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Abstract. In this paper we define a new nonlinear wavelet-based estimator of the regression
function under a left truncation model. Asymptotic normality of the estimator is established. It
is assumed that the lifetime observations form a stationary a-mixing sequence. Also, the asymp-

totic normality of the nonlinear wavelet-based estimator of the covariate’s density is proved.
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1 Introduction

The importance of wavelets in curve estimation is well known since the initial works by Kerky-
acharian and Picard (1992, 1993), Donoho and Johnstone (1994, 1995), and Donoho et al. (1995,
1996). In these papers, adaptation of wavelets (in the minimax sense) to the degree of smooth of
the underlying function is analyzed, for a wide range of functional spaces and a number of loss
functions. This is a remarkable property of the wavelet method when compared to other com-
mon estimation techniques (such as the kernel method) which may fail in unsmooth situations.
Hall and Patil (1995) gave for the first time an asymptotic expression of the mean integrated
squared error (MISE) of a nonlinear wavelet density estimator, and compared its performance to
that corresponding to the kernel density estimator. These authors showed that the asymptotic
MISE formula is the same in both the smooth and unsmooth density cases, a fact that is not true
for the kernel method. Similar results are available for the problem of estimating a regression
function, see for example Hall and Patil (1996).

In Reliability and Survival Analysis, incomplete data are often encountered, censoring and
truncation being two important sources of incompleteness. Some authors have studied wavelet
density estimation with censored data. For example, Antoniadis et al. (1999) considered linear

wavelet density estimation under random censoring, and provided asymptotic MISE convergence



rate under smoothness assumptions on the underlying density function. Li (2003) proposed a
non-linear wavelet density estimator with censored data and derived a result similar to the main
result, Theorem 2.1, of Hall and Patil (1995), about the MISE; see also Rodriguez-Casal and de
Uta-Alvarez (2004) who considered the Koziol-Green model of random censorship. All of the
above works are devoted to the independent setting. For the dependent case, Liang et al. (2005)
discussed the global Lo error of the nonlinear wavelet estimators of the density function in the
Besov space under censoring and stationary a-mixing assumptions; for complete data, Li and
Xiao (2006, 2007) provided an asymptotic expression of the MISE in nonlinear wavelet regression
with complete long memory data; while Truoug and Patil (2001) gave the result corresponding
to a-mixing data. However, little is known about the wavelet-based estimator of the covariate’s
distribution and the regression function under random truncation, even for independent data. In
this paper we introduce nonlinear wavelet estimators for left-truncated data and we investigate
asymptotic properties under mixing conditions.

Let Y be a lifetime variable with continuous distribution function (df) F and let X be a one-
dimensional covariate taking its values in R with df V' and corresponding density v. Introduce

the regression function of Y given X:

EY|X =z) :=m(z), z € R, (1.1)

which can be written as m(z) = Zgi))v where h(z) = [pyf(z,y)dy with f(-,-) being the joint
density function of (X,Y’). In practice, the response lifetime variable Y may be subject to right
censoring and/or left truncation. In this paper we consider the left truncation model. Left-
truncated data occur in astronomy, economics, epidemiology and biometry; see, e.g., Woodroofe
(1985), Feigelson and Babu (1992), Wang et al. (1986), Tsai et al. (1987) and He and Yang
(1994).

Under the assumption that the lifetime observations are mutually independent, the nonpara-
metric kernel estimator of m(-) has first been considered for complete data; see, e.g., Devroye
et al. (1996), Gyorfi et al. (1998) and the references therein. For censored data, the esti-
mation of the regression function m(-) has also been studied by Fan and Gijbels (1996) and
the recent work of Kohler et al. (2002), and many others. Recently, Ould-Said and Lemdani
(2006) constructed a new nonparametric kernel estimator of the regression function m(-) for
the left-truncation model and studied its asymptotic properties. In this paper we define a new
nonlinear wavelet-based estimator of the regression function under the left-truncation model,
and establish asymptotic normality for the estimator of the regression function when the data

exhibit some kind of dependence. It is assumed that the lifetime observations form a stationary



a-mixing sequence. Also, the asymptotic normality of the nonlinear wavelet-based estimator of
the covariable’s density is considered.

In the sequel, {(Xg, Yi, Tx) =: &, k > 1} is assumed to be a stationary a-mixing sequence of
random vectors distributed as (X,Y,T'), where T is the truncation variable. For the components
of (X,Y,T), in addition to the assumptions and notation for X and Y we made above, we assume
throughout that 7" and (X,Y) are independent, and T" has continuous df G. Let F(-,-) be the
joint df of (X,Y). Without loss of generality, we assume that both Y and T' are nonnegative

random variables. Recall that the sequence {{x,k > 1} is said to be a-mixing if the a-mixing

coefficient
a(n) := supsup{|P(AB) — P(A)P(B)|: A € F2%,,, B € F¥}
E>1
converges to zero as n — oo, where F/" denotes the o-algebra generated by &,&4+1,...,&m

with [ < m. Among various mixing conditions used in the literature, a-mixing is reasonably
weak and has many practical applications; see, e.g., Doukhan (1994), page 99, for more details;
and see Cai and Kim (2003) for motivation in the scope of Survival Analysis. In particular,
the stationary autoregressive-moving average (ARMA) processes, which are widely applied in
time series analysis, are a-mixing with exponential mixing coefficient, i.e., a(k) = p* for some
0<p<l.

The rest of this paper is organized as follows. In the next section, we give some notation
for the left-truncation model. Basic elements of the wavelet theory, and the definition of the
nonlinear wavelet-based estimators of m(-), v(-) and h(-) are given too. Main results are described
in Section 3, while their proofs are given in Section 4. In the Appendix, we collect some

preliminary lemmas, which are used in Section 4.

2 Notation and wavelet-based estimators

In the random left-truncation model, the lifetime Y; is interfered by the truncation random
variable T; in such a way that both Y; and T; are observable only when Y; > T;, whereas nothing
is observed if Y; < T; for ¢ = 1,--- | N, where N is the potential sample size. Due to the
occurrence of truncation, the N is unknown, and n (the size of the actually observed sample)
is random with n < N. Let § = P(Y > T') be the probability that the random variable Y is
observable. Since § = 0 implies that no data can be observed, we suppose throughout the paper

that 8 > 0. Without confusion we still denote (X;,Y;,T;),i = 1,--- ,n the observed sequence.



Following Stute (1993) the conditional dfs of Y and T" given no occurrence of the truncation are
y
F) =Py <ylY 27) =07 [ GluaF(w
0

and G*(y) =P(T < y|Y >T)=6"" [[° G(y A u)dF(u), which can be estimated by
Fily)=n"'> 1(¥Y;<y) and Gyly) =n"'Y I(T; <y),
=1 i=1

respectively, where I(-) is the indicator function. Since C(y) = P(T' < y < Y|Y > T) =
0=1G(y)[1 — F(y—)] = G*(y) — F*(y—), the empirical estimator of C(y) is defined by

Coly) =n"' Y I(T; <y <Yi) =Giy) — F(y-),
=1

where for any df H, H(y—) denotes the left-limit of H at y.

Since N is unknown and n is known (although random), our results would not be stated with
respect to the probability measure P (related to the N-sample) but will involve the conditional
probability P with respect to the actually observed n-sample. Also E and E will denote the
expectation operators under P and P, respectively.

Following the idea of Lynden-Bell (1971), the nonparametric maximum likelihood estimators
of F' and G are given by

1-F,(y) = H (1— ! ) and G,(y) = H (1—;).
nCp(Y;) nCr(T})

:Y; <y T >y

The estimator of 6 is defined by 6, = G, (y)[1 — F,(y—)]C;; (y). He and Yang (1998) proved
that 0,, does not depend on y and that it is well-defined whenever C,,(y) # 0. For any df H, let
ag = inf{y : H(y) > 0} and by = sup{y : H(y) < 1} be its two endpoints. Consequently, 6 is
identifiable only if ag < ar and bg < bp.

Now we introduce some notation corresponding to wavelets. Let ¢(x) and ¢ (x) be father and
mother wavelets, having the properties: ¢(-) and (-) are bounded and compactly supported;
[¢? = [¢? =1, ,uk:fykl/J(y)dy:OforOSkﬁr—land,ur = rlk # 0, where Kk =
(r)~" [y d(y)dy. Let

bmj(x) = 2M2p(2Mx — §), bij(x) = 2/*p(2x — j), © € R, m,i€Z, (2.1)
then, the collection {¢y,j,%ij,j € Z,i > m} is an orthonormal basis (ONB) of Ly(R). Further-
more, let V;,, and W; be linear subspaces of Ly(R) with the ONB ¢y, j € Z and v;;, j € Z

respectively, we have the following decomposition Lo(R) = V;;, @ Wy, @ W1 & Wiy @ -+ - .
For more on wavelets see Daubechies (1992) or Hérdle et al. (1998).



Remark 2.1 Set K(t,z) =3 72 #(t—j)o(x—j). Then, K(t,x) has the following properties:
(1) K(t,x) is uniformly bounded; (ii) K(t,xz) = 0 for |t — x| > 4L if support ¢(x) C [-L, L];
(iii) K(t,z) satisfies the moment condition (cf. Hdardle et al. (1998), Theorem 8.3, page 93),
ice., [(t—2)*K(t,z)dt = Sor, for k=0,1,--- ,r — 1, where &;; denotes the Kronecker delta [i.e.

dij =1, if i = j; 0, otherwise].

If the function v(-) belongs to Lo(R), we have the following wavelet expansion:

(o)

v(@) = Y amibmi@) + Y Y aiii(e), (2.2)

j=—00 1=m j=—00

where am; = [0(2)pmj(x)dz = [ ¢m;(z)V (dz) and aj; = [v(x)ij(x)de = [1j(z)V (dz) are
the wavelet coefficients of the function v(-) and the series in (2.2) converges in Lo(R). These
coefficients can be estimated by replacing V by a proper empirical df. In our random left-
truncation model, to build estimator of V(-), we first consider the conditional joint distribution

of (X,Y,T)
Ho(wyt) = P(X <2,Y <y, T <t|Y > T) = / / Glw A ) F(du, dw).
<z Jag<w<ly
Taking ¢t = +00, we get the conditional joint df of (X,Y)
F*(z,y) =P(X <z,Y <ylY >T) = «9_1/ / G(w)F(du,dw),
<z Jag<w<ly

from which we obtain

F(dx,dy) = 0G (y)F*(dz,dy) for y > ag. (2.3)
Integrating over y we get the df of X, V(z) =46 fu<z fy>ac (o] F*(du,dy). A natural estimator
of V is then given by
0 n
Vi(z) = =) GH(Vi)I(Xg < 2). 2.4
(x) n;n(k)(kz_ﬂf) (2.4)

Note that in Eq. (2.4) and the forthcoming formulae, the sum is taken only for k such that

G (Yy) # 0. In view of (2.4), we define the non-linear wavelet estimator of v(x) as

oo

On(z) = Z mjPmj(T) + Z Z aijI(|ai;| > 6)vij(z), (2.5)

j=—00 1=m j=—00
where § > 0 is a “threshold” and w > 1 is another smoothing parameter, and the wavelet

coefficients a,,; and a;; are defined as follows:

dmj = /¢m]dvn Z G ¢m] Xk azg = /%]dV Z G ’(ﬂw Xk) (2.6)



If the function h is square-integrable then its wavelet expansion is given by

= 2 bwjbmi(@) + > D7 biguns(a), 2.7)

j=—00 i=m j=—00

where by,j = [ h(z)dmj(x)dx and b;j = [ h(z)1;;(x)dz. Note that

H,(z) = 0,n" 121@0 Yi) (X, < z)
k=1

is an estimator of H(x) = [ _ h(u)du (see Ould-Said and Lemdani (2006)). So, the proposed

non-linear wavelet estimator of h(z) is

= Z bynj Oy () +Z Z bij I(|bij| > )i (), (2.8)

j=—o00 1=m j=—00

where by = 0,n ™t S0 VG (Vi) dmi (X1), bij = Opn= 1 S0 1YkG—l(y,f)l/;ij(xk). Further,
from (2.5) and (2.8), a wavelet estimator of m(x) is given by m(z) = h,(z)/0n ().

3 Main results

In the sequel, let C,Cy,C1,--- and ¢ denote generic finite positive constants, whose values are
unimportant and may change from line to line, A,, = O(B,,) stand for A, < CB,, a, < b, mean

0 < liminf a, /b, < limsupa,/b, < co. Throughout this paper, we assume that
ag < ap, bg <bp < oo. (3.1)
Let x,, = [2™x]/2™ for x € R and

20(17) 21(17

>(a) = // QZf” Z(b + 1) ]dudy (i=0,1,2).

21(17) 22 ($
In order to formulate the main results, we need to impose the following assumptions.

(A1) For all integers j > 1, the joint conditional density v (-,-) of X; and X1, exists on R x R
and satisfies v;-‘(tl,tg) < C for all t1,ty € R with |t; — ta] < 0 for some dy > 0.

(A2) (i) The density v(-) satisfies 0 < v(z) < Cy for x € R;

(ii) f(z,y) is bounded and continuous with respect to the first component.

(A3) The smoothing parameters 7 and ¢ are functions of n. Suppose that 7 — 0o as n — oo in

such a manner that 2762 = O(n~°) for some 0 < € < 1, § > C3(n~"1In(n))"/2.



(A4) The sequence «(n) satisfies

(i) there exist positive integers p := p(n) and ¢ := ¢(n) such that p + ¢ < n, and as
n — o0, p/n— 0, gp~" — 0 and (n/p)a(q) — 0;

(ii) there exist v > 2 and 7 > 1 — 2/ such that >.;°, I"[a(1)]~%/7 < .

3.1 Asymptotic normality of covariate’s density

Theorem 3.1 In addition to the conditions on ¢(-) and ¥(-) stated in Section 2 and the as-
sumptions (A1)-(A4) and equation (3.1). Assume that the r-th derivative v (-) of w(-) is

continuous and bounded. Let a(k) = O(k™) for some
A > max{3,d(d+ p)/(2un), 1 +4r/[e(2r + 1)], (7 — 1)(27 + 1)(2 — €) /(2e(T — 2)) }, (3.2)
where 7> 2, d > 2, u>0, and
e +1+2b)+2b/(2r +1) > 2(b+1) for b> 1. (3.3)
If 2™ = /@) gnd (p2m /n)Y/2=1omu/(d+) 0, then
V2 (i (2) — v(@m) — a(zm)) 2 N(0,02(z)) z € R,

where a(x) = (r) oM (@)27™™ [ [, ¢(u + Dé(1)]du and o*(z) = 0%s(x). Further, if
n2=@HDm 0 then /n2 (0 (2m) — v(zm)) = N(0, 0% (2)).

3.2 Asymptotic normality of regression function

Theorem 3.2 Suppose that the assumptions in Theorem 8.1 are satisfied, and that the r-th
derivative h")(-) of h(-) is continuous and bounded. If

2™ = (nln(n))Y @+ and  (p2m n)Y2Lomm/(dtu) _ o

then Vn2=™ (1, () — m(xm)) A N(0,A%(z)) z € R, where

0[%0(z)v?(x) + So(z)h%(z) — QU(az)h(az)El(az)]‘

A = ey

Remark 3.1 In Theorems 3.1 and 3.2, if we replace a(k) = O(k~*) by a(k) = O(p*) for some
0<p<1, then (3.2) and (3.8) are automatically satisfied.



4 Proofs of main results
We are now ready to prove our main results.
Proof of Theorem 3.1. By using Lemma 5.7 it follows that

Op(z) —v(x) — a(x)

= Y (g — @m0 (@) + | D gy (@) = v(@) —a(@)] + D D gl (lag) > i (@)
j=—00 j=—00 i=m j=—00

= Y (g~ )i (@) + | D mioom (@) — 0(@) — ()]
j=—00 j——oo
+ Z Amjﬁbmg ‘|’ Z Z AZ]I |az]| > 5 wzg ‘|’ Z Z azg |az]| > 5)1%( )

= Li(x) + La(x) + Is(z) + Is(z) + Is(x).
It suffices to show that

V2 I (zm) 2 N(0,02(z)), Iy(zm) = o(27™),
Vn2=mI3(x) = op(1), Vn2=mIy(x) = 0p(1), Vn2=mI5(z) = op(1).

Step 1. We prove vVn2="™I(z,) LA N(0,0%(x)). It is easy to see that

V2 () = zn: {@(91((2”;)((2)2%"1) —/ (K (2™, 2, dt)} Zznk,

where K(t,2) = 355 ¢t —)$(x — ), Zuk = 1/ 22 (% — [o(t)K (2™, 2ma:m)dt>
and EZyx = 0. Let w :=wy, = [J1-] and 374 Zyy = S}, + Sy, + Sy, where

w w
1" / " /
= E Ynl, Sn = E Ynis Sn = Ynw+1>
=1 =1

s;+p—1 t;+q—1 n
’ ’
Ynl = § Zm'a Y = § Zm'a Ynw+1 = E an
=5 i=t; i=w(p+q)+1

and s;=(I—-1)(p+q)+1, t;,=(1—-1)(p+q)+p+1, I =1,...,w. It is sufficient to prove that

E(S!)? — 0, E(S))?—0, (4.1)

Var(S!) — o?(z), (4.2)

‘E exp (ztz ynl) — HEexp(itynl) — 0, (4.3)
Z Y2 I(|ynt| > eo(z)) — 0 Ve > 0. (4.4)



Relation (4.1) implies that S/ and S/ are asymptotically negligible, (4.3) shows that the sum-
mands y,,; in S, are asymptotically independent, and (4.2) and (4.4) are the standard Lindeberg-
Feller conditions for asymptotic normality of S/, under independence.

We first establish (4.1). We observe that

w t+q—1 w
BE) = 3N BZ40Y Y ColZuZu) 42 Y Covlfuuly)
=1 =t =1 ;<i<j<t;+q—1 1<i<j<w
= Ill(xm)+]12($m)+113(xm). (45)

From K(t,x) = K(t+ k,z + k) for k € Z and (2.3), it follows that

2172 (9om m 2
nEZ%, = 2mE(9 K (26;2?;1’)2 xm)) —2m( / v(t)K(2mt,2mxm)dt)

o[22

_ 2m9//f (2™t — 2 xm,O)dtdy—2m</v(t)K(2mt—2mxm,0)dt)2

/ CH mu +)xm’ )K2(u 0)dudy — —(/v(2—mu+zm)K(u,o)du>2

~ o f Rt omay=o | [ LR[S oturoou] war o

which yields that I11(x.,) = O(wg/n) = O(¢/p) = o(1). Note that

2
(2™, 2™z, ) dtdy — 2m( / v(t)K(2mt,2mxm)dt)

Lap(zm)| <2 Y [Cov(Zni, Znj)| and [Iig(zm)] <2 Y |Cov(Zni, Znj)l.
1<i<j<n 1<i<j<n

Therefore, in order to prove I13(zy,) = o(1) and I13(x,,) = o(1), we need only to show that

> |Cov(Zui, Znj)| — 0. (4.7)

1<i<j<n

Next, let ¢, (specified below) be a sequence of integers such that ¢, — oo and ¢,27™ — 0. Put

St o= {5 e {12, ,n}1<j—i<ecn},
Sy = {95 €{1,2,-- ;nfen +1<j—i<n—1}
We write
> |Cov(Zniy Znj) = Y |COV(Zni, Zunj)l + Y |COV(Zyi, Znj)- (4.8)
1<i<j<n S1 Sa



From (A1), similarly as in (4.6), for ¢ < j we have

|COV(Zm, an) |

= 2m QK(QmX“Tﬂxm) HK(Qmemem) m m 2

T n {E( G(Yr) ' G(Y;) > (/U(t)K(Q t,2 l’m)dt> }
2" E|K(2™"X;, 2w, K(2™X,;,2™ K(2™t,2™xm)d ’
7{G2(aF | ir 2" ) K (27 X5, 2% )| + (/v(t) (27,27 ) t) }
2" m m m *
7{ 2( //|K2 t1, 27w ) K (272, 2" ) |vf_; (81, t2)dt1 dto

—I—( v(t)K(2™t, 2mxm)dt) }

%{C//\K OMty — M OV (2 — 2™z, 0)|dt dt
+ /v( 2mt—2mxm,0)dt) } — O((n2™)Y). (4.9)
Hence
> 1CoV(Zniy Znj)| = O(cn2™™) — 0. (4.10)
S1

On the other hand, it follows from Lemma 5.1 that |Cov(Zpi, Z,;)| < Cla(i—i)]' =2/ (E|Zn: ")/

and
. ” 2 10K (2" Xy, 2™ X)) | v/2 2707 e am .
ElZnl" < 2 ( n ) ‘ G(Yr) ‘ = ( n > K278 2 ) o(t)dt
2mN/2 2767
= (== .g—m V(2 _ —1(om /, \7/2—1
(n) G (ar) 2 /\K(U,O)\ v(27"u + xp)du = O(n™ (2™ /n) ). (4.11)
Then

Z|Cov Zonis Zn) |<CZ Z )|y g2

Jj=1j—i=cn+1

< 021=2/7m Z [a(D)]' 27 < Cena=2/nm Z ()],
l=cp, l=cp,

Hence, by choosing ¢, = 2™1=2/0/1_from (A4) it follows that
> " |COV(Znis Znj)| — 0. (4.12)
Sa
Therefore, (4.7) follows from (4.8), (4.10) and (4.12).
As to E(S”)?, from (4.6), (4.7) and (A4)(i) we have

E(S8")? = > Var(Zy) +2 > CoV(Zniy Znj)
i=w(p+q)+1 w(p+q)+1<i<j<n
< C.w_kg Z |COV(Zng, Znj)| — O
" 1<i<j<n

10



and (4.1) is proved. Besides, since wp/n — 1, (4.2) follows from (4.6) and (4.7). As to (4.3),

according to Lemma 5.2 we have

Bexp (it yu) — [ B explityn)| < 16wala + 1) < Cln/p)ala),
=1 =1

which tends to zero by (A4)(i).
Finally, we establish (4.4). Here, we use Lemma 5.3 to evaluate A, (¢). Let d > 2 and p > 0

such that A > d(d+“ ) , by using Lemma 5.3 and (4.11), for sufficiently small 5 > 0 we have

An(e) < (eo()* ™) Elyul®

w si+p—1 si+p—1 42
< x))2—dZ{pﬁ 3 E|an‘|d—|—( > ||Zm‘||?z+u) }
=1 =5 i=s;
< Cfup™ @ )2 a2 (2 2 L

< C(p2m/n)d/2—12mu/(d+,u) 0.

Step 2. We verify Is(x,,) = 0(27"™). From Remark 2.1, by applying an argument similar as
that in (4.6) and a Taylor expansion, it follows that

L(zy) = /[v(t) —0(z)]2M K (2™, 2" 2 )dt — a(xy,)

_ / (2 + 270) — v(am)| K (1, 0)du — alz,)

_ / Z @) g~k i (1, 0)dt + 0(27™) — a()

v(”) x
_ 7( m) g-rm / WK (0, 0)du + 0o(2™) — alzm) = 0(2™).

7!

Step 3. We prove Vn2=mI3(x) = o,(1) and vn2=™I(x) = op(1). From Lemma 5.7 we have

72_m|13(m)|20((1nln( ))1/2) —— Z Z o 1@ ) )\|¢( my— i) s,
pes

and, for each m, since the support of ¢(-) is compact, there exists a finite number of non-zero j
terms of the form ¢(2™z — j). Hence, according to

P2 Xy — 7)|

osz( o

) =27 [ 162"~ io(e)dz = [ ool +3)/2")du = 0(1)

we have Vn2-"I3(z) = O,((27™ InIn(n))/2) = 0,(1).

11



Note that

) = o (M) )i 13y 3 e s,

i=m k=1 j=—00
and the compactness of the support of ¢(-) implies that, for each i, there exists a finite number
of non-zero j terms ;;(x). So, from

|9 (Xi)| |93 (@)
0B cf(yk) )

= 2ig(2iz — j)| / (2t — flolt)dt
= fo2'a— )| [ [wla)lo((u+3)/2)du = O(1)

and 7 = O(In(n)), it follows that vVn2=mI4(z) = Op(m(27™ InIn(n))"/?) = 0,(1).

Step 4. We prove vn2="I5(x) = 0p(1). Note that

Z Z dij — aij)1(|aij) > 0)bij (w +Z Z ai;I(|a) > 0)i(x)

i=m j=—o00 i=m j=—00

= ]51($) + I52($).

Let ; (i =1,2,3,4) be positive numbers such that 8; + 2 = 1 and 3 + 84 = 1, then

Ba@)] < >0 D i — aijllvy (@) (] > 6:6)

1=m j=—00

+D Y i — gy (@)1 (|ai; — ais| > B2559)

1=m j=—00

YD lai; — agl v () 1(|Aij| > BaBad)

1=m j=—00

> Y aig — aiglli ()| I(lais) > B16)

i=m j=—00

+2) 0 N ai; — aigllvg (@) (|ag — aij| > B2550)

i=m j=—00

)0 Jai — agl Wi (@) T(|Ag| > 52848, |as; — aij| < B230)

1=m j=—00

= ]511(.%) + 2[512(%) + I513($).

IN

Since the r-th derivative v(")(-) of v(-) is continuous and bounded, by a Taylor expansion, it

12



follows that

r—l

—1 u+ —1 1 Z (2

Qij = /2/¢ ] = /2/¢ Zﬁuﬂl(l .7/2)
1=0

' 1) (( '
+m(u/2) /0(1—t) v ((]-i—tU)/Q)dt]du

1

1
= ey, Jurv) /0 (=) (G + tu) 2Vt du, (413)

which yields that |a;;| < 2 C+Y2i and I(jay;| > B16) = 0 for large n by 20+1/2)is >
2(r+1/2ms s 00, Hence, Vn2=mI511(z) = 0,(1).
Let a be positive constant such that a=! + b~! = 1. Since there exists a finite number of

non-zero j terms v;;(z), by the Holder inequality and Lemma 5.9 we have

Elfy(z) < Cmy Y B{(ai; — aiy) (@) 1(|ai; — aij| > B2036)}

z'—mj——oo

< Z Z Y2 () EY g — aig 2P0 (i — ais| > B256)

i=m j=—o00

< Ory Y W@ P (ay - ayl > Basd).

i=m j=—00
Next, we evaluate P(|a;; — a;j| > (2030). Set & = ﬁwij(Xk). Then E¢;, = a;; and
(ijk — B&ijr| < C27/2 := S, E(&ij, — E&ijr)® < B, < O, |Cov(&ijs, &ije)| = O(277) for s # t.
Hence, by Lemma 5.5, taking m = oo, for N € N,0 < N < n/2 we have

Dy = lgllg%(NVar(z:lfwk) < CN((QZ/Q)Z/T( )1—1/r + C) < CN. (4.14)

So, according to Lemma 5.4, taking N = [(6227)~1/2], it follows that

Pllai; — ay| > Bafsd) = (Ew Bgip)| > nafsd)

21221022
32325216 325
<4 - N
= eXp{ nN—lDN—i—Cnﬁgﬁg(SSN} PN AL
< dexp{—Cy0%n} + C(2IAFD§2A-1)1/2, (4.15)

Then

EI5212(3:‘) < Crn Z 2in—1{ exp{—C’5(52n} + 0(21'()\4—1)52()\—1))1/(%)}

vy

< ™ ap{—Cyd?n} + CTorIOFD/ @)1 5O-1)/b
n n
O(n—2r/(2r+1)) — O(n—l2m)7

13



which follows by choosing § > C3(n~"1In(n))"/? with Cs such that C3C5 = 2r/(2r + 1), and by
noticing that 2762 = O(n=°), 6 > C3(n'In(n))"/? and e(A + 1 + 2b) + 2b/(2r + 1) > 2(b+ 1)
imply n =172 A1)/ GO+ sA=1)/b — (5 =2r/Cr+1) Therefore vVn2=mI515(x) = 0,(1).

Similarly to the arguments in (4.14), it follows that Var(6> p_; [¢:;(X%)|G~1(Yx)) < Cn.

Hence
_ Inln(n) 0 [0 (X5 )]\ 2
BAy = o= )E(E; ¢ )
Inl 0 < | (X ~
(1) (25 50 om0
k=1
B Inln(n)y 1 1
B O( n ){ﬁJr?}' (4.16)
Then
i) < oxy2 37 v =05 )e . (7 1)
t=mj=—00 i=m
_ O(lnli(n)>{%2ﬂ —1—772} — o(n~12m),
which yields Vn2="I513(x) = 0,(1). As to Isa(x), we have
|152 Z Z |azg¢zg |I |a23| >ﬁ15 —I—Z Z |aZJ¢ZJ |I(|a23 _azg| >ﬁ2ﬁ35)

i=m j=—00 i=m j=—00

+Z Z |aijij ()| 1(|Aij| > B2840)

i=m j=—o00

= Iso1(z) + Isa(w) + I523(2).

By I(laij| > B16) = 0 for large n, we have vVn2 ™59 (z) = 0p(1). Since 276? = O(n™°),
§ > C3(n~'In(n))"/? and X > 1+4r/[e(2r +1)] imply 727[AD/2=2rgA=1 — (5 =20/ C2r+1)y
from (4.15) and (4.16), it follows that

ERyp(x) < wZ Z a3 () P(|ag — aij| > Ba/330)

i=m j=—o00
us

Cn Z {2—27“2' exp(—Cad%n) + 2i[(>\+1)/2—2r}5>\—1}

Oﬂ.{2—2rm exp(—Cad?n) + or[(A+1)/2—2r] 5)\—1}
= ol —2’"/@“”)— o(n™12"),

Elye) < 73 Y aud(e)oEA —o(h“n )5— 22‘2”{ _}

i=m j=—00

= O<7ln lz(n))é_Qw{n_12_2’"m + 2_(2’"“)’”} = o(n~12™M).

IN

IN
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Therefore, Vn2=" 159 (x) = 0p(1) and Vn2=™Is3(x) = op(1). [

Proof of Theorem 3.2. We write

(o)

j:—oo j=—00 Jj=—00
+Z Z By I(|bij| > 0)bij(x +Z Z bijL(|bij] > 6)i; ()
1=m j=—00 it=m j=—00

= A (.1‘) + Ag(.l‘) + Ag(aj‘) + A4(3§‘) + A5(3§‘),

o0 o0

tn@) —v(@) = > <amj—amj>¢mj<x>+[ 3 g = v@)] + Y Ayl
== j=—o0 j==o0
1=m j=—00 i=m j=—00

= Ii(z) + Ih(x) + I3(z) + Iy(x) + I5(z).
From the proof of Theorem 3.1 it follows that
Vn2=mIy(xm) = o(1), Vn2=mI(z) = 0,(1) (i = 3,4,5). (4.17)

Since (3.1) implies that Y is bounded, by using arguments similar to those in the proof of

Theorem 3.1, one can verify that

Vn2=mAg(x) = o(1), Vn2=mA;(z) = o0p(1) (i = 3,4,5). (4.18)
Next we prove
V2= (A (), 1 ()™ 2 N(0,65(x)). (4.19)

Consider the mapping L(-) from R? to R defined by L(x,y) = z/y for y # 0. Since
() and m(z) are the respective images of (hy (), 9 (x)) and (h(z),v(z)) by L(-), we de-
duce from Lemmas 6.7 to 6.9 and from Mann-Wald’s Theorem (see Rao 1965, page 321) that
Vn2=m (1, () — m(z)) converges in distribution to N(0,0VL(2)VL) by (4.17)-(4.19), where
the gradient VL is evaluated at (h(z),v(z)), i.e., VL = (1/v(z), —h(z)/v?(x))7. Therefore

AQ(.Z‘) — QVLTZ(QS‘)VL _ 9(1/U(1‘),—h(3§‘)/v2(1‘)) ( ZO(X) Zl(X) ) ( 1/U(33') )
Yi(x) Xa(x)

0[Zo(x)v?(z) + Ba(x)h?(z) — 2v(z)h(z) X1 (v)]
vt(z) '

15



To prove (4.19), it suffices to show that, for any given pair of real numbers A = (a1, a2)” # 0
V2 (a1 Ay (zn) + asi (zm)) 2 N(0,72(x)) (4.20)

with 72(x) = 0A™S(z)A = 0[a2Xo(x) + a3¥a(z) + 2a1a231 (z)]. Put

Wi = alﬁ(enngéf%m) - / h(t)K(th,2mxm)dt)
+a2\/7 (9K (27;)((}’%)2%"‘) - / v(t)K(2mt,2mmm)dt>.

Then EW,,; = 0. Let the definitions of w, s; and t; be the same as in Step I in the proof of
Theorem 3.1. Define u,; = E§l+p_1 Wi, u., = Z?Tq_l Whis U1 = E?:w(p+q)+1 W,,;. Then

1=5] nl — Z—tl

w w
vn2 " (a1 A (z,) + agly(z),)) Z Whi = Z Uy + Z ul, + u;fbwﬂ =Q + Q!+ Q.
=1 =1

Hence, for (4.20), we only need to prove that

E(Q)? =0, EQ")? -0, (4.21)

Var(Q,) — 7%(x), (4.22)

(Eexp (it Ew:unl) - ]w'[ E explitun)| — 0, (4.23)
" =1 =1

=Y B I(|up| > er(z)) — 0 Ve > 0. (4.24)

We first prove (4.21). We observe that

w t+q—1 w
E(Q)? Z Z EW?Z +2 Z Z Cov (Wi, W) + 2 Z Cov (ty,;, Uy,;)
=1 =t =1 ;<i<j<t;+q—1 1<i<j<w

= Ji(zm) + Jo(m) + J3(m).

16



Similarly to the arguments in (4.6), we have

nEWﬁZ = a% [QmE<92Y2K2é2;;X) 2"2m) —2m</h K(2™t, mem)dt)Q]
+al [QmE(mKQ(Z;@)Q%m - 2’” / K (2™t 2mxm)dt> }
+2a1a9 [QmE<92Y2K2g§Z‘;§)’ 2me))

o / DK (27,27t ) / o(0)E (2", 2" )t |

_ a2 [9// y2f(2‘”;1(¢yj; xm,y)Kz(% 0)dudy — Qim(/h(g—mu + xm)K(u,O)duﬂ

+a} [9 // f(2_mg(—|y—)a:m, y)K2(u, 0)dudy — 2% (/v(2_mu + ) K (u, O)du) 2}

+2a1a9 {9//yf(2_72?(;; xm’y)KQ(u, 0)dudy
1

5 ( / h(27"u + x) K (u, O)du) </v(2_mu + ) K (u, O)du)}

— //yf ,y uOdudy+a2//f ,0)dudy

+2a1a2//y‘gfy’)y K (u,O)dudy] = 72(z), (4.25)

which yields that Ji(z,) = O(wg/n) — 0.

Similarly to the arguments in Step I in the proof of Theorem 3.1, to prove Ja(z,,) —

0, J3(xm) — 0 and E()? — 0, we only need to show that

> Cov(Whi, W) — 0. (4.26)
1<i<j<n
Note that
> €V (Wi, Waj)l =D |Cov (Wi, W) + D [Cov (Wi, Waj), (4.27)
1<i<j<n S1 So

where the definition of S7 and S5 is the same as in Theorem 3.1.
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From (A1), (2.3) and (3.1), similarly to the arguments in (4.6) or (4.9), for i < j we have

|Cov(Whi, W)l

_ ‘ 5 {a% 27 PV YK (27X, 2w ) K (27 X, 27 )
n G(Y)G(Y;)

2m 02V, K (2™ X, 2", ) K (2™ X, 2" )
G(Y)G(Y;)
2m 2V, K(2MX;, 2, ) K (2™ X, 2™ x,y,)
G(Y)G(Y;)
52™ 2K (2™ X, 2Ma,, ) K (2™ X, 2™y,
e Evarey j

ooy 2 PG T [ PR

m

o —B|K (2" X, 2" K (27 X5, 2" )

+ al\/: / / yf(t,y)K (2, zmgcm)dtdy+ag\/ﬁ / v(t)K (th,mem)dt)Q}

an//‘K t1,0)K (t2,0)|dty \/—//yf 27"+ T, y) K (u, 0)dudy
U(Q_mu—l-a:m)K(u,O)du} = O((n2™)™h). (4.28)

IN

IN

_|_
\/n2m
Hence
D 1Cov(Wai, W)l = O(cn2™™) — 0. (4.29)
S1

On the other hand, it follows from Lemma 5.1 that |Cov (W, Wy;)| < Cla(j—i)]* =27 (B|W:[7)?/

and

E|W,[" < C(E)WQ ‘QYiK(QmXi,mem)‘VSO(Qm

G(Y)
= O(n~H@2m/n)/?h. (4.30)

_ . m
n) 2 /|Ku 0)["v(27"u + ) du

Similarly to the arguments in Step I of the proof of Theorem 3.1, (4.30) and (A4) imply
>, |Cov(Wy, Wyj)| — 0, further (4.26) holds by (4.27) and (4.29).
We now verify (4.22). Note that

w sitp-l w si+p—1sj+p—1
Var(Qp)=> > EWZ+2) > Cov(Wni, W) +2 > Y Y Cov(Waty, Wasy)-
=1 1=s; =1 5;<i<j<s;+p—1 1<i<j<w l1=s; l2=8j

Then, from wp/n — 1, and (4.25)-(4.26), it follows that Var(€2,) — 7%(x).
Following the lines in the proof of Theorem 3.1, one can verify (4.23).
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By using (4.30), from the proof of A, () — 0 in Theorem 3.1, g,(¢) — 0 can be proved
similarly. |
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5 Appendix

In this section, we give some preliminary Lemmas, which have been used in Section 4. Let

{Z;,1 > 1} be a sequence of a-mixing real random variables with the mixing coefficients {«(k)}.

Lemma 5.1 (Hall and Heyde (1980), Corollary A.2, p. 278) Suppose that X andY are
random variables such that E|X|P < oo, E|X|? < oo, where p,q > 1,p~t +q~1 < 1. Then

[EXY — EXEY|<S|XI,IVIl{ s |[P(AB)— P(A)P(B)[}+" ="
A€o(X),Beo(Y)
Lemma 5.2 (Volkonskii and Rozanov, 1959) Let Vi,---,V, be a-mizing random vari-

ables measurable with respect to the o-algebra .7-"311,--- ,H:, respectively, with 1 < i1 < j1 <

< gm <n, g — i >w>1and |V <1 forl,j=1,2,--- ,m. Then

‘E(ﬁvj) - ﬁEVJ‘ < 16(m — 1)avw,
j=1 j=1

where F? = o{V;,a < i < b} denotes o-field generated by Vi1, Vaio, -, Vi, oy is the mizing

coefficient.

Lemma 5.3 (Yang (2007), Theorem 2.2) Let A > 2, u > 0, EZ; = 0 and E|Z;|*" < .
Suppose that a(n) = O(n™") for r > XX+ p)/(2n). Then, for any given € > 0, there
erists constant C = C(r,p,€,\) such that Emax1§k§n|2f:1 Zir < C{n Y E|lZ]N +
(i 1Zl134.,07 -
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Lemma 5.4 (Liebscher (2001), Proposition 5.1) Assume that EZ; = 0 and |Z;] < S <
o a.s. (1=1,2,---,n). Then, forn,N e N 0O < N <n/2, ¢>0,

n
i
i=1

where Dy = maxi<j<an Var(Zigl Zi).

62 -1 ]. -1 S
) < 4exp{ 1 (nN Dy + g€SN> } + 32;na(N),

Lemma 5.5 (Liebscher (1996), Lemma 2.3) Assume a(k) < C1k™", for some r > 1,Cq >
0. Let supi<; j<p.iz; |Cov(Zi, Z;)| == R*(n) < oo be satisfied. Moreover, let Ry,(n) < oo for
some m, 2r/(r —1) < m < oo, where R,,(n) = suplgign(E|Z¢|m)l/m, for 1 < m < oo, and

Roo(n) = supy<j<y, €8S SUDP el Zi|. Then

Var(zn: Zi) < TL{CQ(?“, m)(Rm(n))Zm/(T(m—Q))(R*(n))l—m/(r(m—2)) + R%(n)}
=1

holds with Ca(r,m) := 2200/,
Lemma 5.6 (Liang et al. (2008)) Suppose that a(k) = O(k™") for some r > 3. Then

sgp G (y) — G(y)| = O((Inln(n)/n)*?) a.s., |6, — 6] =O((Inln(n)/n)"/?) a.s..

Lemma 5.7 Let Gy,j, G5, ij, Bij be as defined in Section 2. Set

dmj Z G Yk)¢m] (Xk azg Z G ¢zg

A )¢
Pmj(Xk), bij = Z G(;k)lﬁij(Xk)-
k=1

n

— G(Y})

Then, under the assumption a(n) = O(n™") for some r > 3, we have

Umj = Amj + Amj, Qi = Qij + Aij, by = bmj + By, bij = bij + Bij,

where

Ay = O (1nln )1/2) Z |¢mg as.,

(

(lnl )1/2) Z W}U a.s.,
B, = O<<%)1/2) Z |Yk¢mﬂ Xk a.s.,

(=

In In( >1/2> Z \kazg Xk
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Proof. We observe that

Gmi = Z oK+ [ 2 G P 2 (G ~ ) om0
= amj —1— Amj.
According to (3.1) and Lemma 5.6 we have
16 — 0] 0 sup, |Gn(y W’ma
N G e O )
[Am| - < nGr(ar) ; mi (Xie)| + nGh( Z
|07 — 0]
< i (X)
= nlGlar) —sup, [Gnly Z s ()
0 sup, |Gn(y) — G(?J)| Z |Prmy (X))
R[G(ar) — sup, |Ga(y) - G<y>u 2 G
B Inln(n)\1/2 \gbm]
= o((5)") £y e
The others can be verified by the same manner. |

Lemma 5.8 (Bradley (1983), Theorem 3) Let n and & be real-valued random wvariables.
Suppose U is a uniform-[0,1] random variable, independent of (n,€). Then there exists a real-

valued random variable £*, measurable w.r.t. (n,&,U), such that
(1) & is independent of n,
(2) the probability distributions of £* and & are identical, and

(3) P& =¢] > €) < 18(|I¢[lr /)" A TV{sup ac,(e) Beo(n) [P(AB)—P(A)P(B)|}*/Cr+)  where
0 <e<|&|r, when ||£]|; >0, and € > 0, when ||€||, =0 and ||£||cc = esssup [].

Remark 5.1 Bradley (1983), Theorem 3, considers only the case ||£||, > 0. Actually, if ||€||, =
0, then £ = 0 a.s.; hence, on choosing £ = & = 0 a.s., then, for any € > 0, (1), (2) and (3) in

Lemma 5.8 are still true.

Lemma 5.9 Let 7 > 2. Under the assumptions of Theorem 3.1, if X > (7 — 1)(27 + 1)(2 —
6)/(26(7’ — 2)), then E|5LZ] — CLZ']'|T = O(n_T/2), E‘Ew — bij‘T = O(n_T/2).

Proof. Following the lines of Lemma 4.5 in Liang et al. (2005), one can verify Lemma 5.9. For

the sake of completeness, here we give the proof of the second equation, the proof of the first

24



equation is analogous. Choose r(n) = [(n2~7)(7=2/((7=1)] "and positive integers k(n) and ~(n)

such that n = r(n)k(n) + vy(n), with 0 <~v(n) < r(n). Set Wy, = —(M — b;j). Then

G(Yk)
k(n) ir(n) n
= > wi+ > W
I=1 j=(-1)r(n)+1 j=r(n)k(n)+1

The contribution of the remainder term E?:T(n

Ye(n)+1 W; is negligible (and is subsequently
ignored) since it consists of at most r(n) terms. So, without loss of generality, we assume
v(n) =0, and further k(n) = 2s(n). Then

2s(n) Ir(n) 2s(n) s(n)

bij—bi=> Y ]:_Zgn an (20) +an (21 — 1) := S(n) + T(n), (5.1)
=1 j=(-1)r(n)+

where &,(l) = Z;T(Ll)—l)r(n)ﬂ W;. Hence E|B;; — bi;|” < C{E|S(n)|” + E|T(n)|"}. Next, we

evaluate only E|T(n)|"

exist i.i.d. random variables £f(20 —1), [ =1,2,...,s(n) such that & (2l — 1) has the same

distribution as &,(2l — 1) for each [, and satisfies

, since the evaluation of E|S(n)|” is similar. In view of Lemma 5.4, there

P& (2~ 1) - 60021~ 1) 2 @) < 1s( L2 Dloe) Py, (52)

where 0 < € < [|€a (20 — 1)loos if [€0(20 — 1)[|oc > 0, and & > 0, if ||,(2 — 1)]|oo = 0. Then,

s(n)
E|T(n)|" < C{E( S en@r—-1) ( n E( Z €521 — 1) — (20 — 1))( } .= C{T1(n) + Tr(n)}.

1=1
Let us take M, > 0 such that s(n)M, < n~1/2, where a, = b, means 0 < liminf a, /b, <
limsup a, /b, < oo, and assume [|£,(2l — 1)||ooc > M, for I = 1,2,...,s(n). Otherwise, by
rearranging the terms appropriately, we may assume, without loss of generality, that ||&, (2] —
Dlloo = My, for Il =1,2,...,s1(n), and [|£,(2l — 1)||ec < My, for I = s1(n) +1,...,s(n), where
s1(n) is a positive integer with s1(n) < s(n), in this case we have

s1(n)

To(n) < C{(Mus() + E( Y I -1) - &= 1))) '}
=1

Therefore,
s(n) i
Ty(n) < O (Mas(m))™ + B( D 16520 = 1) = a2l = DI 21 = 1) = &u(20 = 1)| = My))
=1
where ||£,(2] — 1)||coc > M,,. Observe that

0bp2"2(|1)]| oo
G(ar)

gr(n)27r/2.

6n(20 = 1) = &u(20 — 1) < 27“(n)< n |bij|)% <
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Note that 2762 = O(n~ ) 6> C3(n~logn)Y? and A > (1 —1)(27 +1)(2 — €)/(2¢(T — 2)) imply
_ A(T—2) (r—2)

n~ (21~ 1)2(2T DRE RS o(n~7/?). Then, according to (5.2) and M,s(n) = O(n=/?), it

follows that

Ty(n) < C{(:L (n )27f/2) ) IZP |60 (20 = 1) — & (20 — 1))] zMn)}+O(n—T/2)
< ofjrmr) <s<n>>f<%>w<r<n»—x+O<n_w)

A(r—2) Ar—

< o GED - DGEN DT L 0(7/2) = O(n~712),

Next, we estimate T7(n). Applying the Rosenthal inequality for sums of independent random
variables (cf. Petrov (1995), Theorem 2.9, page 59), we get

s(n) s(n)

{ZE|£ (ZE (20— 1)) )7/2}
c{s<n>E|§n<1>|T+[s<n> (& (D)2} (5.3)

T1 (TL)

IN

IN

From (3.1) we have

r(n) T T
Ele. ()" = E(ZWk\ < (r(n)" EW1[" < ((my(ngfgp)) Bl (X2)|"
k=
(n

))TnT . /2D /W

< C(r

)du < C( ( ))Tn—T2(T/2—].)ﬂ"
Then
s(n)Bl& ()] = O(n~"7?). (5.4)

As to F(£,(1))%, by using Lemma 5.3, it follows that

r(n)
= B> Wi < rn) { O trm) AR () A + By ()}
k=1

where
0br2"2||1)]| 0o 1 B
Roo(r(n)) :== sup esssupyeo|Wi| < C(F—M}H + |b¢j|)— = 0(2”/2n 1);
1<k<r(n) G(ar) n
C u—+7 _
Ry(r(m) = EWAP < [ o?po(* 5L )du= 0,

R*(r(n)) := sup |Cov(W,, Wy)| < C(n?2™)~1
1<s,t<r(n),s#t

Therefore, E(£,(1))2 < Cr(n)n™2, and s(n)E(£,(1))2 < Cs(n)r(n)n=2 = O(n™'), which,
together with (5.3) and (5.4), yields Ti(n) = O(n~"/2). [
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