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Abstract

In this paper we consider the Sequential Goodness-of-Fit (SGoF) mul-
titesting procedure under the Bayesian paradigm. For this, it is assumed
that the proportion of p-values falling below the significance threshold
follows some prior density. Credible intervals and Bayesian preliminary
tests for point null hypotheses are combined to define a suitable modifi-
cation of SGoF method. The performance of Bayesian SGoF is explored
through simulations. One of the main conclusions of our research is that
the Bayesian viewpoint is suitable to keep the large statistical power of
SGoF method even in the presence of strong correlation structures. Ap-
plication of the method to treatment comparison for acute myocardial
infarction and to a microarray study of hereditary breast cancer are in-
cluded.

1 Introduction

Multiple hypotheses testing is concerned with decision making in situations
where a number of null hypotheses are under simultaneous consideration. These
may represent a negligible effect of a set of covariates or risk factors in successive
univariate regression analysis, the equality of mean response along a number of
variables or genes in a two-sample problem, and so on. Often, the ’sampling
information’ is restricted to a set of n p-values p1, ..., pn corresponding to the
n nulls at hand, H01, ...,H0n say. In this setting, several methods have been
proposed to control for type I errors in a simultaneous way. For example, family-
wise error rate (FWER) is defined as the probability of committing one or more
than one type I errors along the tests, while the false discovery rate (FDR) is the
expected proportion of type I errors among the set of rejected nulls. See Nichols
and Hayasaka [1] and Dudoit and van der Laan [2] for a review of FWER- and
FDR-controlling procedures, as well as for other error criteria.

Recent research has pointed up that FWER and FDR may be stringent error
measures, particularly when the proportion of non-true nulls is small or when
the true alternative hypotheses are close to the non-true nulls (weak effects).
This means that FWER- and FDR-based methods may be unable to detect even
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a single feature in special situations. See for example Carvajal-Rodŕıguez et al.
[3] or de Uña-Álvarez [4]. This has motivated the appearance of alternative
methods which are more liberal with respect to type I errors, while searching
for an improved statistical power (e.g. Storey [5]; Cheng et al. [6]; Lehmann
and Romano [7]). One of such procedures is the Sequential Goodness-of-Fit
(SGoF) method introduced by Carvajal-Rodŕıguez et al. [3].

Given an initial significance threshold γ, SGoF searchs for significance when
comparing the observed amount of p-values below γ to the expected amount
if all the nulls were true (that is, nγ). The sequence of p-values is therefore

transformed into a sequence
−→
X of binary outcomes X1 = I(p1 ≤ γ), ..., Xn =

I(pn ≤ γ). The intersection or complete null H0 = ∩ni=1H0i is tested through
the usual Z-statistic for the binomial problem

Z = Z(
−→
X ) =

Xn − γ√
γ(1− γ)/n

,

where Xn is the sample mean of the Xi’s. Large values of Z reveal that a
larger than expected amount of p-values fall below the threshold γ and, con-
sequently, H0 should be rejected. Note that, in the presence of non-true nulls,
the distribution of the p-values will be no longer uniform and its location will
be shifted towards zero. Comparison of Z to the (1 − α)-th quantile of the
standard normal, zα say, leads then to a one-sided (meta)test at level α (bino-
mial quantiles are considered instead if n is small). SGoF procedure declares
as non-true nulls the ones corresponding to the Nn(α) smallest p-values, where
Nn(α) = n(Xn − γ) −

√
nγ(1− γ)zα + 1 represents the ’excess of significant

cases’ in the metatest. Such a procedure controls for the FWER only weakly
(that is, only under H0) [3,4]. Besides, if some of the nulls are non-true, it
guarantees a ’reasonable FDR’ in the sense that the number of false positives
(true nulls rejected) is maintained below the number of false negatives (non-true
nulls accepted) with probability 1−α, as long as the null variance γ(1−γ)/n in
the metatest is replaced by its counterpart under the alternative Xn(1−Xn)/n
[8]. The relevant aspect of SGoF multitesting method is that it may allow to
detect non-true nulls in difficult situations where other, more standard multi-
testing methods will fail. Connections of SGoF to the concept of second-level
significance testing or higher criticism (cfr. Donoho and Jin [9, 10]) have been
discussed [4, 8]).

In this paper, we revisit SGoF method under the Bayesian paradigm. For
this, it is assummed that the probability θ = P (Xi = 1) = P (pi ≤ γ) follows a
prior density π(θ) supported on the unit interval. Default choice for π(θ) will
be the uniform π(θ) = 1. The key for the extension of SGoF method to the
Bayesian setting is the construction of a 100(1− α)% one-sided credible set for
the ’excess of significant cases’ n(θ− γ). For a useful summary of the posterior
analysis, the posterior probability that the complete null hypothesis H0 : θ = γ
is true will be given. Following Berger and Delampady [11], a prior located at γ
is taken instead of the uniform, while default choice for the a priori probabilities
of H0 and H1 (θ 6= γ) is P0 = P1 = 1/2. Differences of the Bayesian perspective
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relative to the (frequentist) original SGoF method are highlighted in Section
2. Simulation studies and illustrations with real medical data are provided in
Sections 3 and 4 respectively. A final discussion and the main conclusions of
the paper are given in Section 5.

2 Bayesian SGoF

Sequential Goodness-of-Fit (SGoF) multitesting method starts by assuming
that, under the complete null, the sequence of available p-values p1, ..., pn is a
random sample of a uniform distribution on the unit interval, U(0, 1). Therefore,
two basic assumptions are made: (i) the distributional assumption pi ∼ U(0, 1),
and (ii) the independence assumption. As a consequence, given an initial sig-
nificance threshold γ, the transformed sequence of indicators X1, ..., Xn where
Xi = I(pi ≤ γ), i = 1, ..., n, is a random sample from a Bernoulli population,
Ber(θ), where θ = P (Xi = 1) = P (pi ≤ γ) is an unknown constant parameter.
Note that θ = γ under the complete null. If the complete null is false, p1, ..., pn
is still thought as a random sample but following a non-uniform distribution,
typically shifted towards zero. The classical (frequentist) approach to test for
θ = γ against to one-sided alternative θ > γ is based on the (frequentist) p-value

pf = P (N(0, 1) > Z(−→x )) = 1− Φ(Z(−→x )),

where Z(−→x ) is the actual value of the Z-statistic

Z(
−→
X ) =

Xn − γ√
γ(1− γ)/n

and Φ denotes the cdf of the standard normal, n assumed to be large enough
(otherwise the cdf of a binomial distribution is used). At significance level α,
the null is rejected if pf < α. Under the alternative, a 100(1−α)% (frequentist)
confidence interval for θ is given by

If = (Xn ±
√
Xn(1−Xn)/nzα/2)

where zα/2 = Φ−1(1 − α/2). When θ = γ is rejected, SGoF multitesting
procedure declares as non-true the null hypotheses with the smallest Nn(α)
p-values, where Nn(α) = n(Xn − γ) −

√
nγ(1− γ)zα + 1 represents the ’ex-

cess of significant cases’ in the (one-sided) metatest; a conservative version
of this procedure is given by the corrected amount of rejections N∗n(α) =

n(Xn − γ) −
√
nXn(1−Xn)zα + 1, which is basically the lower limit of a

frequentist 100(1 − α)% one-sided confidence interval for τn(θ) = n(θ − γ).
Note that τn(θ) may be interpreted as the difference between the real and the
expected amounts of p-values falling below the threshold γ.

In the Bayesian framework [12], some prior information on the parameter
of interest θ is available. Assume that θ has a density π(θ) supported on the
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unit interval, which represents the a priori information. In a non-informative
setting, π(θ) will be chosen as the uniform density. In general, π(θ) may serve
to introduce the researcher’s information on the location of the parameter, with
a smaller or larger dispersion according to his/her level of uncertainty. The

frequentist likelihood of
−→
X , f(

−→
X |θ) = θs(1 − θ)n−s, where s = nXn, is then

updated to account for the randomness of θ, leading in its turn to the posterior
density of the parameter:

π(θ|−→x ) =
f(−→x |θ)π(θ)∫
f(−→x |θ′)π(θ′)dθ′

.

A (Bayesian) 100(1− α)% credible interval for θ is then given by

Ic = (lα/2(π,−→x ), uα/2(π,−→x )),

where lα/2(π,−→x ) and uα/2(π,−→x ) are respectively the α/2 and 1 − α/2 quan-
tiles of the posterior density π(θ|−→x ). More generally, a credible set Ac =
{θ : π(θ|−→x ) > k} may be used, where k is chosen to satisfy P (Ac|−→x ) = 1 − α.
Unlike the frequentist interval If , which focus in results when ’averaged’ along
the sampling distribution, the Bayesian counterpart Ic guarantees the nominal
coverage 100(1 − α)% conditional on observing data of the same ’strength of

evidence’ as the actual
−→
X = −→x . The amount of null hypotheses declared as

non-true by a Bayesian analogue of frequentist SGoF is accordingly defined as
the lower limit n(lα(π,−→x )− γ) of a 100(1− α)% one-sided credible interval for
τn(θ) = n(θ − γ). We formalize this idea in the following definition.

Definition (Bayesian SGoF). Bayesian SGoF method is defined as the
rule which declares as non-true the null hypotheses with the smallest N b

n(α)
p-values, where

N b
n(α) = max(n(lα(π,−→x )− γ), 0).�

Needless to say, the rule given by Bayesian SGoF must be interpreted under
the Bayesian paradigm. By using this method, the researcher is ensuring that,
conditionally on N b

n(α) > 0, 100(1 − α)% of the times the sample evidence is
that of the actual −→x , the difference between the real and expected amounts of
p-values below γ (τn(θ) = n(θ− γ)) is at least as large as N b

n(α). In this sense,
Bayesian SGoF is rejecting a ’reasonable’ amount of nulls. For illustration, in
the next example we consider the situation in which θ follows a beta distribution.

Example (beta prior). Assume π(θ) = θa−1(1 − θ)b−1/B(a, b) for some

a, b > 0, where B(a, b) =
∫ 1

0
θa−1(1 − θ)b−1dθ. That is, θ follows a beta distri-

bution, β(a, b). In this case, the Xi’s are correlated binary outcomes with mean
E(θ) = p = a/(a+ b) and pairwise correlation ρ = 1/(a+ b+ 1) [8]. Note that
the non-informative prior π(θ) = 1 is just the special case a = b = 1. Straight-
forward calculations give that the posterior distribution of θ is β(a+s, b+n−s),
where s = nXn. A Bayesian point estimate of θ is typically given by using some
location parameter; for example, the mean of the posterior distribution is

E(θ|−→x ) =
a+ s

a+ b+ n
.
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Note that E(θ|−→x ) ≈ Xn as n→∞, which reflect the well-known predominance
of the sampling information on the prior as n grows. We have

lα(π,−→x ) = Ψ−1(α; a, b,−→x )

where Ψ(.; a, b,−→x ) denotes the cdf of a β(a+s, b+n−s) random variable. When
a + s and b + n − s are large (this is true in particular when n is large), the
beta-normal approximation yields

lα(π,−→x ) ≈ E(θ|−→x )−
√
V (θ|−→x )zα

where V (θ|−→x ) denotes the posterior variance, namely

V (θ|−→x ) =
(a+ s)(b+ n− s)

(a+ b+ n)2(a+ b+ n+ 1)
.

From this it is immediately seen that n(lα(π,−→x )− γ) ≈ N∗n(α) as n→∞ and,
therefore, Bayesian SGoF approaches its frequentist counterpart as the sample
size increases. For small to moderate n however, the two approaches will give
different answers.�

It is evident from the definition of N b
n(α) that N b

n(α) = 0 unless lα(π,−→x ) >
γ. In other words, if lα(π,−→x ) ≤ γ, then Bayesian SGoF will accept as true
all the null hypotheses under consideration, thus leading to the acceptance of
the complete null H0. Therefore, the location of the null value τn(θ) = 0 rel-
ative to the lower bound of the credible interval determines if H0 is rejected
or not. While the relationship between hypothesis testing and confidence sets
is well established in the frequentist setting, Bayesian testing of point null hy-
pothesis (like H0 : θ = γ) is not performed on the basis of the construction
of credible sets. As quoted by Berger and Delampady [11], ”Only by calculat-
ing a Bayes factor (or related conditional measure) can one judge how well the
data supports a distinguished point θ0”. This makes an important difference
between frequentist and Bayesian conceptions of SGoF method, and motivates
the introduction of a pre-test (Bayesian) procedure which may complement the
information reported by N b

n(α).
To be precise, consider the (Bayesian) problem of testing H0 : θ = γ against

the alternative H1 : θ 6= γ. Take the usual default prior probabilities for H0 and
H1, these are P0 = P1 = 1/2. As prior distribution of θ under the alternative,
Berger and Delampady [11] suggested in their Section 3.2.4 the class of conjugate
π(θ) with mean γ, among other ’objective’ possibilities. In particular, for the
binomial distribution, the beta model is a family of conjugate distributions. So
take π(θ) ∼ β(a, b) where a = (1 − ρ)γ/ρ and b = (1 − ρ)(1 − γ)/ρ, ρ to be
precise later. In general, the posterior probability that H0 is true is given by

P (H0|−→x ) =
P0f(−→x |γ)

P0f(−→x |γ) + P1

∫
θ 6=γ f(−→x |θ)π(θ)dθ

=

[
1 +

1− P0

P0

1

B(−→x )

]−1
5



where

B(−→x ) =
f(−→x |γ)∫

θ 6=γ f(−→x |θ)π(θ)dθ

is the Bayes factor, which is interpreted as the ratio between the likelihood of the
data under the null and the average likelihood of the data under the alternative.
For the beta model this becomes

B(−→x ) = γs(1− γ)n−sB(a, b)/B(a+ s, b+ n− s)

where n is the number of p-values and s the amount of them falling below γ.
Therefore, under the default P0 = P1 = 1/2, one gets

P (H0|−→x ) =
[
1 + γ−s(1− γ)s−nB(a+ s, b+ n− s)/B(a, b)

]−1
.

The posterior probability P (H0|−→x ) has been proposed as the suitable way in
which evidence against the null should be looked for [11,13]. Its advantages when
compared to the classical (frequentist) p-value pf has been widely discussed
(same references). In particular, it has been pointed up that P (H0|−→x ) may be
regarded as a frequentist type I error probability, conditional on observing data
of the same ’strength of evidence’ as the actual −→x . Even when P (H0|−→x ) heavily
depends on the value of ρ (indeed, P (H0|−→x )→ 1 as ρ→ 1 regardless the data
at hand, something known as Jeffreys’s paradox), lower bounds are available
and may provide useful guidance in practice. In Table 1, we report for the case
γ = 0.05 and n = 15, the lower bounds P (H0|−→x ) = infρ P (H0|−→x ) depending
on the value of s, together with the corresponding frequentist (one-sided) p-
values. Even when minimizing the posterior probability of H0, it becomes clear
that the Bayesian perspective may be much more conservative than the classical
approach when looking for evidence against the complete null.

Table 1: Lower bounds along ρ for the posterior probability of H0 : θ = γ for
the beta model. Case γ = 0.05, n = 15.

s pf P (H0|−→x ) ρ
2 .1710 .5000 .0000
3 .0362 .3941 .0652
4 .0055 .1631 .1344
5 .0006 .0344 .1990
6 5.3× 10−5 .0044 .2600
9 7.4× 10−9 1.2× 10−6 .4281

A possible approach to combine a Bayesian pre-test with the computation of
N b
n(α) is to define the pre-test Bayesian SGoF procedure as that rejecting the

N b∗
n (α) nulls with the smallest p-values, where N b∗

n (α) = I(s ≥ sα)N b
n(α) and

sα − 1 is the first value of s when going from n to 0 for which P (H0|−→x ) ≥ α.
In the example of Table 1, for α = 0.05 we would have sα = 5. Practical
performance of basic Bayesian SGoF (N b

n(α)) and its pre-test version (N b∗
n (α))

is investigated through simulations in the next Section.
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3 Simulation studies

We have designed two simulation studies in order to investigate the performance
of Bayesian SGoF. The first simulation concentrates in a model in which (under
the alternative) the probability θ = P (Xi = 1) = P (pi ≤ γ) is drawn from the
uniform density π(θ) = 1 and, therefore, it perfectly fits a Bayesian scenario.
The second simulation reproduces the application of a two-sample test along a
number of positions (or ’genes’), which results in a sequence of possibly corre-
lated p-values. While the first scenario is suitable for a better understanding
of the properties of Bayesian SGoF, the second one allows for the study of the
method’s performance in a more practical setting.

3.1 Bayesian scenario

For fixed values of γ and n, we simulate data as follows:
Step 1. Draw θ1 from the uniform density π(θ) = 1.
Step 2. Draw independently Y from Ber(1/2), that is, P (Y = 1) = P (Y =

0) = 1/2.
Step 3. Compute θ = Y γ + (1− Y )θ1.
Step 4. Draw s from a Bin(n, θ) distribution.
In this model, the complete null H0 : θ = γ is true with probability 1/2, while

the parameter of interest is uniformly distributed on the unit interval under
the alternative. This corresponds to a situation in which the non-informative
prior perfectly fits the data when the complete null is violated, while the a
priori probability that H0 is true is P0 = 1/2. In Step 4, the ’data’ −→x are
obtained; note that the relevant information for SGoF method is contained in
the number of p-values falling below the significance threshold γ, and this can
be generated from a binomial distribution. Therefore, in this simulated setting
p-values coming from true and non-true nulls are not distinguished; we only
know that, when Y = 1, all the nulls are true, while some proportion of non-
true nulls are present when Y = 0. We take γ = 0.05 and three different sample
sizes, n = 15, 50, 500. We repeat Steps 1-4 up to get 10,000 simulations.

For α = 0.05 we compute the number of rejections provided by the ba-
sic Bayesian SGoF and by the pre-test Bayesian SGoF. Therefore, computa-
tion of N b

n(α) = max(n(lα(π,−→x ) − γ), 0) and N b∗
n (α) = I(s ≥ sα)N b

n(α) is
done, where lα(π,−→x ) is the α-quantile of a β(1 + s, 1 + n − s) distribution,
and sα = 5, 9, 42 for n = 15, 50, 500 respectively. We also compute the pos-
terior probability that the complete null is true, P (H0|−→x ) for each simula-
tion, by using the a priori probabilities P0 = P1 = 1/2 and the true prior
π(θ) = 1. For comparison purposes, computation of original (fequentist) SGoF
is done too; since the sample size is not always large, here we use the exact
formula for the number of rejections, namely Nn(α) = s − bn,α(γ) + 1, where
bn,α(γ) = inf {b ∈ {0, ..., n} : P (Bin(n, γ) ≥ α)} is the (1− α)-quantile of the
Bin(n, γ) model.

In Table 2 we report, for the three methods and the three sample sizes n =
15, 50, 500, the following values. (a) The average number of rejections (Mean)
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among the trials with Y = 0, that is, under the alternative, and the standard
deviation (SD) of the number of rejections. (b) The proportion of times the
complete null is rejected among the trials with Y = 1, that is, under the complete
null; this is just the FWER of each method. (c) The proportion of times the
complete null is rejected among the trials with Y = 0, thus corresponding to
the power (POW) of each method to detect the presence of non-true nulls. And
(d) among the trials for which the complete null is correctly rejected (i.e. Y = 0
and Nany

n (α) > 0), the proportion of times the number of rejections is smaller
than τn(θ) = n(θ − γ); this is labelled as COV (from coverage) in Table 2.

Table 2: Results of frequentist SGoF, basic Bayesian SGoF and pre-test
Bayesian SGoF along 10,000 Monte Carlo trials (n is the number of tests)

Mean SD FWER POW COV
n = 15

Nn(α) 5.64 4.36 .0356 .8117 .7628
N b
n(α) 4.42 3.76 .1718 .8754 .9488

N b,∗
n (α) 4.29 3.89 .0008 .6761 .9467

n = 50
Nn(α) 20.33 14.46 .0422 .8756 .7966
N b
n(α) 18.24 13.86 .1088 .8988 .9519

N b,∗
n (α) 18.14 13.98 .0012 .8127 .9520

n = 500
Nn(α) 217.68 142.39 .0459 .9294 .8054
N b
n(α) 211.02 141.84 .0656 .9306 .9505

N b,∗
n (α) 210.94 141.95 .0010 .9123 .9508

From Table 2 the following features are appreciated. The FWER is con-
trolled at level α = 0.05 by frequentist SGoF, while basic Bayesian SGoF is
anticonservative and the pre-test Bayesian SGoF is too conservative. That
frequentist SGoF controls for FWER under the complete null was expected,
since this is one of its well-established properties [3]. The anticonservativeness
of basic Bayesian SGoF comes from the fact that it rejects the complete null
whenever lα(π,−→x ) > γ, and no bound is imposed on the probability of this
event. However, PH0

(lα(π,−→x ) > γ) approaches α as n grows (FWER of N b
n(α)

in Table 2). This can be explained from the beta-normal approximation: one

has lα(π,−→x ) ≈ E(θ|−→x )−
√
V (θ|−→x )zα and the rejection rule becomes

E(θ|−→x )− γ√
V (θ|−→x )

> zα;

since E(θ|−→x ) ≈ Xn and V (θ|−→x ) ≈ Xn(1 − Xn)/n as n → ∞, we conclude
that the FWER of Bayesian SGoF will converge to α. Regarding the pre-test
Bayesian SGoF, we see in Table 2 that the FWER is very low (about 0.001 for the
three sample sizes); this reflects indeed the conservativeness of the frequentist
p-value pf when compared to the (Bayesian) posterior probability of the null
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(Table 1). Note that, although condition P (H0|−→x ) < α would control at level
α the FWER along the samples with the same amount of evidence as −→x , the
type I error rate becomes much smaller when taking averages along a number
of Monte Carlo replicates of a given model. As complementary information,
we quote that the mean value of P (H0|−→x ) (computed from the default priors
P0 = P1 = 1/2 and the non-informative π(θ) = 1) along the replicates with
Y = 1 was 0.82 (n = 15), 0.87 (n = 50) and 0.95 (n = 500), with corresponding
standard deviations of 0.12, 0.10, and 0.07.

Regarding the statistical power to (correctly) reject the complete null, it is
seen in Table 2 that Bayesian SGoF is more powerful than frequentist SGoF
in all the situations (in agreement with its larger FWER), but both methods
become comparable as n grows (87.5% vs. 81.2% for n = 15, 93.1% vs. 92.9%
for n = 500). This is not surprising at all; note (again) that the a priori
information on θ is negligible as the sampling information grows. The pre-test
Bayesian method exhibits a poor power for n = 15 (67.6%); however, its power
is remarkably large as n grows despite its low FWER (91.2% for n = 500).
This is because, when n is large and the complete null is false, the pre-test
Bayesian method coincides with the basic Bayesian most of the times (only 77%
of the times for n = 15, but 90% and 98% of the times for n = 50 and n = 500
respectively). Here we also mention that the mean value of P (H0|−→x ) (computed
once more from the default priors P0 = P1 = 1/2 and the uniform π(θ)) along
the replicates with Y = 0 was 0.18 (n = 15), 0.13 (n = 50) and 0.05 (n = 500),
the standard deviations being 0.31, 0.29, and 0.20 respectively.

Interestingly, it is seen from Table 2 that, despite basic Bayesian detects
signal more frequently than frequentist SGoF, the number of effects declared
by the classical methods is larger on average. This finding is confirmed in the
simulation study performed in Section 4.2. In this sense, one may say that
Bayesian viewpoint is more conservative, since it will typically lead to a smaller
number of declared features.

The coverages (COV) in Table 2 are defined, as mentioned, as the proportion
of times the number of rejections is smaller than τn(θ) = n(θ − γ) among the
trials for which the complete null is correctly rejected. For the basic Bayesian
SGoF this is exactly 1− α and, therefore, the figures in Table 2 are roughly of
95%. The pre-test Bayesian SGoF method preserves this property, which means
that, when Y = 0 and N b

n(α) > 0, the event s < sα implies that τn(θ) > 0.
On the contrary, frequentist SGoF reports coverages systematically below 95%
(between 76% and 81% indeed). This is somehow corrected when using its
conservative version N∗n(α), see Section 2, which replaces the term γ(1− γ) by
Xn(1−Xn) in the variance (e.g. 93% of coverage for n = 500, but below 91% for
n ≤ 50, results not shown); but, in any case, frequentist SGoF is not prepared
to cope with the correlation among the Xi’s induced by the randomness of θ,
so it is not surprising that it behaves in a anticonservative way in the sense of
COV. Inspection of the number of rejections (Mean) in Table 2 supports this
finding too.
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3.2 Two-sample tests scenario

We have designed a simulated scenario similar to the study of Hedenfalk [14],
where the mean expression levels of a large number of genes in two different
groups A and B of individuals (with sample sizes of 7 and 8) were compared, see
Section 4.2. In order to study the influence of the number of null hypotheses in
the performance of the multitesting procedures, we considered the cases n = 10,
n = 50, and n = 500 tests. Hedenfalk’s sample sizes of 7 and 8 were taken for
groups A and B respectively. The samples were drawn from n-variate Gaussian
populations with different correlation degrees. The 2-sample t-test was applied
to test for each null hypothesis of equality of means; the sequence of n p-
values is thus coming from the computation of two-sided tails of the Student’s t
distribution with 13 degrees of freedom. To summarize numerical results, 1000
Monte Carlo trials were performed. The proportion of true nulls (i.e. ’genes

Table 3: Complete null hypothesis: Π0 = 1

ρ = 0 ρ = 0.2 ρ = 0.8

n = 10 FDR Binomial SGoF 0.006 0.027 0.056

FDR Bayesian SGoF 0.082 0.088 0.092

FDR Bayesian∗ SGoF 0 0 0.031

s ≥ sα 0 0 0.031

Posterior 0.8013(0.1234) 0.7947(0.1544) 0.7982(0.2047)

n = 50 FDR Binomial SGoF 0.037 0.079 0.117

FDR Bayesian SGoF 0.1 0.121 0.129

FDR Bayesian∗ SGoF 0.001 0.016 0.078

s ≥ sα 0.001 0.016 0.078

Posterior 0.8788(0.0938) 0.8457(0.1732) 0.7401(0.2398)

n = 500 FDR Binomial SGoF 0.038 0.185 0.16

FDR Bayesian SGoF 0.064 0.192 0.163

FDR Bayesian∗ SGoF 0 0.12 0.141

s ≥ sα 0 0.12 0.141

Posterior 0.9493(0.0622) 0.7079(0.3559) 0.0925(0.2603)

equally expressed’) Π0 was 1 (complete null), 0.9 (10% of effects), 0.7 (30%
of effects) or 0.5 (50% of effects). Mean was always taken as zero in group
A, while in group B it was µ for 1/3 of the effects and −µ for the other 2/3
of effects, with µ = 1 (weak effects), µ = 2 (intermediate effects), or µ = 4
(strong effects). Random allocation of the effects among the n tests (’genes’) was
considered. We simulated k = 1 block of n correlated p-values with correlation
levels of ρ = 0, 0.2 and 0.8, where ρ = 0 means independence and ρ = 0.8
indicates strong correlation. For random generation, the function rmvnorm of
the R software [15] was used. For each situation, we computed the FDR, the
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power (defined as the proportion of non-true nulls which are rejected, labelled as
POW in Tables below), and the coverage (COV), defined here as the proportion
of trials for which the number of declared effects was not larger than the number
of effects with p-value below γ (this is just 1-FDR under the complete null,
as indicated in de Uña-Álvarez [8]). Computation of these quantities for the
Binomial SGoF method for independent tests and for the basic and the pre-
test Bayesian methods are included. We always take α = γ = 0.05. We also
computed the proportion of trials for which s ≥ sα and N b

n(α) > 0 occurred
(this proportion is labelled as s ≥ sα in Tables); note that these are the trials
for which both the basic Bayesian and the pre-test method reject the complete
null. For samples sizes n = 10, 50 and 500, α = γ = 0.05, values of sα are
given by 5,9 and 42, respectively. As complementary information, we calculated
the mean and standard deviation of the posterior probability P (H0|−→x ), for de
default priors P0 = P1 = 1/2 and the non-informative π(θ) = 1.

Table 4: Proportion of true nulls Π0 = 0.9
ρ = 0 ρ = 0.2 ρ = 0.8

FDR POW COV FDR POW COV FDR POW COV

n = 10 µ = 1 Binomial SGoF 0.0215 0.3632 0.993 0.025 0.3774 0.984 0.0657 0.3881 0.928

Bayesian SGoF 0.022 0.3613 0.993 0.023 0.3740 0.989 0.0628 0.3845 0.932

Bayesian∗ SGoF 0 0.347 1 0.0013 0.002 0.998 0.0207 0.018 0.975

µ = 2 Binomial SGoF 0.0102 0.4400 0.992 0.014 0.4359 0.984 0.0596 0.4294 0.928

Bayesian SGoF 0.009 0.4276 0.996 0.0105 0.4241 0.991 0.0555 0.4202 0.935

Bayesian∗ SGoF 0.0003 0.001 1 0 0 1 0.029 0.0287 0.966

µ = 4 Binomial SGoF 0.0053 0.451 0.992 0.0115 0.4497 0.984 0.0554 0.4501 0.928

Bayesian SGoF 0.0035 0.4373 0.996 0.008 0.4361 0.991 0.0493 0.4411 0.935

Bayesian∗ SGoF 0 0.001 1 0.002 0.3615 0.997 0.0253 0.037 0.964

n = 50 µ = 1 Binomial SGoF 0.0875 0.0616 0.98 0.112 0.0722 0.937 0.0781 0.0851 0.894

Bayesian SGoF 0.087 0.0563 0.989 0.1079 0.0663 0.956 0.0697 0.082 0.904

Bayesian∗ SGoF 0.0152 0.0102 0.998 0.0297 0.0244 0.972 0.0719 0.069 0.904

µ = 2 Binomial SGoF 0.0385 0.3502 0.976 0.0618 0.3463 0.933 0.0618 0.2117 0.916

Bayesian SGoF 0.0266 0.2958 0.994 0.048 0.297 0.966 0.0533 0.1914 0.924

Bayesian∗ SGoF 0.0137 0.1499 0.996 0.0081 0.1858 0.968 0.0594 0.1076 0.913

µ = 4 Binomial SGoF 0.0071 0.4266 0.975 0.0188 0.3918 0.946 0.0581 0.2678 0.897

Bayesian SGoF 0.0025 0.3214 0.994 0.0096 0.3282 0.971 0.0476 0.2424 0.912

Bayesian∗ SGoF 0.0012 0.1799 0.996 0.0096 0.1752 0.971 0.0471 0.1542 0.913

n = 500 µ = 1 Binomial SGoF 0.2784 0.1483 0.989 0.2181 0.135 0.874 0.1144 0.1231 0.837

Bayesian SGoF 0.2646 0.1368 0.997 0.2092 0.1254 0.887 0.1096 0.1191 0.844

Bayesian∗ SGoF 0.1946 0.1115 0.997 0.1598 0.1058 0.887 0.1086 0.1121 0.844

µ = 2 Binomial SGoF 0.0683 0.6744 0.992 0.0789 0.6411 0.857 0.0848 0.4221 0.859

Bayesian SGoF 0.0529 0.6189 0.999 0.0663 0.5894 0.892 0.0802 0.3893 0.866

Bayesian∗ SGoF 0.0529 0.6189 0.999 0.0663 0.5894 0.892 0.0802 0.3796 0.866

µ = 4 Binomial SGoF 0.0007 0.7838 0.991 0.0302 0.7443 0.861 0.0842 0.4966 0.835

Bayesian SGoF 0.0001 0.7086 1 0.0211 0.6835 0.905 0.0776 0.4622 0.841

Bayesian∗ SGoF 0.0001 0.7083 1 0.0211 0.6832 0.905 0.0776 0.4537 0.841
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Table 5: Proportion of true nulls Π0 = 0.7
ρ = 0 ρ = 0.2 ρ = 0.8

FDR POW COV FDR POW COV FDR POW COV

n = 10 µ = 1 Binomial SGoF 0.0252 0.1109 0.997 0.0355 0.1144 0.989 0.0382 0.1349 0.943

Bayesian SGoF 0.0215 0.0965 1 0.034 0.0995 0.995 0.0296 0.1185 0.963

Bayesian∗ SGoF 0.0007 0.003 1 0.002 0.0055 0.998 0.0131 0.0088 0.982

µ = 2 Binomial SGoF 0.0095 0.3869 0.997 0.0183 0.3832 0.989 0.038 0.3643 0.943

Bayesian SGoF 0.0048 0.2896 1 0.0121 0.29 0.995 0.0277 0.2826 0.967

Bayesian∗ SGoF 0.0018 0.131 1 0.0014 0.067 0.999 0.0156 0.0752 0.977

µ = 4 Binomial SGoF 0.0018 0.4335 0.997 0.005 0.4306 0.989 0.0256 0.412 0.943

Bayesian SGoF 0.001 0.3149 0.999 0.0025 0.3234 0.996 0.0158 0.3237 0.967

Bayesian∗ SGoF 0 0.077 1 0 0.078 1 0.0168 0.107 0.965

n = 50 µ = 1 Binomial SGoF 0.1097 0.188 0.989 0.1078 0.1909 0.959 0.0626 0.1951 0.886

Bayesian SGoF 0.1023 0.1499 0.999 0.0948 0.1548 0.982 0.0507 0.166 0.905

Bayesian∗ SGoF 0.0578 0.1057 0.999 0.0598 0.1133 0.982 0.0497 0.1397 0.905

µ = 2 Binomial SGoF 0.0245 0.696 0.995 0.0271 0.6986 0.972 0.0391 0.6483 0.919

Bayesian SGoF 0.0147 0.5593 1 0.0156 0.5629 0.998 0.0321 0.5231 0.94

Bayesian∗ SGoF 0.0147 0.557 1 0.0151 0.5609 0.998 0.0321 0.5188 0.94

µ = 4 Binomial SGoF 0.0014 0.7792 0.988 0.0064 0.774 0.959 0.035 0.719 0.896

Bayesian SGoF 0.0003 0.6223 1 0.0017 0.6234 0.99 0.0262 0.5896 0.929

Bayesian∗ SGoF 0.0003 0.6217 1 0.0017 0.6217 0.99 0.0262 0.5868 0.929

n = 500 µ = 1 Binomial SGoF 0.1431 0.2798 1 0.1391 0.2811 0.922 0.0557 0.2733 0.877

Bayesian SGoF 0.1335 0.2568 1 0.1295 0.2586 0.95 0.0504 0.2541 0.89

Bayesian∗ SGoF 0.1335 0.2568 1 0.1295 0.2586 0.95 0.0504 0.2521 0.89

µ = 2 Binomial SGoF 0.0353 0.8105 0.999 0.0397 0.8077 0.923 0.0399 0.7681 0.884

Bayesian SGoF 0.0269 0.7623 1 0.0306 0.7607 0.963 0.036 0.7197 0.904

Bayesian∗ SGoF 0.0269 0.7623 1 0.0306 0.7607 0.963 0.036 0.7197 0.904

µ = 4 Binomial SGoF 0.0002 0.8953 0.999 0.006 0.8886 0.931 0.0422 0.8313 0.854

Bayesian SGoF 0.0001 0.8366 1 0.0031 0.8334 0.966 0.0372 0.7836 0.871

Bayesian∗ SGoF 0.0001 0.8366 1 0.0031 0.8334 0.966 0.0372 0.7836 0.871

In Table 3 we show the results obtained in the scenario of no effects (Π0 = 1).
It should be recalled that under the complete null, all rejected hypotheses are
Type I errors and therefore FDR collapses to FWER. Obviously, the power in
all these situations is 100% since there are no effects. Moreover, the coverage
coincides to 1-FDR as explained above. Then, in Table 3 we only report the
FDR of the three different methods for every value of n and ρ, together with the
proportions of trials with s ≥ sα and a summary (mean and standard deviation)
of the posterior probabilities of the complete null.

In first place, from Table 3 we can see that under independence (ρ = 0)
Binomial SGoF controls the FDR (and thus the FWER), the pre-test Bayesian
SGoF is too conservative and the basic Bayesian SGoF reports a FDR greater
than the nominal but it converges to 0.05 when the number of tests n grows.
This basically mimics results in the previous simulation study (Table 2). The
situation changes in the correlated settings; this is because the variance is under-
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Table 6: Proportion of true nulls Π0 = 0.5
ρ = 0 ρ = 0.2 ρ = 0.8

FDR POW COV FDR POW COV FDR POW COV

n = 10 µ = 1 Binomial SGoF 0.0265 0.1157 0.997 0.024 0.0942 0.997 0.0141 0.147 0.974

Bayesian SGoF 0.0282 0.0854 0.998 0.0188 0.0811 0.998 0.0077 0.1075 0.985

Bayesian∗ SGoF 0.0036 0.0231 1 0.0042 0.021 0.999 0.0067 0.0359 0.985

µ = 2 Binomial SGoF 0.0141 0.147 0.974 0.0124 0.5413 1 0.0218 0.5396 0.967

Bayesian SGoF 0.0077 0.1075 0.985 0.0065 0.3929 1 0.0131 0.3948 0.984

Bayesian∗ SGoF 0.0041 0.2567 1 0.0035 0.3538 1 0.0121 0.3128 0.984

µ = 4 Binomial SGoF 0.001 0.6112 0.997 0.0016 0.6062 0.995 0.0108 0.6013 0.962

Bayesian SGoF 0 0.4391 1 0.0002 0.4389 0.999 0.0051 0.4441 0.982

Bayesian∗ SGoF 0 0.3445 1 0.0002 0.3482 0.999 0.0051 0.4306 0.982

n = 50 µ = 1 Binomial SGoF 0.0637 0.2591 0.999 0.0555 0.2616 0.989 0.0323 0.2775 0.917

Bayesian SGoF 0.0549 0.2046 1 0.0457 0.208 0.997 0.0228 0.2289 0.943

Bayesian∗ SGoF 0.0524 0.1956 1 0.0427 0.1972 0.997 0.0228 0.2166 0.943

µ = 2 Binomial SGoF 0.0162 0.783 0.999 0.0172 0.7777 0.982 0.0287 0.7671 0.918

Bayesian SGoF 0.0091 0.669 1 0.0105 0.663 0.998 0.0227 0.6557 0.945

Bayesian∗ SGoF 0.0091 0.669 1 0.0105 0.663 0.998 0.0227 0.6557 0.945

µ = 4 Binomial SGoF 0.0002 0.846 0.999 0.0009 0.8497 0.986 0.0157 0.8267 0.926

Bayesian SGoF 0 0.7234 1 0.0001 0.7281 0.999 0.0106 0.713 0.952

Bayesian∗ SGoF 0 0.7234 1 0.0001 0.7281 0.999 0.0106 0.713 0.952

n = 500 µ = 1 Binomial SGoF 0.0773 0.3251 1 0.0729 0.3215 0.978 0.0395 0.3243 0.872

Bayesian SGoF 0.0728 0.3011 1 0.0677 0.2981 0.991 0.0342 0.3046 0.895

Bayesian∗ SGoF 0.0728 0.3011 1 0.0677 0.2981 0.991 0.0342 0.3042 0.895

µ = 2 Binomial SGoF 0.0191 0.847 1 0.0193 0.8475 0.97 0.0275 0.8293 0.905

Bayesian SGoF 0.015 0.8112 1 0.0151 0.8118 0.995 0.0249 0.793 0.918

Bayesian∗ SGoF 0.015 0.8112 1 0.0151 0.8118 0.995 0.0249 0.793 0.918

µ = 4 Binomial SGoF 0.0001 0.9177 1 0.0013 0.9164 0.976 0.0196 0.8941 0.888

Bayesian SGoF 0 0.8777 1 0.0006 0.877 0.987 0.017 0.8581 0.906

Bayesian∗ SGoF 0 0.8777 1 0.0006 0.877 0.987 0.017 0.8581 0.906

estimated and therefore SGoF-type procedures lose their FWER control. This
fact is more clear when n is large. For example, in the case n = 500, Binomial
SGoF and the pre-test Bayesian SGoF reported a FDR of 0.038 and 0 under
independence and 0.16 and 0.141 when ρ = 0.8, respectively. We also can see
in this table that the pre-test Bayesian method is more conservative than the
basic Bayesian one, as expected. For example, for n = 50, basic Bayesian SGoF
reported a FDR of 0.1,0.121 and 0.129 (depending on ρ), while the pre-test
method gave FDR’s of 0.001, 0.016 and 0.078, respectively. This happens be-
cause the proportion of trials with s ≥ sα is relatively small. These differences
between the two procedures decrease (in relative terms) as n and ρ grows, be-
cause the probability of the event s ≥ sα increases with n and with ρ. As regards
the posterior probability of the complete null, in general, P (H0|−→x ) takes large
values, varying between 0.7079 and 0.9493. However, in the special case n = 500
and ρ = 0.8, the prior information is misleading, giving a posterior probability
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Table 8: Mean and standard deviation of the interval lengths along the 1000
replicates for the special cases Π0 = 0.5, 0.9 and n = 50

ρ = 0 ρ = 0.2 ρ = 0.8

Frequentist µ = 1 0.1497(0.0367) 0.1494(0.0418) 0.122(0.0669)

Π0 = 0.9 µ = 2 0.1881(0.0292) 0.1867(0.0325) 0.1705(0.0453)

µ = 4 0.1919(0.0291) 0.1905(0.0326) 0.1771(0.0418)

Π0 = 0.5 µ = 1 0.2334(0.0219) 0.2325(0.0243) 0.2204(0.052)

µ = 2 0.2744(0.0038) 0.274(0.0043) 0.2715(0.0124)

µ = 4 0.274(0.0043) 0.274(0.0046) 0.2708(0.0184)

Bayesian µ = 1 0.1568(0.0286) 0.1568(0.0329) 0.1387(0.0485)

Π0 = 0.9 µ = 2 0.1889(0.0252) 0.1877(0.0279) 0.1746(0.037)

µ = 4 0.1922(0.0252) 0.1911(0.028) 0.1798(0.0355)

Π0 = 0.5 µ = 1 0.2287(0.0195) 0.2279(0.0216) 0.2182(0.0433)

µ = 2 0.2656(0.0034) 0.2652(0.0039) 0.2629(0.0111)

µ = 4 0.2652(0.0039) 0.2652(0.0041) 0.2624(0.0156)

as low as 0.09%.
In Tables 4 to 6 we report the FDR, power and coverage obtained by the

three methods in the situations with Π0 = 0.9,Π0 = 0.7 and Π0 = 0.5, while
in Table 7 we report the corresponding proportions of the event s ≥ sα and
summaries of the posterior probability of the complete null.

Tables 4, 5 and 6 reveal that SGoF-type strategies are not controlling FDR
under the alternative at any given level, although they can report a very small
FDR compared to α when the effects are intermediate to strong (µ = 2, 4)
or in the case of n = 10 tests. On the other hand, we can see that Bayesian
SGoF tends to be more conservative than Binomial SGoF, reporting lower values
for FDR and power in all cases. Two particular situations with n = 10 are
exceptions to this, with the FDR of Bayesian SGoF slightly larger than that of
its frequentist analogue.

We have computed 100(1 − α)% (frequentist) confidence intervals for θ =
P (pi ≤ γ), and 100(1−α)% (bayesian) credible intervals for the same parameter.
For illustration, in Table 8 we report the mean and standard deviation of the
interval lengths along the 1000 replicates for the special cases Π0 = 0.5, 0.9 and
n = 50. It is seen that the Bayesian intervals are wider than the frequentist
intervals for Π0 = 0.9, but the opposite occurs for Π0 = 0.5. Therefore, one
should not always relate the conservative nature of Bayesian SGoF with the
chance to get a narrower interval for θ.

Again, as in the case of no effects, the pre-test Bayesian method is more
conservative than the basic one, but they get closer to each other in terms of
FDR and power when n increases and also when ρ grows (like in Table 3, the
probability of having s ≥ sα and N b

n(α) > 0 grows with n and ρ under the
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alternative too). On the other hand, when the proportion of effects increases,
the differences between the pre-test Bayesian method and the basic one in power
vanish. This relates to the fact that the probability of s ≥ sα increases as
the proportion of effects grows. The coverage reported by the Bayesian SGoF
tends to be larger than the coverage of the Binomial SGoF, and the coverage
of the pre-test Bayesian procedure is always the largest. This agrees with the
relative conservativeness degree of the various methods. Regarding the posterior
probabilities, they decrease as the proportion of effects grows (as expected),
reaching the value 0 in many cases; for example, when n = 500, Π0 ≥ 0.7 and
µ = 2, 4.

A property claimed to hold for SGoF is that its power increases with the
number of tests n [3]. Our simulations show that this feature may fail when
considering low sample sizes (from n = 10 to n = 50), although it is well seen
when moving from n = 50 to n = 500.

4 Real data illustrations

Two real medical datasets are considered in this section for illustration purposes.
The first dataset refers to a situation in which the number of tests (n) is small;
the tests correspond to a sequence of 15 two-sample comparisons performed on
15 different variables. The second example of application is related to a high-
dimensional setting where more than 3,000 tests are performed, corresponding
to the comparison of mean gene expression levels in two groups of patients.

4.1 Neuhaus data

Neuhaus et al. [16] investigated in a randomized multicenter clinical trial with
421 patients the effects of two different treatments for acute myocardial infarc-
tion: improved thrombolysis (rt-PA), which has been reported to yield higher
patency rates than those individuals with standard regimens of thrombolytic
treatment, and anisoylated plasminogen streptokinase activator (APSAC). Four
families of hypotheses were identified; we focus on the study of cardiac and other
events after the start of thrombolitic treatment (n = 15 hypotheses related to
reinfarction, recurrent ischemia, blood preasure decrease, bleeding, allergic re-
action, cardiogenic shock and in-hospital death). In the original paper, there is
no attention to the problem of the multiplicity of tests.

Benjamini and Hochberg [17] analyzed this set of p-values with a FDR-based
strategy. When controlling the FDR at 5%, Benjamini-Hochberg procedure,
they were able to reject the 4 nulls with the smallest p-values, thus identify-
ing significant improvements of rt-PA when compared to APSAC for allergic
reaction, two different aspects of bleeding (bleeding pucture site and bleeding
overall), and mortality. Classical SGoF procedure with γ = α = 0.05 was
applied to this dataset by Castro-Conde and de Uña-Álvarez. SGoF method
provided 7 rejections (9 out of the 15 p-values fell below γ), which makes also
significant another aspect of bleeding (bleeding transfusion), cardiogenic shock,
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and a blood pressure decrease. A 95% confidence interval for θ = P (pi ≤ γ) is
given by (0.3333, 0.8667). The classical frequentist (one-sided) p-value for the
complete null hypothesis is pf = 7.42× 10−9.

When using the non-informative prior π(θ) = 1, Bayesian SGoF reports
N b
n(0.05) = 5.1152 rejections, which is more conservative than original SGoF.

One explanation for this is that, under the alternative, Bayesian SGoF is implic-
itly assuming a marginal correlation of ρ = 1/3 between each pair of indicators
(Xi, Xj) = (I(pi ≤ γ), I(pj ≤ γ)), which are taken as independent by original
SGoF. Correlation results indeed in an extra variance [18, 8]. More specifically,

the estimated standard error of the frequentist θ̂ = Xn is 0.1265 under inde-
pendence. On its turn, the standard deviation of the posterior distribution of θ
is
√
V (θ|−→x ) = 0.1760, larger than 0.1265 in any case. Another explanation for

N b
n(0.05) < Nn(0.05) is that the non-informative prior is located at 0.5, while

the frequentist estimation of θ reports a larger value (0.6). This has, however,
a second-order influence as n grows (see Section 4.2).

The mean of the posterior distribution is 0.5882, close to the frequentist 0.6.
A 95% Bayesian credible interval for θ is given by Ic = (0.3543, 0.8025), sug-
gesting evidence against the complete null H0 : θ = 0.05. Indeed, the posterior
probability of H0 based on the default a priori probabilities P0 = P1 = 1/2
and the non-informative prior π(θ) = 1 is P (H0|−→x ) = 1.15 × 10−7. On the
other hand, one may apply the pre-test Bayesian SGoF, by taking π(θ) to be a
beta model located at the null. As indicated in Section 2, for P0 = P1 = 1/2,
n = 15, s = 9 and γ = 0.05, the minimum value of P (H0|−→x ) is 1.2 × 10−6

(corresponding to a pairwise correlation of ρ = 0.4281, see Table 1), which is
below α = 0.05. Only values of ρ smaller than 0.006361 or greater than 0.999989
lead to P (H0|−→x ) ≥ 0.05, but no one would consider the corresponding priors
π(θ) as a reasonable choice for the pre-test. Summaryzing, even when biasing
the Bayesian analysis towards H0, there is no reason to accept that all the null
hypotheses under consideration true.

To illustrate how the pre-test may influence the results, we consider now
the more stringent case γ = 0.001. Then, only 2 p-values fall below γ, which
reports a one-sided frequentist p-value of pf = 0.0001 for the complete null.
In this case, the lower bound for P (H0|−→x ) is P (H0|−→x ) = 0.0504 > 0.05 and,
therefore, no evidence against H0 is obtained at level 0.05 from a Bayesian
viewpoint. With γ = 0.001 and α = 0.05, frequentist SGoF rejects the nulls
with the smallest 2 p-values, while Bayesian SGoF without the pre-test would
reject 1 null (N b

n(α) = 0.7822).
It is interesting to look at the relative results provide by frequentist and

Bayesian SGoF procedures when letting the significance level γ vary. To this
end, in Figure 1, left, we depict the values of Nn(α) and N b

n(α) (again for
α = 0.05) when γ changes on a grid of values from 0.001 to 0.5 with step
0.001. Both curves are roughly increasing-decreasing, corresponding to the fact
that SGoF criterion is based on a comparison between the observed cdf of the
p-values and the uniform cdf, which is the expected one under the complete
null; the distance between these cumulative curves along γ is maximum at some
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Figure 1: Neuhaus data.
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(a) Number of rejected nulls along the sig-
nificance threshold γ: frequentist SGoF
(thick solid line), basic Bayesian SGoF
(thin solid line), and pre-test Bayesian
SGoF (dashed line).
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(b) Solid line: Lower bound for the poste-
rior probability that the complete null is
true depending on the significance thresh-
old γ(solid line). Dashed line: line y=0.05

central point γ. On the other hand, from Figure 1, left, it is seen that Bayesian
SGoF is more conservative than its frequentist counterpart along the several
significance levels. Indeed, when rounding the number of rejections to the closest
integer, N b

n ≤ Nn happened for the 500 values of γ, N b
n ≤ Nn − 1 for 220, and

N b
n ≤ Nn−2 for 33 cases. For comparison purposes, results of pre-test Bayesian

SGoF are reported in Figure 1 too. It is seen that N b
n = N b∗

n but for the case
γ = 0.001 and for large thresholds (namely γ > 0.225), where the Bayesian
evidence against the complete null vanishes. Figure 1, right, displays the curve
γ 7→P (H0|−→x ) which is used by the pre-test method to update the rejection rule
given by basic Bayesian SGoF.

4.2 Hedenfalk data

Hedenfalk et al. [14] performed a microarray study of hereditary breast cancer.
One of the goals of this study was to find genes differentially expressed between
BRCA1- and BRCA2-mutation positive tumors. Thus, for each of the 3,226
genes, a comparison of means was performed through a suitable two-sample test;
the sizes of the groups were 7 and 8 subjects respectively. Following previous
analysis of these data [19], 56 genes were eliminated because they had one
or more measurements above 20. This left n = 3, 170 genes. Application of
Benjamini-Hochberg FDR method (at 5% level) reported 157 significant cases
[4].

For Hedenfalk data, s = 606 p-values (19.12% of the 3170) fell below the sig-
nificance threshold γ = 0.05. This resulted in a highly significative frequentist p-
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value in the binomial test (pf = 0). A 95% confidence interval for θ = P (pi ≤ γ)
is given by If = (0.1773, 0.2047). When taking α = 0.05, original (frequentist)
SGoF (Nn(α)) declared 428 genes as differentially expressed; this amount de-
creased to 412 when applying its conservative version N∗n(α) [8]. Application
of basic Bayesian SGoF with non-informative (uniform) prior resulted also in
412 nulls rejected. These findings are in agreement with the relationship be-
tween Bayesian SGoF and conservative frequentist SGoF for large sample sizes
discussed before (see the Example in Section 2). To understand why Bayesian
SGoF quotes a smaller number of effects compared to Nn(α) note that, by us-

ing the beta-normal approximation lα(π,−→x ) ≈ E(θ|−→x )−
√
V (θ|−→x )zα and since

E(θ|−→x ) = (1 +nXn)/(2 +n) and V (θ|−→x ) ≈ Xn(1−Xn)/n as n→∞, we have
(lα(π,−→x ) > γ provided)

Nn(α)−N b
n(α) ≈ n(Xn − E(θ|−→x )) +

√
n

[√
nV (θ|−→x )−

√
γ(1− γ)

]
zα + 1

≈ n
2Xn − 1

2 + n
+
√
n

[√
Xn(1−Xn)−

√
γ(1− γ)

]
zα,

the second term being dominant and positive as long as γ < Xn < 1 − γ (as
it happens in this case). Therefore, variance is the main responsible for the
different results.

Figure 2: Number of rejected nulls along the significance threshold γ: frequentist
SGoF (solid line) and Bayesian SGoF (dashed line). Hedenfalk data.
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The mean of the posterior distribution of θ is 0.1912, while a 95% (Bayesian)
credible interval for θ is Ic = (0.1779, 0.2052). The posterior probability of
H0 : θ = γ for uniform π(θ) and default priors P0 = P1 = 1/2 is P (H0|−→x ) =
8.50×10−173. A lower bound for P (H0|−→x ) based on the very default priors and a
model for π(θ) located at θ = γ is P (H0|−→x ) = 1.28×10−172 (attained for a pair-
wise correlation between the indicators Xi = I(pi ≤ γ) of ρ = 0.1144). More-
over, it happens P (H0|−→x ) < 0.05 along ρ ∈

(
10−6, 1− 10−6

)
. This strongly
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suggests that at least one gene is differentially expressed; the existence of true
effects in Hedenfalk data has been object of some discussion in recent research,
due to the existing correlation among the tests [20].

To illustrate the influence of the significance threshold γ, in Figure 2 we
report the values of Nn(α) and N b

n(α) for α = 0.05 when γ changes on a grid
of values from 0.001 to 0.5 with step 0.001. The values for N b∗

n (α) are not
displayed in this case since the pre-test had no influence on the results. Like
for Neuhaus data, both curves are roughly increasing-decreasing; on the other
hand, they are apparently close to each other. However, when summaryzing
the results for γ ≤ 0.2, we find that the differences Nn(α)−N b

n(α) are 12.15 on
average; this amount changes to 14.34 and 14.79 when considering the results
corresponding to γ ≤ 0.1 and γ ≤ 0.05 respectively. For γ ≤ 0.4 the differences
were all positive. Therefore, Bayesian SGoF reports results more conservative
than those of its frequentist counterpart, and differences between frequentist
and Bayesian SGoF criteria are more clearly seen for small significance levels.

5 Discussion and main conclusions

In this paper, Sequential Goodness-of-Fit (SGoF) multitesting procedure has
been considered under the Bayesian paradigm. This has two important conse-
quences in the method’s application and interpretation of results. First, since
SGoF involves a pre-testing of a point null hypothesis (’the proportion θ of
p-values falling below threshold γ is γ’), the differences between Bayesian and
frequentist viewpoints in such setting play a role. To be brief, Bayesian hy-
potheses testing for point nulls is based on the conditional probability that the
null is true, given the sampling information; and this is a conservative criterion
when compared to frequentist p-values (as those used by classical SGoF). In-
deed, frequentist p-values are seen as a wrong way to measure significance in
Bayesian inference [11]. In practice, this implies that SGoF method relying on a
Bayesian pre-test will accept the absence of features in situations when classical
SGoF detects signal. Second, when the complete null of no effects is rejected,
Bayesian SGoF proceeds by constructing a credible interval for the ’excess of sig-
nificant cases’ when counting p-values below threshold γ, τn(θ) = n(θ− γ); this
interval is directly obtained from the posterior distribution of θ. The analogue
of this in the classical frequentist setting is a (frequentist) confidence interval.
Again, in practice this results in that Bayesian SGoF declares a smaller amount
of features when compared to its frequentist counterpart. These relative prop-
erties of Bayesian and frequentist versions of SGoF have been investigated by
simulations and real data applications.

Regarding the interpretation of the results, it should be noted that Bayesian
inference is based on a conditional analysis. That is, results are valid for all
the situations with the same strength of evidence as the actual data −→x . For
example, when a pre-test is performed and the researcher rejects the complete
null H0 whenever P (H0|−→x ) < α, then it is guaranteed a type I error rate of α for
samples with the very amount of evidence of −→x . Similarly, credible intervals for
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τn(θ) should only be interpreted conditionally on −→x . Unlike Bayesian inference,
classical (frequentist) methods aim to ensure error bounds when averaging the
results over all the possible samples, but often they say no much when the
interest is restricted to the actual sampling information.

The provided simulations and real data applications have demonstrated that,
when the number of tests under consideration (n) is large, Bayesian procedure
mimics the conservative version of classical SGoF, N∗n(α), at least when summa-
ryzing its results along a number of Monte Carlo trials. This is not surprising,
since the prior information in which Bayesian inference is based on is less and
less relevant as the sample size (n) grows. Still, there is an important drawback
behind the application of classical SGoF (Nn(α) or N∗n(α)): the underlying as-
sumption of independence among the tests. This assumption is often violated
in practice. Even if one does not like very much a Bayesian approach, it is
true that the randomness of θ in the Bayesian setting induces (and hence allows
for) a pairwise correlation between the indicators Xi = I(pi ≤ γ). In practice,
a Bayesian pre-test for H0 : θ = γ will allow for correlated indicators under
the alternative H1 : θ ∼ π(θ); the researcher may then include a guess for the
correlation degree in the prior density π(θ), the natural location of π(θ) being
the null value θ = γ otherwise. This flexibility to cope with the correlated set-
ting is not shared by frequentist SGoF; although some extensions of classical
SGoF for dependent tests have been proposed [8], a number of practical issues
are still unsolved. Bayesian SGoF preserves the pleasant properties of classical
SGoF (e.g. large statistical power) while permitting the existence of depen-
dences. In particular, the number of significant features selected by Bayesian
SGoF for Neuhaus data (or for Hedenfalk data), see Section 4, is larger than
that of FDR-based methods.

The usual criticism against the application of Bayesian methods is their
dependence on the prior information. However, it should be mentioned that a
Bayesian analysis may be quite objective when based on default priors (such
as a prior probability of 1/2 for the complete null) and non-informative prior
densities for θ (π(θ) = 1). For the Bayesian pre-test, objective choices for
π(θ) have been largely discussed in the literature (e.g. Berger and Delampady
[11]), so these concerns may be reasonably solved. Summaryzing, the Bayesian
perspective over SGoF method have a number of advantages and no visible
inconvenient, and it seems to be a promising way to look for significance in the
setting of multiple comparisons.
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