥ 1 for i ∈ I∗(s, t)). Use

ln(1− 1

x
) = −

∞∑
k=1

1

kxk
, x > 1,

to write

ln p22(s, t) = −
∑

i∈I∗(s,t)

∞∑
k=1

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k
.

Hence

Ψn(s, t) + ln p22(s, t) =
∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)

−
∑

i∈I∗(s,t)

∞∑
k=1

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k

=
∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)(nM̃1n(T̃i) +m1n(Z̃i, T̃i))

−
∑

i∈I∗(s,t)

∞∑
k=2

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k
≡ I + II.

Under M we have, uniformly in τ0 ≤ s < t ≤ τ1, I = O(n−1) w.p. 1.
Besides, by noting

∞∑
k=2

xk =
1

1− x
− 1− x =

x2

1− x
, x < 1,

we have that the absolute value of II is bounded by (take x = m1n(Z̃i, T̃i)/(nM̃1n(T̃i)+
m1n(Z̃i, T̃i)) ) ∑

i∈I∗(s,t)

∞∑
k=2

m1n(Z̃i, T̃i)
k

(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k
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=

n∑
i∈I∗(s,t)

m1n(Z̃i, T̃i)
2

nM̃1n(T̃i)(nM̃1n(T̃i) +m1n(Z̃i, T̃i))
= O(n−1)

w.p. 1. uniformly in τ0 ≤ s < t ≤ τ1. This shows that

sup
τ0≤s<t≤τ1

|Ψn(s, t) + ln p22(s, t)| = O(n−1) w.p. 1

and consequently

sup
τ0≤s<t≤τ1

|exp(ln p22(s, t))− exp(−Ψn(s, t))| = O(n−1) w.p. 1. (8)

Now, use the mean-value theorem to write

exp (−Ψ(s, t))− exp (−Ψn(s, t)) = [Ψn(s, t)−Ψ(s, t)] exp(−ξn(s, t))

from which

sup
τ0≤s<t≤τ1

|exp (−Ψ(s, t))− exp (−Ψn(s, t))| ≤ sup
τ0≤s<t≤τ1

|Ψn(s, t)−Ψ(s, t)| .

Then Theorem 1(b) follows from Lemma 2, (8), (6), and the decomposition

p̂22(s, t)− p22(s, t) = p̂22(s, t)− p22(s, t)
+ exp(ln p22(s, t))− exp (−Ψn(s, t))

+ exp (−Ψn(s, t))− exp (−Ψ(s, t)) .

In order to prove Theorem 1(c) write, with J(s, t) =
{
i : s < Z̃i ≤ t, Z̃i < T̃i

}
,

p̂12(s, t) =
1

n

∑
i∈J(s,t)

p̂11(s, Z̃
−
i )p̂22(Z̃i, t)

M̃0n(Z̃i)

=
1

n

∑
i∈J(s,t)

[
p̂11(s, Z̃

−
i )− p11(s, Z̃i)

] p̂22(Z̃i, t)
M̃0n(Z̃i)

+
1

n

∑
i∈J(s,t)

[
p̂22(Z̃i, t)− p22(Z̃i, t)

] p11(s, Z̃i)
M̃0n(Z̃i)

+
1

n

∑
i∈J(s,t)

p11(s, Z̃i)p22(Z̃i, t)

[
1

M̃0n(Z̃i)
− 1

M̃0(Z̃i)

]

+
1

n

∑
i∈J(s,t)

p11(s, Z̃i)p22(Z̃i, t)

M̃0(Z̃i)

≡ I(s, t) + II(s, t) + III(s, t) + IV (s, t)
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where M̃0(y) = P (Z̃ ≥ y). Since, because of the Markov condition,

E

[
p11(s, Z̃i)p22(Z̃i, t)

M̃0(Z̃i)
I(s < Z̃i ≤ t, Z̃i < T̃i)

]
= p12(s, t),

the SLLN gives IV (s, t)→ p12(s, t) w.p. 1. Furthermore, by using Proposi-
tion 5.1.12 in de la Peña and Giné (1999) as in Lemma 2 above we get w.p.
1

sup
0≤s<t≤τ

|IV (s, t)− p12(s, t)| → 0.

It remains to show that I(s, t), II(s, t), and III(s, t) go to zero w.p. 1 uni-
formly on [0, τ ]. But this is easily seen by using Theorem 1(a),(b), Glivenko-

Cantelli, and the fact that M̃0 is bounded away from zero on [0, τ ].�
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