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Abstract

In this paper a copula-graphic estimator is proposed for left-truncated and
right-censored survival data. It is assumed that there is some dependent

censoring acting on the variable of interest, which may come from an existing
competing risk. Furthermore, the full process is independently right-censored

by some administrative censoring time, while there is an independent
left-truncation variable which complicates the sampling procedure. The

dependent censoring is modeled through an Archimedean copula function,
which is supposed to be known. An asymptotic representation of the estimator

as a sum of independent and identically distributed random variables is
obtained and, consequently, a central limit theorem is established. These

results extend to the truncated setting those in de Uña-Álvarez and
Veraverbeke (2013). We investigate the finite sample performance of the

estimator through simulations. A real data illustration is included.

Keywords: Almost sure representation; Archimedean copula; Cross-sectional
data; Dependent censoring; Survival analysis

1 Introduction

Consider a situation in which two random variables Y and C censor each other.
This occurs, for example, when Y and C represent the time up to event 1 and 2,
respectively, in a competing risks model. In this situation, only one of the two
events is observed, and the available information is given by Z = min(Y, C) and
the event indicator δ = I(Y ≤ C), which takes the value 1 when event 1 occurs
(δ = 0 otherwise). Tsiatis (1975) demonstrated that the marginal distribution
functions F and G of Y and C cannot be identified, unless some information on
the dependence structure between Y and C is available.

Assume that there exists a known Archimedean copula C(u1, u2) which re-
lates the joint survival function of (Y, C) to the marginal survival functions
F (t) = 1− F (t) and G(t) = 1−G(t):

P (Y > t1, C > t2) = φ−1(φ(F (t1)) + φ(G(t2))).

The function φ : ]0, 1] → [0,∞[ is called the generator of the copula C. It is
a known continuous, convex, strictly decreasing function with φ(1) = 0. The
variables Y and C are independent in the particular case φ(t) = − ln t; in that
case, the Kaplan-Meier method provides consistent estimators of the marginal
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distribution functions. In general, a broad family of generators have been used to
model dependent random variables, see Nelsen (2006). Zheng and Klein (1995),
see also Rivest and Wells (2001), introduced a nonparametric estimator for F (t),
termed copula-graphic estimator, generalizing the product-limit Kaplan-Meier
estimator to the dependent scenario. Their estimator, however, requires the
direct observation of the pair (Z, δ), which is not always possible. This may be
due to limitations in the follow-up period for the subjects, losses unrelated to the
competing risks of interest, and so on. To overcome this issue, de Uña-Álvarez
and Veraverbeke (2013) proposed a generalized copula-graphic estimator, by
considering the presence of an independent censoring time.

To fix ideas, and to motivate the present work, introduce a potential cen-
soring time D independent of (Z, δ). Rather than (Z, δ) we observe (U, ρ, ρδ)
where U = min(Z,D) and ρ = I(Z ≤ D); note that the value of δ (i.e. the

event type) is observed only when Z is uncensored (ρ = 1). We put G̃ for the
distribution function of D. Denote H(t) = P (Z ≤ t), H(t) = 1 − H(t), and
H1(t) = P (Z ≤ t, δ = 1). Then, if φ′ exists and if H1 is differentiable, we have
from Tsiatis (1975)

F (t) = φ−1
(
−

∫ t

0

φ′(H(s))dH1(s)

)
. (1)

From this equation, de Uña-Álvarez and Veraverbeke (2013) introduced an es-
timator of F (t) by plugging in proper estimators for H and H1, based on the
observed values of (U, ρ, ρδ). They also provided an asymptotic representation
of the estimator as a sum of i.i.d. random variables. When P (D =∞) = 1, the
proposed estimator reduces to that in Rivest and Wells (2001).

A limitation of de Uña-Álvarez and Veraverbeke (2013)’s generalized copula-
graphic estimator is that it does not take possible truncation effects into account.
Random left-truncation often occurs in the field of survival analysis; delay en-
tries or cross-sectional sampling schemes provide left-truncated data indeed.
Therefore, we put T for a left-truncating variable (independent of Z) such that
individual information is available only when T ≤ U . The sample informa-
tion is represented by (Ti, Ui, ρi, ρiδi), where Ti ≤ Ui, i = 1, ..., n. That is,
each (Ti, Ui, ρi, ρiδi) follows the conditional distribution of (T, U, ρ, ρδ) given
T ≤ U . Ignoring left-truncation effects leads to a systematic underestimation
of H, invalidating the methods proposed in the mentioned paper. In this work
we adapt de Uña-Álvarez and Veraverbeke (2013)’s estimator to the presence
of left-truncation and we perform the corresponding asymptotic analysis. The
new estimator can be regarded as an extension of Tsai-Jewell-Wang (TJW)
estimator (Tsai et al., 1987) for dependently censored data.

The rest of the paper is organized as follows. In Section 2 we introduce the
estimator and we establish an almost sure asymptotic representation. In Section
3 we investigate the finite-sample performance of the estimator in a simulation
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study. Section 4 gives an illustration of the method through the analysis of
unemployment data. Main conclusions are reported in Section 5. Some needed
lemmas and their proofs are given in the Appendix.

2 The estimator: main results

In this section we introduce the new estimator of F from equation (1). For
that, we replace H in that equation by the TJW estimator for left-truncated
and right-censored data, given by (assuming no ties)

1−Hn(t) =
n∏

i=1

[
1−

1

nCn(Ui)

]ρiI(Ui≤t)

where

Cn(t) =
1

n

n∑

i=1

I(Ti ≤ t ≤ Ui)

is the ’proportion of individuals at risk’ at time t. See Tsai et al. (1987). Note
that this estimator behaves consistently since both T and D are assumed to be
independent of Z. It can also be expressed as

Hn(t) =
n∑

i=1

WinI(Ui ≤ t)

where Win is the TJW weight attached to Ui, which is given by

Win =
ρi

nCn(Ui)

n∏

j=1

[
1−

1

nCn(Uj)

]ρjI(Uj<Ui)
.

Asymptotic results for Hn were derived in a number of papers, see e.g. Zhou
and Yip (1999) and references therein.

To estimate H1 in (1) we proceed as in de Uña-Álvarez and Veraverbeke
(2013); we consider δi as a ’covariate’ for the possibly censored lifetime Ui.
Following Sánchez-Sellero et al. (2005), we have that

H1
n(t) =

n∑

i=1

WinI(Ui ≤ t, δi = 1)

is an estimator for H1(t) = P (Z ≤ t, δ = 1). Since Win = 0 whenever ρi = 0,
we may write

H1
n(t) =

n∑

i=1

WinI(Ui ≤ t, ρiδi = 1)
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which demonstrates that H1
n(t) can be constructed from the observed values

(Ti, Ui, ρi, ρiδi), i = 1, ..., n. The estimator H1
n(t) can be seen as an adaptation

to left-truncation of the empirical cumulative incidence function in a competing
risks model, cfr. Kalbfleisch and Prentice (1980), p. 169, eq. (7.10).

For a general covariate vector X, Sánchez-Sellero et al. (2005) derived an
almost sure representation of the weighted mean

∑n
i=1Winϕ(Ui,Xi) as a sum

of i.i.d. random variables plus a remainder. Here, ϕ denotes an arbitrary
(although known) real-valued function. From this result, asymptotic properties
ofH1

n(t) (such as strong consistency and distributional convergence to a normal)
are easily obtained, when taking the special covariate X = δ and a particular
indicator function for ϕ. The mentioned representation is crucial for our main
result below. For identifiability reasons, Sánchez-Sellero et al. (2005) assumed
(besides the needed support conditions) (i) the independence between (T,D)
and (X,Z) and (ii) the independence between T and D. Condition (i) in our
setting states the independence between (T,D) and (Z, δ), which holds provided
that (T,D) is independent of the ’underlying process’ (Y,C). In applications,
this assumption will be realistic when the observation procedure is unrelated
to the event times under investigation. Condition (ii) is not so clearly justified
in practice; indeed, with cross-sectional sampling we often have D = T + τ
for a certain constant τ which represents the maximum follow-up time from
interception. Interestingly, this condition (ii) is not critical for the consistency
of H1

n, as it will be discussed later. See also our simulation results in Section 3.

The copula-graphic estimator for F (t) adapted to right-censoring and left-
truncation is thus given by

Fn(t) = φ−1
(
−

∫ t

0

φ′(Hn(s))dH
1
n(s)

)
(2)

where Hn = 1 − Hn. When the left-truncation is removed, the estimator (2)
reduces to that in de Uña-Álvarez and Veraverbeke (2013). In the special case
of no independent censoring (D = ∞), Win is just the jump of the Lynden-
Bell estimator for left-truncated data at time Ui (see e.g. Woodroofe, 1985),
and therefore Fn(t) may be regarded as an adaptation of that estimator for
dependently censored data. Indeed, if besides Y and C are independent (φ(t) =
− log t), Fn(t) becomes the TJW estimator based on observations of (T,Z, δ).
Equation (2) also leads to the TJW estimator in absence of dependent censoring
(Z = Y , δ = 1), based on observations of (T,U, ρ).

In order to formalize our assumptions and the main result, further notation
is needed. For any distribution function K we put aK = inf {t : K(t) > 0} and
bK = sup {t : K(t) < 1} for the lower and upper limits of the support of K.

Also, the following functions will appear: L(t) = P (T ≤ t), H̃(t) = P (U ≤ t),

C(t) = P (T ≤ t ≤ U |T ≤ U) = α−1P (T ≤ t ≤ D)(1−H(t))
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with α = P (T ≤ U) > 0,

H̃1(t) = P (U ≤ t, ρ = 1|T ≤ U) = α−1
∫ t

0

P (T ≤ s ≤ D)dH(s),

where we have used the independence between (T,D) and Z. The empirical
version of C(t) is the quantity Cn(t) introduced above, while the empirical of

H̃1(t) is just

H̃1
n(t) =

1

n

n∑

i=1

I(Ui ≤ t, ρi = 1).

We prove an almost sure asymptotic representation for (2) with a uniform rate
for the remainder. Put aH̃ = min(aF , aG, aG̃) and bH̃ = min(bF , bG, bG̃). Put

Fn = 1 − Fn. We will refer to the following conditions, where b is such that
aH̃ ≤ b < bH̃ :

(C1) F , G, L and G̃ are continuous
(C2) (i) (T,D) is independent of (Y, C), and (ii) T and D are independent
(C3) H and H1 have continuous first and second derivatives in

[
aH̃ , b

]

(C4) The copula generator φ has three continuous derivatives in ]0, 1] and
φ′′′(t) ≤ 0 for t ∈ ]0, 1]
(C5) aL ≤ aH̃
(C6)

∫ b
a
H̃

C(t)−3dH̃1(t) <∞

Conditions (C1)-(C4) here reduce to those considered in de Uña-Álvarez and
Veraverbeke (2013) when there is no truncation. In the presence of truncation,
condition (C5) ensures identifiability of the distribution of interest; note that,
when aL > aH̃ , relevant information on F is missing due to left-truncation.
Assumption (C6) was used by Zhou and Yip (1999) to obtain an almost sure
uniform rate of convergence for the remainder in their Theorem 2.1. Basically,
it controls the behavior of the truncation variable near the lower endpoint of H̃.
This condition (C6) is equivalent to

E
[
Λ(Z)−2I(aH̃ ≤ Z ≤ b)

]
<∞

where Λ(z) = P (T ≤ z ≤ D), which is enough for the purpose of applying
Theorem 1 in Sánchez-Sellero et al. (2005) for the special family of functions
ϕt(d, u) = I(u ≤ t)φ′(H(u))d with aH̃ ≤ t ≤ b (see the proof below). Finally,
assumption (C2)(ii) was used in Sánchez-Sellero et al. (2005), Lemma 1, to get
sup1≤i≤n C(Ui)/Cn(Ui) = O(logn) almost surely. However, the independence
between T and D may be removed as long as the function C(t) remains bounded
away from zero, since sup1≤i≤nC(Ui)/Cn(Ui) = O(1) almost surely holds in
that case. In our real data illustration of Section 4, D = T + τ for a certain
constant τ , and hence infa

H̃
≤t≤b C(t) > 0 holds provided that aL < aH̃ , which is

just slightly stronger than (C5) in this case. This demonstrates that our main
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result could be extended at least for some dependence structures between T
and D, namely, those for which C(t) is bounded away from zero in the interval[
aH̃ , b

]
.

Theorem 1. Under (C1)-(C6) we have for aH̃ ≤ t ≤ b < bH̃

Fn(t)− F (t) = −
1

φ′(F (t))

{
n∑

i=1

∫ t

0

φ′′(H(s))ψi(s)dH
1(s) +

n∑

i=1

ψ̃i(t)

}
+Rn(t)

where the ψi and ψ̃i (i = 1, ..., n) are i.i.d zero mean variables and

sup
a
H̃
≤t≤b

|Rn(t)| = O(n−3/4(log n)3/4) a.s. as n→∞.

Remark. (a) The ψi are defined as

ψi(t) =H(t)

{
I(Ui ≤ t, ρi = 1)

C(Ui)
−

∫ t

a
H̃

dH̃1(s)

C(s)
−

∫ t

a
H̃

I(Ti ≤ s ≤ Ui)− C(s)

C(s)2
dH̃1(s)

}
.

(b) The ψ̃i are defined as

ψ̃i(t) = ϕt(δi, Ui)γ0(Ui)ρi − γ1(Ui)ρi
+γ2(Ti, Ui)− γ3(Ti, Ui)

where ϕt(d, u) = ϕ̃(u)d and ϕ̃(u) = I(u ≤ t)φ′(H(u)). The functions γ0, γ1, γ2
and γ3 are defined in Sánchez-Sellero et al. (2005). In our case they become:

γ0(u) =
1−H(u)

C(u)
,

γ1(u) =
1

C(u)

∫
I(u < w)ϕ̃(w)γ0(w)dH̃11(w),

γ2(s, u) =

∫ ∫
I(s < v < u, v < w)ϕ̃(w)γ0(w)

C(v)2
dH̃1(v)dH̃11(w),

γ3(s, u) =

∫ u

s

ϕ̃(w)γ0(w)

C(w)
dH̃11(w),

where H̃11(w) = P (U ≤ w,ρ = 1, δ = 1|T ≤ U).
(c) In the special case of no truncation, the given representation reduces to

that in de Uña-Álvarez and Veraverbeke (2013).
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Proof to Theorem 1. Due to the regularity conditions in (C3)-(C4), from
(1) and (2) we have

Fn(t)− F (t) =
1

φ′(F (t))

{
−

∫ t

0

φ′′(H(s))
[
Hn(s)−H(s)

]
dH1(s) (3)

+

∫ t

0

φ′(H(s))d
[
H1
n(s)−H

1(s)
]}

+Rn1(t) +Rn2(t) +Rn3(t)

where Rni(t), i = 1, 2, 3, are remainder terms as in de Uña-Álvarez and Veraver-
beke (2013). Lemmas 1 to 4 in the Appendix guarantee that these remainders
satisfy the uniform rate given for Rn(t). Now, in the first term of (3) we plug in
the asymptotic representation for the TJW estimator due to Gijbels and Wang
(1993) and sharpened by Zhou and Yip (1999), see their Theorem 2.2. Under
(C1), (C2), (C5) and (C6) we have for aH̃ ≤ t ≤ b < bH̃

Hn(t)−H(t) =
1

n

n∑

i=1

ψi(t) + rn1(t)

with supa
H̃
≤t≤b |rn1(t)| = O(n−1 log log n) a.s. For the second term in (3), we

use the result in Sánchez-Sellero et al. (2005), to obtain a suitable asymptotic
representation; this is done by considering δ as a covariate. We obtain, under
(C1), (C2), (C5) and (C6)

∫ t

0

φ′(H(s))d
[
H1
n(s)−H

1(s)
]
=

1

n

n∑

i=1

ψ̃i(t) + rn2(t)

with supa
H̃
≤t≤b |rn2(t)| = O(n−1(log n)3) a.s. Under (C6) the integrability

conditions in Sánchez-Sellero et al. (2005) are satisfied for the special fam-
ily ϕt(d, u) = I(u ≤ t)φ′(H(u))d with aH̃ ≤ t ≤ b < bH̃ , and the proof is
complete.�

3 Simulation study

In this section we perform a simulation study to investigate the finite-sample
performance of the proposed estimator. We consider a situation with two de-
pendent, exponential survival times with rate 1, Y ∼ Exp(1) and C ∼ Exp(1).
The variables Y and C follow a Clayton copula or a Frank copula. In the case
of Clayton copula, the generator is given by φθ(t) = t−θ−1, θ > 0, i.e. the joint
survival function is

P (Y > x1, C > x2) = C(e−x1 , e−x2)
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where

C(u1, u2) =
[
u−θ1 + u−θ2 − 1

]−1/θ
.

This copula implies a Kendall’s Tau τθ = θ/(θ + 2); hence, only positive as-
sociation is allowed. We consider the cases θ = 0.5, 2, 10, corresponding to
association levels of 0.2, 0.5 and 0.83 respectively. Specifically, the simulation
algorithm is as follows (cfr. Exercise 4.17 in Nelsen (2006)):

Step 1. Generate independent random variables V1, V2 ∼ Exp(1)
Step 2. Independently generate Z0 ∼ Γ(1/θ, 1), and compute Ui = (1 +

Vi/Z0)−1/θ, i = 1, 2
Step 3. Finally, compute Y = − ln(U1), C = − ln(U2)

In the case of Frank copula, the generator is given by

φθ(t) = − log

[
e−θt − 1

e−θ − 1

]
, θ �= 0.

Negative association is obtained when θ < 0. The joint survival function is

P (Y > x1, C > x2) = C(e−x1 , e−x2)

where

C(u1, u2) = −
1

θ
log

[
1 +

(e−θu1 − 1)((e−θu2 − 1))

e−θ − 1

]
.

There is no explicit formula linking Kendall’s Tau and θ for this model. In our
simulations we consider θ = −12, −5, and 2, with corresponding association
levels of −0.71, −0.45, and 0.20. The data are generated by the inversion
method, as follows:

Step 1. Generate independent random variables V1, V2 ∼ U(0, 1)
Step 2. Compute U1 = V1 and U2 = C−1(V2|U1), where C(y|x) = ∂C(x, y)/∂x
Step 3. Finally, compute Y = − ln(U1), C = − ln(U2)

In Step 2, the following inverse function is needed:

C−1(y|x) = −
1

θ
log

[
1 +

y(e−θ − 1)

y + (1− y)e−θx

]
.

Once the variables Y and C are generated, we compute Z = min(Y, C)
and δ = I(Y ≤ C). The variable of interest is Y . We introduce independent
censoring through a potential censoring time D independent of (Y, C), so the
available information is U = min(Z,D), ρ = I(Z ≤ D), and ρδ. The distribution
of D is Exp(1) in Scenario 1 and U(1, 1.5) in Scenario 2. Left-truncation is
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introduced through an independent truncation time T ∼ U(0, tm), where tm =
0.2 or tm = 0.5. Finally, the datum (T,U, ρ, ρδ) is maintained only when T ≤ U .
A sample of size n is constructed following this scheme, where n = 250 or
n = 500. Note that D and T are independent in these Scenarios 1 and 2. In
order to simulate a situation in which D and T are dependent, we consider a
third scenario (Scenario 3) in which T ∼ U(0, tm) is drawn first and, afterwards,
D = T + τ is computed. This represents the case in which Z is censored only
when the residual time Z − T exceeds the length of the follow-up period (τ)
and, therefore, it mimics the situation of our real data application in Section
4 (see also the discussion of condition (C2)(ii) in Section 2). Here we take
τ = 1. Note that, in Scenario 3, D follows a U(1, tm + 1) distribution, which
is also the distribution of D in Scenario 2 when tm = 0.5. The truncation and
censoring rates in these three scenarios are given in Table 1. The results on the
performance of the proposed estimator are reported and discussed in Sections
3.1 (Clayton copula) and 3.2 (Frank copula). Results corresponding to the naive
TJW estimator which ignores the dependent censoring are included to compare.

Clayton
θ = 0.5 θ = 2 θ = 10

tm Scenario 1
0.2 24.4 (37.2) 23.4 (43.2) 21.0 (48.9)
0.5 47.0 (38.0) 44.5 (44.6) 40.1 (49.4)

Scenario 2
0.2 17.2 (16.5) 16.0 (25.0) 13.2 (31.1)
0.5 35.0 (21.0) 31.6 (30.6) 25.6 (36.3)

Scenario 3
0.2 17.1 (19.9) 16.0 (28.9) 13.1 (35.8)
0.5 35.0 (21.0) 31.6 (30.6) 25.6 (36.3)

Frank
θ = 2 θ = −5 θ = −12

Scenario 1
23.9 (37.3) 25.7 (25.9) 25.7 (23.4)
46.1 (37.6) 51.5 (24.4) 52.3 (21.1)

Scenario 2
16.6 (15.3) 18.7 (1.9) 18.7 (0.1)
33.9 (19.3) 41.5 (2.6) 42.5 (0.1)

Scenario 3
16.6 (19.2) 18.6 (3.0) 18.7 (0.2)
33.9 (19.3) 41.5 (2.6) 42.5 (0.1)

Table 1. Truncation percentage and independent censoring rate (in brackets,
P (ρ = 0|T ≤ U)) for the simulated Scenarios. The percentage of dependent

censoring (P (δ = 0|ρ = 1, T ≤ U)) is always 50%

3.1 Clayton copula

In Tables 2 to 7 we report the bias and the mean square error (MSE) of TJW
and GCG survival estimators along 10,000 Monte Carlo trials for the Clayton
copula and the three scenarios: Scenario 1 (Tables 2-3), Scenario 2 (Tables 4-
5), and Scenario 3 (Tables 6-7). Both estimators are evaluated at the three
quartiles of F : t1 = F−1(0.25), t2 = F−1(0.5), t3 = F−1(0.75). In these tables
we see that TJW is systematically biased while GCG is roughly unbiased. The
bias of TJW grows with the association degree (as a result of the dependent
censoring), being more severe at the right tail of F . The systematic bias of TJW
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is responsible for its larger MSE (with the exception of θ = 0.5, first quartile,
where the MSE of TJW is smaller). On the other hand, the variances of TJW
and GCG estimators are of the same order. In Scenario 3, the bias of the GCG
estimator at the third quartile does not decrease when increasing the sample
size if tm = 0.2 (see Table 6). This is a result of the right-censoring variable D.
Note that, when tm = 0.2, the upper bound of the support of D is 1.2, smaller
than t3 = 1.3863. Therefore, no information on F (t3) is available in this case,
and no estimator can be expected to be consistent.

In de Uña-Álvarez and Veraverbeke (2013), the performance of the GCG
estimator without truncation was investigated in a Clayton copula model. We
compare the results of our Scenario 1 to Tables 2 and 3, case λC = λD = 1 in
that paper, which is the same scenario but without truncation. It is seen that the
MSE of the GCG estimator is larger with truncation for the first and the second
quartiles of Y , but the opposite is true for t3 (particularly clear for θ = 0.5
and θ = 2). This is because left-truncation provokes some oversampling of
relatively large lifetimes; as long as the final sample size n remains the same, this
overinformation at large quantiles may result in a smaller variance in estimation.
Regarding the bias, it is often the case for the simulated model that the absolute
bias of the GCG estimator is smaller with truncated data, although in any case
bias is negligible when compared to standard deviation.

The MSE grows with the truncation proportion (compare tm = 0.2 to tm =
0.5 in Tables), although some exceptions are found at the third quartile. For
Scenarios 1 and 2, this may be again explained from the relative oversampling
at large lifetimes which may be induced by a stronger left-truncation pattern.
For Scenario 3, the explanation is different, and relates to the mentioned fact
that, with tm = 0.2, the variable D does not allow for the observation of Y
around t3.

We also may compare the results of Scenario 2 to those of Scenario 3 in the
case tm = 0.5, since both cases share the same percentages of truncation and
censoring (Table 1). We see that the MSE of the GCG estimator is often (but
not always) larger when T and D are dependent, indicating that the associa-
tion degree between these two variables may influence the estimator’s accuracy.
Interestingly, the GCG estimator performs consistently even when D = T + τ ,
suggesting that the independence between T and D is not substantial. See also
our discussion of assumption (C2)(ii) in Section 2.
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θ = 0.5 2 10
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0140 -0.0014 0.0419 -0.0012 0.0879 -0.0003

tm = 0.2 t2 0.0471 -0.0005 0.1158 0.0012 0.1832 0.0019
t3 0.0837 0.0007 0.1743 0.0025 0.2335 0.0035
t1 0.0137 -0.0027 0.0421 -0.0023 0.0888 -0.0004

tm = 0.5 t2 0.0467 -0.0008 0.1156 0.0011 0.1839 0.0030
t3 0.0838 0.0024 0.1742 0.0035 0.2339 0.0041

n = 500
t1 0.0132 -0.0016 0.0415 -0.0009 0.0881 0.0003

tm = 0.2 t2 0.0472 -0.0001 0.1152 0.0003 0.1831 0.0007
t3 0.0840 0.0008 0.1743 0.0013 0.2327 0.0007
t1 0.0144 -0.0008 0.0413 -0.0016 0.0883 -0.0001

tm = 0.5 t2 0.0477 0.0004 0.1151 0.0006 0.1832 0.0015
t3 0.0836 0.0013 0.1742 0.0021 0.2329 0.0018

Table 2. Bias of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 1

with Clayton copula.

θ = 0.5 2 10
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0029 0.0031 0.0045 0.0035 0.0106 0.0042

tm = 0.2 t2 0.0048 0.0030 0.0161 0.0034 0.0364 0.0031
t3 0.0109 0.0041 0.0342 0.0035 0.0584 0.0026
t1 0.0049 0.0054 0.0069 0.0064 0.0122 0.0066

tm = 0.5 t2 0.0056 0.0038 0.0173 0.0045 0.0375 0.0041
t3 0.0103 0.0036 0.0340 0.0035 0.0583 0.0026

n = 500
t1 0.0017 0.0018 0.0034 0.0020 0.0093 0.0023

tm = 0.2 t2 0.0036 0.0016 0.0148 0.0019 0.0350 0.0016
t3 0.0090 0.0022 0.0323 0.0019 0.0561 0.0012
t1 0.0028 0.0030 0.0045 0.0035 0.0103 0.0038

tm = 0.5 t2 0.0041 0.0021 0.0153 0.0023 0.0355 0.0023
t3 0.0087 0.0020 0.0322 0.0016 0.0562 0.0015

Table 3. MSE of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 1

with Clayton copula.
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θ = 0.5 2 10
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0149 -0.0003 0.0420 -0.0010 0.0882 0.0011

tm = 0.2 t2 0.0472 0.0001 0.1156 0.0016 0.1834 0.0031
t3 0.0835 0.0024 0.1745 0.0039 0.2333 0.0042
t1 0.0134 -0.0033 0.0428 -0.0023 0.0901 0.0015

tm = 0.5 t2 0.0467 -0.0008 0.1161 0.0017 0.1848 0.0048
t3 0.0834 0.0031 0.1745 0.0045 0.2341 0.0050

n = 500
t1 0.0148 0.0003 0.0409 -0.0013 0.0879 -0.0000

tm = 0.2 t2 0.0478 0.0009 0.1147 0.0003 0.1832 0.0012
t3 0.0839 0.0016 0.1733 0.0014 0.2334 0.0020
t1 0.0136 -0.0019 0.0416 -0.0017 0.0878 -0.0010

tm = 0.5 t2 0.0471 -0.0003 0.1153 0.0008 0.1830 0.0014
t3 0.0834 0.0013 0.1740 0.0023 0.2329 0.0016

Table 4. Bias of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 2

with Clayton copula.

θ = 0.5 2 10
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0029 0.0031 0.0044 0.0034 0.0107 0.0043

tm = 0.2 t2 0.0044 0.0025 0.0156 0.0028 0.0362 0.0028
t3 0.0096 0.0030 0.0330 0.0026 0.0572 0.0020
t1 0.0052 0.0058 0.0066 0.0062 0.0127 0.0069

tm = 0.5 t2 0.0055 0.0038 0.0169 0.0041 0.0378 0.0040
t3 0.0096 0.0032 0.0333 0.0028 0.0579 0.0024

n = 500
t1 0.0019 0.0019 0.0033 0.0021 0.0093 0.0024

tm = 0.2 t2 0.0036 0.0014 0.0145 0.0017 0.0349 0.0015
t3 0.0084 0.0015 0.0314 0.0014 0.0559 0.0011
t1 0.0029 0.0031 0.0045 0.0036 0.0109 0.0046

tm = 0.5 t2 0.0040 0.0019 0.0153 0.0024 0.0359 0.0025
t3 0.0083 0.0014 0.0318 0.0016 0.0560 0.0013

Table 5. MSE of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 2

with Clayton copula.
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θ = 0.5 2 10
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0145 -0.0008 0.0413 -0.0020 0.0891 -0.0002

tm = 0.2 t2 0.0474 0.0004 0.1155 0.0012 0.1840 0.0020
t3 0.1301 0.0552 0.2179 0.0556 0.2821 0.0573
t1 0.0145 -0.0020 0.0424 -0.0026 0.0874 -0.0014

tm = 0.5 t2 0.0478 0.0009 0.1157 0.0016 0.1829 0.0032
t3 0.0843 0.0046 0.1746 0.0050 0.2333 0.0045

n = 500
t1 0.0139 -0.0008 0.0417 -0.0006 0.0875 -0.0006

tm = 0.2 t2 0.0470 -0.0001 0.1155 0.0009 0.1825 0.0006
t3 0.1289 0.0527 0.2184 0.0545 0.2812 0.0549
t1 0.0143 -0.0010 0.0419 -0.0019 0.0883 -0.0005

tm = 0.5 t2 0.0470 -0.0002 0.1158 0.0005 0.1833 0.0017
t3 0.0833 0.0015 0.1741 0.0017 0.2333 0.0023

Table 6. Bias of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 3

with Clayton copula.

θ = 0.5 2 10
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0029 0.0032 0.0046 0.0037 0.0104 0.0041

tm = 0.2 t2 0.0044 0.0026 0.0158 0.0030 0.0361 0.0027
t3 0.0203 0.0069 0.0509 0.0067 0.0828 0.0060
t1 0.0050 0.0057 0.0072 0.0070 0.0134 0.0082

tm = 0.5 t2 0.0055 0.0039 0.0172 0.0047 0.0379 0.0046
t3 0.0096 0.0036 0.0335 0.0034 0.0579 0.0026

n = 500
t1 0.0016 0.0016 0.0032 0.0019 0.0095 0.0025

tm = 0.2 t2 0.0033 0.0013 0.0146 0.0015 0.0348 0.0015
t3 0.0185 0.0050 0.0495 0.0049 0.0810 0.0045
t1 0.0028 0.0031 0.0046 0.0037 0.0108 0.0044

tm = 0.5 t2 0.0039 0.0020 0.0155 0.0024 0.0359 0.0026
t3 0.0083 0.0017 0.0319 0.0015 0.0562 0.0017

Table 7. MSE of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 3

with Clayton copula.
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3.2 Frank copula

Like for the Clayton copula, results on bias and MSE of TJW and GCG survival
estimators for the Frank copula are reported in Tables 8-13. In this case, we
see again that TJW is systematically biased, the bias being particularly visible
as the association between Y and C gets stronger (as expected). Also, when
τθ < 0, the bias of TJW is negative; this is because dependently censored values
of Y are larger than what is expected under independence. Regarding the GCG
estimator, it is virtually unbiased, although for the third quartile t3 and large
association degree the (positive) bias may be of the same order as the standard
deviation for n ≤ 500. This effect vanishes when considering larger sample sizes,
although the bias of GCG at the third quartile remains always larger than at
t1 and t2 (results not shown). Since large values of Y are attached to small
values of its (dependent) censoring variable C when τθ < 0, these results are
not entirely surprising; the ’effective sample size’ for Y is smaller at the right
tail, something that results in a larger standard deviation too. Our discussion
also explains why the ’bias problem’ is no longer present when considering the
Frank copula with positive association (e.g. θ = 12; results not shown). On the
other hand, like for the Clayton copula, we see that Fn(t3) has a systematic
bias in Scenario 3 for tm = 0.2; recall that, in this case, the maximum possible
value of D is 1.2, which is smaller than t3.

θ = 2 −5 −12
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0250 -0.0004 -0.0369 -0.0003 -0.0424 0.0002

tm = 0.2 t2 0.0576 0.0003 -0.1503 -0.0019 -0.2603 -0.0017
t3 0.0647 0.0004 -0.1514 -0.0121 -0.1961 0.0852
t1 0.0250 -0.0014 -0.0367 -0.0002 -0.0423 0.0006

tm = 0.5 t2 0.0580 0.0007 -0.1494 -0.0002 -0.2600 0.0003
t3 0.0644 0.0016 -0.1562 -0.0023 -0.2057 0.1010

n = 500
t1 0.0245 -0.0004 -0.0364 0.0005 -0.0432 -0.0005

tm = 0.2 t2 0.0575 0.0001 -0.1497 -0.0006 -0.2602 -0.0011
t3 0.0649 0.0003 -0.1573 -0.0150 -0.2097 0.0570
t1 0.0234 -0.0020 -0.0363 0.0005 -0.0424 0.0002

tm = 0.5 t2 0.0566 -0.0007 -0.1491 0.0003 -0.2600 -0.0003
t3 0.0646 0.0009 -0.1581 -0.0041 -0.2174 0.0701

Table 8. Bias of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 1

with Frank copula.
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θ = 2 −5 −12
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0032 0.0030 0.0042 0.0030 0.0045 0.0027

tm = 0.2 t2 0.0059 0.0027 0.0253 0.0033 0.0705 0.0031
t3 0.0084 0.0036 0.0278 0.0155 0.0421 0.0186
t1 0.0051 0.0051 0.0054 0.0042 0.0054 0.0037

tm = 0.5 t2 0.0066 0.0034 0.0247 0.0039 0.0697 0.0037
t3 0.0076 0.0033 0.0279 0.0114 0.0447 0.0181

n = 500
t1 0.0020 0.0016 0.0028 0.0016 0.0033 0.0015

tm = 0.2 t2 0.0047 0.0013 0.0238 0.0017 0.0691 0.0017
t3 0.0063 0.0016 0.0274 0.0098 0.0459 0.0138
t1 0.0029 0.0027 0.0033 0.0022 0.0040 0.0023

tm = 0.5 t2 0.0049 0.0017 0.0234 0.0020 0.0687 0.0020
t3 0.0058 0.0015 0.0268 0.0064 0.0486 0.0116

Table 9. MSE of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 1

with Frank copula.

θ = 2 −5 −12
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0248 -0.0006 -0.0373 -0.0007 -0.0424 0.0003

tm = 0.2 t2 0.0574 0.0005 -0.1496 -0.0004 -0.2602 -0.0001
t3 0.0648 0.0021 -0.1531 0.0061 -0.2115 0.1101
t1 0.0256 -0.0015 -0.0364 0.0003 -0.0417 0.0009

tm = 0.5 t2 0.0581 0.0002 -0.1489 0.0011 -0.2588 0.0013
t3 0.0650 0.0025 -0.1564 0.0096 -0.2153 0.1165

n = 500
t1 0.0246 -0.0001 -0.0368 0.0000 -0.0426 -0.0001

tm = 0.2 t2 0.0578 0.0008 -0.1494 -0.0000 -0.2602 -0.0004
t3 0.0644 0.0009 -0.1573 -0.0034 -0.2193 0.0845
t1 0.0247 -0.0008 -0.0366 -0.0000 -0.0423 0.0003

tm = 0.5 t2 0.0578 0.0005 -0.1493 0.0002 -0.2599 0.0000
t3 0.0647 0.0015 -0.1582 0.0015 -0.2222 0.0898

Table 10. Bias of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 2

with Frank copula.
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θ = 2 −5 −12
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0036 0.0034 0.0041 0.0029 0.0044 0.0028

tm = 0.2 t2 0.0056 0.0024 0.0243 0.0029 0.0695 0.0028
t3 0.0071 0.0026 0.0264 0.0099 0.0464 0.0171
t1 0.0053 0.0054 0.0060 0.0049 0.0061 0.0045

tm = 0.5 t2 0.0065 0.0032 0.0243 0.0041 0.0686 0.0039
t3 0.0069 0.0026 0.0268 0.0092 0.0476 0.0189

n = 500
t1 0.0022 0.0018 0.0027 0.0014 0.0032 0.0014

tm = 0.2 t2 0.0046 0.0012 0.0233 0.0014 0.0686 0.0015
t3 0.0056 0.0012 0.0265 0.0066 0.0490 0.0111
t1 0.0033 0.0031 0.0039 0.0028 0.0040 0.0024

tm = 0.5 t2 0.0051 0.0018 0.0234 0.0021 0.0683 0.0020
t3 0.0056 0.0014 0.0263 0.0051 0.0501 0.0117

Table 11. MSE of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 2

with Frank copula.

θ = 2 −5 −12
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0248 -0.0006 -0.0368 -0.0001 -0.0425 0.0003

tm = 0.2 t2 0.0577 0.0008 -0.1491 0.0004 -0.2602 -0.0003
t3 0.1192 0.0536 -0.1153 0.0556 -0.2045 0.1169
t1 0.0246 -0.0025 -0.0369 -0.0003 -0.0415 0.0008

tm = 0.5 t2 0.0578 0.0000 -0.1489 0.0010 -0.2596 0.0006
t3 0.0655 0.0030 -0.1546 0.0126 -0.2153 0.1160

n = 500
t1 0.0241 -0.0006 -0.0367 0.0000 -0.0425 0.0002

tm = 0.2 t2 0.0571 -0.0001 -0.1492 0.0000 -0.2595 0.0004
t3 0.1184 0.0520 -0.1187 0.0505 -0.2108 0.0960
t1 0.0232 -0.0023 -0.0366 0.0001 -0.0423 0.0002

tm = 0.5 t2 0.0565 -0.0007 -0.1492 0.0003 -0.2596 0.0004
t3 0.0635 0.0005 -0.1577 0.0020 -0.2227 0.0893

Table 12. Bias of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 3

with Frank copula.
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θ = 2 −5 −12
TJW GCG TJW GCG TJW GCG

n = 250
t1 0.0033 0.0031 0.0044 0.0033 0.0046 0.0029

tm = 0.2 t2 0.0055 0.0022 0.0242 0.0030 0.0695 0.0028
t3 0.0178 0.0063 0.0163 0.0120 0.0436 0.0186
t1 0.0056 0.0059 0.0057 0.0047 0.0059 0.0043

tm = 0.5 t2 0.0066 0.0034 0.0242 0.0039 0.0690 0.0038
t3 0.0070 0.0026 0.0262 0.0087 0.0476 0.0186

n = 500
t1 0.0025 0.0021 0.0028 0.0016 0.0036 0.0019

tm = 0.2 t2 0.0047 0.0013 0.0232 0.0015 0.0683 0.0017
t3 0.0163 0.0046 0.0159 0.0084 0.0454 0.0135
t1 0.0037 0.0035 0.0036 0.0024 0.0040 0.0023

tm = 0.5 t2 0.0052 0.0020 0.0233 0.0021 0.0682 0.0021
t3 0.0055 0.0014 0.0262 0.0056 0.0503 0.0117

Table 13. MSE of the naive TJW estimator and of the generalized
copula-graphic estimator (GCG) along 10,000 Monte Carlo trials. Scenario 3

with Frank copula.

4 Real data illustration

In this section we revisit the Galician unemployment data (see e.g. de Uña-
Álvarez and Iglesias-Pérez, 2010). The data concern unemployment spells of
1,009 married women living in Galicia (NW of Spain), recruited by means of
quarterly inquiries at the individuals’ homes. The unemployment situation ends
when the invididual finds a job or when she stops searching for a job. Here we
denote by Y and C the latent variables ”time to finding a job” and ”time to stop
the searching” respectively. These two variables are negatively correlated, since
individuals with short values of Y are better prepared to find a new job and,
therefore, they will find no reasons to stop their searching (large values of C).
To model this negative correlation we use Frank’s copula, which is Archimedean
with generator given by

φθ(t) = − log

[
e−θt − 1

e−θ − 1

]
, θ �= 0.

Negative values of θ result in negative association. The independent case is
obtained in the limit (θ → 0). In particular, we take θ = −12, −5 and −2
which lead to association levels (Kendall’s Tau) of −0.71, −0.45 and −0.22
respectively.

The dataset reports 219 uncensored values of Y , 227 uncensored values of
C, and 563 cases of administrative censoring (because of limitations in the
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follow-up period). Note that realizations of Y (respectively C) imply some
dependent censoring on C (resp. Y ), due to the expected negative association
(as discussed above). Besides, since the sampled information corresponds to
women unemployed by the inquiry date, the data are left-truncated. Of course,
ignoring left-truncation leads to a serious overestimation of the unemployment
time (de Uña-Álvarez and Iglesias-Pérez, 2010). The truncation time T is just
the time in unemployment by the inquiry date. The administrative censoring
time D may be represented as D = T + τ where τ = 18 (in months), leading to
the violation of the independence assumption (C2)(ii). As discussed in Section
2 (see also simulations in Section 3), this is not crucial for the consistency of
the new estimator nor for the validity of representation in Theorem 1.

Figure 1 below depicts the copula-graphic estimator of the cumulative dis-
tribution function of Y when using Frank’s copula with the several choices of θ.
The TJW estimator which incorrectly assumes independence between Y and C
is included for comparison purposes. From Figure 1 it is seen that the copula-
graphic estimator separates from the NPMLE as the correlation grows. Indeed,
it becomes clear from this Figure 1 that TJW is underestimating the time to
finding a job; this is because TJW ignores that individuals stop searching for a
job at a given time are not representative of those who continue their searching,
having less chances to return to the job market.
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Figure 1. Cumulative distribution function of time to find a job based on
Frank’s copula: independent setting (thin solid line), and association levels of
-0.22 (thin dashed), -0.45 (thick dashed) and -0.71 (thick solid line). Galician

unemployment data.

5 Main conclusions

In this paper a new survival function estimator for left-truncated and right-
censored data has been introduced, and an asymptotic iid representation for
the estimator has been established. The new estimator is suitable for situa-
tions in which some dependent censoring is present. This is the case when,
e.g., there are several competing risks acting on each individual. This depen-
dent censoring is incorporated in the construction of the estimator through and
Archimedean copula function, which is supposed to be known; this is because
of the non-identifiability problem in the random right-censoring model (Tsiatis,
1975). Therefore, some information on the dependence structure between the
lifetime of ultimate interest and the dependent right-censoring time is needed
or pre-assumed. In our real data example on unemployment, this information
comes from the fact that the individuals with long time to the next job are the
worst prepared or qualified and, consequently, the ones leaving their searching
sooner. A copula inducing negative association between time to finding a job
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and time to stop the searching is suitable in this case. We have shown through
simulated and real data that the naive estimator which ignores the dependent
censoring may lead to a severe bias.

Besides the dependent censoring, the introduced model allows for the pres-
ence of some administrative censoring, which is regarded as independent of the
lifetime. In practice, this administrative censoring time D may depend how-
ever on the left-truncation time T ; this is indeed the case for the unemployment
dataset considered in Section 4 and, in general, one will have a situation like this
whenever the data come from a cross-section. Although some of the auxiliary
results for left-truncated, right-censored data rely on the independence between
D and T (e.g. Sánchez-Sellero et al., 2005), we have seen that this assumption
may be skipped provided that the expected proportion of individuals at risk
remains bounded away from zero along time. Our simulations have indeed con-
firmed that the proposed estimator behaves consistently when the pair (D,T )
falls on a line.
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7 Appendix: technical lemmas

In this section we provide the technical lemmas used to prove our main result.

Lemma 1. Under the conditions of Theorem 1 we have

sup
a
H̃
≤t≤b

|Rn1(t)| = O(n−1 log logn) a.s. as n→∞.

Proof. As in Lemma 1 in de Uña-Álvarez and Veraverbeke (2013) we have
a.s.

sup
a
H̃
≤t≤b

|Rn1(t)| = O( sup
a
H̃
≤t≤b

|Hn(t)−H(t)|
2
+ sup
a
H̃
≤t≤b

∣∣H1
n(t)−H

1(t)
∣∣2).

The first term is O(n−1 log logn) a.s. by Zhou and Yip (1999), Corollary 2.2,
which follows from their Theorem 2.2 and the standard functional LIL for a two-
parameter Wiener process, as indicated in that paper. This rate also follows
from Theorem 2.2 in Zhou and Yip (1999) and the LIL for empirical processes
on VC-classes of functions, provided that the VC-class has a square integrable
envelope, which is true under (C6) and b < bH̃ ; see Arcones and Giné (1995).
For the second term we use the a.s. representation of Sánchez-Sellero et al.
(2005) for the special family ϕt(d, u) = I(u ≤ t)d with aH̃ ≤ t ≤ b, and (again)
and the LIL for empirical processes on VC-classes of functions (Arcones and
Giné, 1995), to get the given rate. The details are omitted.�

Lemma 2. Under the conditions of Theorem 1 we have

sup
a
H̃
≤t≤b

|Rn2(t)| = O(n−1 log logn) a.s. as n→∞.

Proof. As in Lemma 2 in de Uña-Álvarez and Veraverbeke (2013) we have
a.s.

sup
a
H̃
≤t≤b

|Rn2(t)| = O( sup
a
H̃
≤t≤b

|Hn(t)−H(t)|
2
)
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which is O(n−1 log logn) a.s. by Zhou and Yip (1999), Corollary 2.2.�

Lemma 3. Under the conditions of Theorem 1 we have

sup
a
H̃
≤t≤b

|Rn3(t)| = O(n−3/4(logn)3/4) a.s. as n→∞.

Proof. Divide the interval
[
aH̃ , b

]
into kn = O(n1/2(logn)1/2) subintervals

[ti, ti+1] of length O(n−1/2(log n)1/2). Then, as in de Uña-Álvarez and Veraver-
beke (2013) we have

sup
c≤t≤d

|Rn3(t)| ≤ I + II

with I and II as in the above paper. For I we have by Taylor expansion and
the result of Zhou and Yip (1999), Corollary 2.2,

I ≤ 2 max
1≤i≤kn

sup
ti≤y≤ti+1

∣∣φ′′(H(ti+1)
∣∣ |Hn(y)−H(y)−Hn(ti) +H(ti)|

+O(n−1 log logn).

Now, further subdivide each interval [ti, ti+1] into an = O(n1/4(logn)−1/4)
subintervals of length O(n−3/4(log n)3/4). By Bernstein’s inequality we can
show that this term is bounded a.s. by

c max
1≤i≤kn

max
0≤j≤an−1

|Hn(ti,j+1)−H(ti,j+1)−Hn(ti) +H(ti)|+O(n−3/4(log n)3/4)

for some constant c > 0. By the modulus of continuity result for the TJW
estimator in Zhou et al. (2000), Lemma A.1 (which is a direct consequence of
Theorem 2.2 in Zhou and Yip, 1999, and the LIL in Arcones and Giné, 1995), we
obtain that I = O(n−3/4(logn)3/4) a.s. Note that the interval [c, d] with aH̃ < c
in that Lemma A.1 may be expanded to

[
aH̃ , b

]
under (C6), which is enough

to guarantee the existence of a square integrable envelope for the VC-class of
functions considered in that paper. The II term is treated similarly and leads
to the same order bound. It requires the a.s. rate

sup
a
H̃
≤t≤b

∣∣H1
n(t)−H

1(t)
∣∣2 = O(n−1 log log n)

(see our Lemma 1) and also an almost sure order bound for the modulus of
continuity of H1

n. The latter follows from Lemma 4 below by taking an =
n−1/2(logn)1/2.�

Lemma 4. Let {an} be a sequence of positive constants tending to zero with
ann(log n)

−5 >∆ > 0 for all n sufficiently large. Then, under the conditions in
Theorem 1,

sup
a
H̃
≤t,s≤b,|t−s|≤an

∣∣H1
n(t)−H

1
n(s)−H

1(t) +H1(s)
∣∣ = O(a1/2n n−1/2(logn)1/2) a.s.

22



Proof. We proceed exactly in the same way as in Lemma 5 of de Uña-Álvarez
and Veraverbeke (2013). We need the almost sure asymptotic representation
for H1

n(t) as it can be derived from the result in Sánchez-Sellero et al. (2005),
by taking δ as a covariate, with the choice ϕ(d, u) ≡ ϕt(d, u) = I(u ≤ t)d:

H1
n(t) =

1

n

n∑

i=1

ξi(t) + Jn(t)

where ξi(t) are the iid variables in that paper corresponding to such function
ϕt, and where a.s.

sup
ãH≤t≤b

|Jn(t)| = O(n−1(logn)3).

Note that, similarly as in Section 2, under (C6) the integrability conditions in
Sánchez-Sellero et al. (2005), Theorem 1, are satisfied for the special family ϕt,
aH̃ ≤ t ≤ b. Again as in Lemma 5 of de Uña-Álvarez and Veraverbeke (2013) it
suffices to prove that V ar(ξi(t) − ξi(s)) is bouded by a constant times |t− s|,
for aH̃ ≤ t, s ≤ b. This is shown by checking appropriate groups of terms in
the variance. In the lengthy calculations, which are omitted here, the Lipschitz
continuity of H̃1 and H̃11 is needed; but this follows by (C3) up to noting that

dH̃1(t) = α−1Λ(t)dH(t) and dH̃11(t) = α−1Λ(t)dH1(t).�
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