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Adjusted p-values for SGoF multitesting method

Irene Castro-Conde and Jacobo de Uña-Álvarez

December 2, 2013

Abstract

In the field of multiple comparison procedures, adjusted p-values are an
important tool to evaluate the significance of a test statistic while taking
the multiplicity issue into account. In this paper we introduce adjusted p-
values for Carvajal-Rodŕıguez et al. (2009)’s Sequential Goodness-of-Fit
(SGoF) multitesting method. Main properties of the adjusted p-values
are established. Several real data applications are performed to illustrate
the practical usage of the adjusted p-values.

1 Introduction

In multiple hypotheses testing, a number of null hypotheses (or nulls) is tested
in a simultaneous way, so some multiple significance criterion is used to control
the error probability along the tests being performed. Traditional multiple
testing procedures control for the familywise error rate (FWER) or for the false
discovery rate (FDR), or for proper modifications and generalizations of these
criteria. Usually strong control of the FWER or of the FDR is demanded, which
means that the error criterion must be fulfilled under any configuration of the
true and non-true nulls (Dudoit and van der Laan, 2008). In many situations,
such methods exhibit a poor power, leading to a small amount of rejected nulls
(Carvajal-Rodŕıguez et al., 2009). Weak control of the FWER allow for a greater
power, at the extent of reporting bounds for FWER or FDR which are only valid
when all the nulls are true (intersection or complete null). One of such methods
is the Sequential Goodness-of-Fit (SGoF) procedure, introduced in Carvajal-
Rodŕıguez et al. (2009). SGoF method looks for significance when comparing
the observed and the expected amounts of p-values below an initial threshold
γ, where the expectation is taken under the intersection or complete null. In
that sense, it relates to the notion of second-level significance testing or higher
criticism introduced by Tukey in 1976 and further extended by Donoho and Jin
(2004).

Main properties of SGoF procedure were analyzed in more detail by de Uña-
Álvarez (2011, 2012). In particular, it was quoted that SGoF gives flexibility
to the FDR, by imposing a bound (α) merely under the complete null, with
the resulting increase in power; and that the attained FDR is not too large in
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the sense that the number of false positives remains smaller than the number
of false negatives with large probability (≥ 1 − α). The goal of this paper is
to introduce adjusted p-values for SGoF multitesting procedure. To this end,
we will recall the precise definition of SGoF method, for which some notation
is needed.

Given n nulls H0i, i = 1, ..., n, let p1, ..., pn be a sequence of independent
p-values corresponding to the application n specific test statistics. Put Fn for
the empirical distribution function of the pi’s. Let γ be an initial significance
threshold. SGoF procedure looks for significance in the amount of p-values
falling below γ, nFn(γ), at level α; if this amount is ’too large’, the p-values are
smaller than expected, and the complete null H0 = ∩ni=1H0i is rejected. Under
H0, nFn(γ) follows a Bin(n, γ) distribution; therefore, H0 is rejected at level α
if and only if nFn(γ) ≥ bn,α(γ), where

bn,α(γ) = inf {b ∈ {0, ..., n} : P (Bin(n, γ) ≥ b) ≤ α}

is the (1− α)-quantile of the Bin(n, γ) distribution. When H0 is rejected, the
number of nulls rejected by SGoF is Nn,α(γ) = nFn(γ) − bn,α(γ) + 1. More
specifically, the nulls corresponding to theNn,α(γ) smallest p-values are declared
as non-true; this means that a given p-value pi is declared as a positive if and
only if its rank is smaller than Nn,α(γ), that is, if nFn(pi) ≤ Nn,α(γ) (assuming
no ties). In the presence of ties among the p-values, Nn,α(γ) should only be
regarded as an upper bound for the number of rejections (see the example in
Section 4.1 for illustration of this issue).

Let p∗ denote the maximum p-value declared as a positive by SGoF, that is,
Nn,α(γ) = nFn(p∗); since bn,α(γ) ≥ 1 (unless α = 1), we haveNn,α(γ) ≤ nFn(γ)
and, from this, p∗ ≤ γ. This shows that the rejected p-values form a subset
(proper or not) of the set of p-values falling below γ. Indeed, it becomes clear
from the definition of Nn,α(γ) that the amount of p-values rejected by SGoF cor-
responds to the excess of significant cases in the binomial test. When n is large,
the binomial quantile bn,α(γ) is approximated by nγ+

√
nγ(1− γ)zα, where zα

is the 1− α quantile of the standard normal; de Uña-Álvarez (2011) suggested
as a more conservative rule to reject the N∗n,α(γ) = nFn(γ) − b∗n,α(γ) + 1 nulls

attached to the smallest p-values, where b∗n,α(γ) = nγ+
√
nFn(γ)(1− Fn(γ))zα.

N∗n,α(γ) gives an asymptotic (1− α)-lower confidence bound for the number of
non-true nulls with p-value below γ. In its turn, this ensures asymptotically
that the probability of the undesirable event that the number of false positives
exceeds the number of false negatives (among the p-values smaller than γ) is
bounded by α. This property of SGoF method is not shared by other commonly
used multitesting procedures such as those based on the FDR or FWER control.
See de Uña-Álvarez (2012) for more details.

In this paper, adjusted p-values for SGoF multitesting method are intro-
duced. For this, we do not take the adjusted p-value of pi as the minimum α for
which SGoF procedure rejects pi for the given γ, as implemented in SGoF+ soft-
ware (http://webs.uvigo.es/acraaj/SGoF.htm). This, although possible, does
not eliminate the dependency of the adjusted p-value on the initial threshold γ,
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something which may not be desirable. For example, with n = 1 the adjusted
p-value of p1 corresponding to this definition gives γ if p1 ≤ γ and 1 otherwise.
With a single null to be tested (n = 1), one would expect that the adjusted
p-value (for the multiplicity of tests) would give just the original p-value, some-
thing which is not achieved in this way. In the following section we define
adjusted p-values for SGoF multitesting method satisfying such a requirement,
by taking the γ and α parameters to be equal. In this way, the provided defi-
nition avoids the problem of dependencies on γ. Overall, adjusted p-values as
defined here are a useful tool when looking for significance under the viewpoint
of Carvajal-Rodŕıguez et al. (2009)’s Sequential Goodness-of-Fit Test.

The paper is organized as follows. In Section 2, we introduce the definition
of the adjusted p-values of SGoF multitest and we give several examples. The
main properties of these adjusted p-values are given in Section 3 while in Section
4 we show three real data applications to illustrate their practical usage. Finally,
in Section 5 we give the main conclusions of our research. Technical Lemmas
are deferred to the Appendix.

2 SGoF adjusted p-values

Let γ be an initial p-value threshold. Consider SGoF multitesting criterion
based on the special choice α = γ. This can be regarded as a fair application
of SGoF in which no prominent role is given to any of the two significance
thresholds. We term this value α = γ as the level of the test. For simplicity,
we denote bn,α(α) and Nn,α(α) by bn(α) and Nn(α) respectively. In practice,
the number of nulls rejected by SGoF Nn(α) = nFn(α) − bn(α) + 1 is roughly
an increasing-decreasing function of α; this is because the amount of rejec-
tions crucially depends on the distance between the observed and the expected
proportions of p-values falling below α = γ, Fn(α)−α, which has an increasing-
decreasing shape. For illustration purposes, in Figure 1 we depict this function
Nn(α) for particular simulated sequences of n = 10, 50 and 100 p-values. In this
Figure 1, α is restricted to fall in the set of p-values. The p-values come from
the application of the two-sided Student’s test to compare samples of 7 and 8
individuals (i.e. 13 degrees of freedom) drawn from Gaussian populations, along
n positions (’genes’) for each individual, with respective means 0 (group 1) and
µ (group 2), where µ = 0 for the true nulls and µ = ±2 for the non-true nulls,
representing intermediate effects, and where the variance-covariance matrix is
the identity. The percentage of non-true nulls in the simulations is 33%. We
note that, unlike for SGoF method with fixed γ, when linking α and γ through
α = γ an increasing value of α does not necessarily result in a less stringent
multitest. This will be important when interpreting the adjusted p-values to be
introduced.

It is informative to look at the function Nn(α) for small values of n. We
consider as particular examples the cases with n ≤ 3. When needed, the ordered
p-values are denoted by p(1) ≤ ... ≤ p(n).

Example 1. The case n = 1. Clearly, bn(α) = 1 in this case (unless
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(c) n = 100 simulated p-values

Figure 1: Simulated function of the number of rejections of SGoF (Nn(α)) in
three different scenarios

α = 1). Therefore, the (single) null hypothesis is rejected by SGoF if and only
if nFn(α) ≥ 1, that is, when p1 ≤ α. Note that this is just the ordinary way
in which a single test is performed at level α. Obviously, in case of rejection,
Nn(α) = 1.

Example 2. The case n = 2. Since P (Bin(2, α) ≥ 2) = α2 ≤ α and
P (Bin(2, α) ≥ 1) = 2α(1− α) + α2 > α, we have bn(α) = 2 in this case. Then,
SGoF rejects the intersection null if and only if both p-values fall below α; in
that case, the number of rejected nulls is Nn(α) = nFn(α) − bn(α) + 1 = 1, so
SGoF rejects the null attached to the smallest p-value p(1). As a function of α,
Nn(α) takes the value 0 for 0 < α < p(2), and the value 1 for p(2) ≤ α < 1.

Example 3. The case n = 3. Straightforward calculations give that bn(α) =
3 if α > 0.5, while bn(α) = 2 if α ≤ 0.5. To help the discussion, assume at this
point that α ≤ 0.5 (this will be the case in most practical cases). Then, the
intersection null is rejected if and only if p(2) ≤ α and, if this happens, Nn(α) = 2
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or 1 depending on whether p(3) ≤ α or p(3) > α.
As mentioned, compared to FWER and FDR controlling procedures, SGoF

method exhibits a greater power in many instances, particularly when the num-
ber of tests is large. However, it has been pointed out that FDR-based methods
may be more powerful than SGoF when the p-values concentrate around zero
(the so-called situation with strong effects). To explore this point with small
n, consider the application of Benjamini-Hochberg (1995) FDR method (BH)
to the case n = 3. To bound the FDR by α, BH rejects the nulls correponding
to the p-values below p∗BH = max {pi : pi ≤ αFn(pi)}. With n = 3, this implies
checking if p(3) ≤ α (3 rejected nulls), p(3) > α but p(2) ≤ α/2 (2 rejections),
p(3) > α, p(2) > α/2 but p(1) ≤ α/3 (1 rejection), or if p(i) > α(i/n) for i = 1, 2, 3
(no rejection). Summarizing, when p(3) ≤ α or when p(2) > α SGoF will reject
a smaller amount of nulls compared to BH (2 vs 3 or 0 vs 0-1 respectively), but
when p(2) ≤ α < p(3) the opposite (namely 1 vs. 0) may happen. For example, if
the sequence of p-values is 0.02, 0.04, 0.06, then BH is unable to reject any null
when controlling the FDR at 5%, while SGoF applied with γ = α = 0.05 rejects
the null pertaining to the smallest p-value. SGoF finds significance in this case
because the amount of p-values falling below 0.05 reaches the 5% critical point
of the one-sided binomial test (bn(α) = 2).

Now we formally introduce the adjusted p-values for SGoF.
Definition 1. Let p1, ..., pn be a sequence of p-values corresponding to n

nulls H01, ...,H0n. The SGoF adjusted p-value of pi (1 ≤ i ≤ n) is defined as

p̃i = inf {α ∈ (0, 1) : nFn(pi) ≤ Nn(α)}

if the set {α ∈ (0, 1) : nFn(pi) ≤ Nn(α)} is not empty. Otherwise, p̃i = 1.
Remark 1. The open interval (0, 1) in the Definition may be replaced by

the close interval [0, 1] as long as the smallest p-value is strictly positive.
In words, the adjusted p-value of pi is the smallest α for which SGoF mul-

titest with α = γ rejects the null corresponding to pi. For illustration, we give
now the adjusted p-values for Examples 1-3.

Example 1 (continued). In the case n = 1, SGoF rejects the (single) null
hypothesis at level α if and only if p1 ≤ α. Therefore, p̃1 = p1.

Example 2 (continued). In the case n = 2, SGoF rejects at most p(1),
and this only happens when both p-values fall below the level α. Therefore,
p̃(1) = p(2) and p̃(2) = 1.

Example 3 (continued). The case n = 3 is more involved. For α > 0.5
we have Nn(α) = nFn(α)− 2, while for α ≤ 0.5 we have Nn(α) = nFn(α)− 1.
This implies that at most two nulls will be rejected, and therefore p̃(3) = 1. If
p(3) > 0.5 one has nFn(α) ≤ 2 for α ≤ 0.5 and hence p(2) is not rejected at any
level; so p̃(2) = 1 in this case. However, when p(3) ≤ 0.5, one rather has p̃(2) =
p(3). Finally, p̃(1) = p(2) or p̃(1) = p(3) depending on whether p(2) ≤ 0.5 or not.
As a particular example, consider as above the sequence of p-values 0.02, 0.04,
0.06; the corresponding sequence of adjusted p-values for SGoF is 0.04, 0.06, 1.

Main properties of the adjusted p-values for arbitrary n are given in the next
Section.
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3 Main results

The first desirable property of adjusted p-values for multiple hypotheses testing
is that they generalize the concept of p-value for a single test. SGoF adjusted
p-values have this property, as discussed in Section 2. Another important prop-
erty is that adjusted p-values should be greater than the corresponding original
p-values, since they are introduced to protect the researcher against the multi-
plicity of tests. For SGoF adjusted p-values this is formally stated as follows.

Property 1. It holds p̃i ≥ pi for i = 1, ..., n.
Proof: If there is no α such that nFn(pi) ≤ Nn(α) then p̃i = 1 and the

result holds. Therefore, assume that p̃i = inf {α ∈ (0, 1) : nFn(pi) ≤ Nn(α)}.
Note first that Nn(α) ≤ nFn(α) (as discussed in the Introduction). We thus
have nFn(pi) ≤ Nn(p̃i) ≤ nFn(p̃i), where for the first inequality we use Lemma
2 in the Appendix. Since pi is a jump point of Fn, the result follows.�

The next property states that adjusted p-values correspond to a (non strictly)
monotone transformation of the original p-values.

Property 2. If pi > pj then p̃i ≥ p̃j .
Proof: Take two p-values such that pi > pj . Assume p̃i < 1 (otherwise there

is nothing to prove). We will show that nFn(pj) ≤ Nn(p̃i), which is enough to
conclude. But this follows from nFn(pj) ≤ nFn(pi) ≤ Nn(p̃i).�

Given a significance threshold α ∈ (0, 1), a natural question is if the number
of nulls rejected by SGoF method at level α (i.e. Nn(α)) coincides with the
amount of adjusted p-values not greater than α. This will not be the case in
general, since Nn(α) has an increasing-decreasing shape as a function of α and
hence, rejection of pi at some level α′ does not ensure rejection of that p-value
for α ≥ α′. Still, the number of p̃i’s not greater than α is an upper bound for
Nn(α). This property is formally given below.

Property 3. It holds

Nn(α) ≤
n∑
i=1

I(p̃i ≤ α).

On the other hand, if p̃i ≤ α, then there exists α′ ≤ α such that the null
attached to pi is rejected at level α′ by SGoF.

Proof. If the null attached to pi is rejected at level α by SGoF, then
nFn(pi) ≤ Nn(α). Therefore, {α′ ∈ (0, 1) : nFn(pi) ≤ Nn(α′)} is non-empty,
and p̃i = inf {α′ ∈ (0, 1) : nFn(pi) ≤ Nn(α′)} ≤ α. This shows the given in-
equality. Conversely, if p̃i ≤ α, then nFn(pi) ≤ Nn(α′) for some α′ ≤ α and
hence pi is rejected at level α′ by SGoF.�

Remark 2. Unlike for Properties 1 and 2, Property 3 may fail in the pres-
ence of ties. When ties are present, it is desirable to prevent the researcher
from making different decisions for null hypotheses sharing the same (tied)

p-value. To this end, the corrected amount of rejections given by Ñn(α) =
min{Nn(α), nFn(qn(α)−)}, where qn(α) = F−1n (n−1Nn(α)), is suggested. Here,
F−1n (p) = inf {x : Fn(x) ≥ p} denotes the empirical quantile function. Property
3 is satisfied even in the presence of ties with such prevention. Note that the
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Definition 1 of adjusted p-value is unchanged when Nn(α) is replaced by Ñn(α).

On the other hand, Ñn(α) collapses to Nn(α) when there are no ties. See the
example in Section 4.1 for illustration of this correction.

An interesting property of the adjusted p-values as defined here is that they
fall within the set of original p-values or they take the value 1. This is not
obvious from the definition; however, the property can be obtained from the
fact that the function α 7→ bn(α) is non-decreasing (Lemma 2 in Appendix A).

Property 4. It holds

p̃i = min {pj : nFn(pi) ≤ Nn(pj)} ,

with the convention 1 if the set is empty.
Proof. If p̃i = 1 then both {α ∈ (0, 1) : nFn(pi) ≤ Nn(α)} and {pj : nFn(pi) ≤ Nn(pj)}

are empty sets, and the equality follows by the convention. Since p̃i ≥ pi (Prop-
erty 1), p̃i is larger than some p-value. Assume p(k) ≤ p̃i < p(k+1) for some
k ∈ {1, ..., n}, where p(n+1) ≡ 1. We will show that p̃i = p(k). We have
nFn(pi) ≤ Nn(p̃i) = nFn(p̃i) − bn(p̃i) + 1. Since bn(α) is non-decreasing and
Fn(p̃i) = Fn(p(k)), we have Nn(p̃i) ≤ Nn(p(k)), and the proof is complete.�

Property 4 is useful for the calculation and implementation of the adjusted
p-values, since the search for the infimum along a continuous interval may be
restricted to a finite set (the original p-values themselves). Also, since some
of the adjusted p-values will take the value 1, it is relevant from a practical
viewpoint to identify them in a first step. A characterization of such p-values is
given in the following statement.

Property 5. LetN [n] = max1≤j≤n,pj<1Nn(pj), and let p[n] = max
{
pj : nFn(pj) ≤ N [n]

}
.

Then, pi > p[n] if and only if p̃i = 1.
Proof. Take pi > p[n]. Then, nFn(pi) > N [n] ≥ Nn(pj) for all pj < 1. This

entails that {pj : nFn(pi) ≤ Nn(pj)} is an empty set (or it reduces to {1}) and
therefore p̃i = 1. Conversely, if p̃i = 1 then the set {pj : nFn(pi) ≤ Nn(pj)}
is empty (Case 1), or {pj : nFn(pi) ≤ Nn(pj)} = {1} (Case 2). In Case 1, we
have that nFn(pi) > N [n] and therefore pi > p[n]. In Case 2, if we assume
pi ≤ p[n] then we have nFn(pi) ≤ N [n] and, therefore, there exists pj < 1 such
that nFn(pi) ≤ Nn(pj), which is a contradiction, and the proof is complete.�

Remark 3. If there are no ties, we have p[n] = p(N [n]). When ties are

present, one needs to change Nn(α) by its correction Ñn(α) (see Remark 2)

and, by defining Ñ [n] and p̃[n] similarly to N [n] and p[n], the Property 5 still
holds and p[n] = p(Ñ [n]). This identity will allow us to identify this threshold

p-value easily. Example in Section 4.1 illustrates the differences between Nn
and Ñn in the presence of ties. We recall that Nn(α) and Ñn(α) will report
the same value when there are no ties, unless for α = 1 (see Section 4.2 for an
illustration of this situation).

As we mentioned in the Introduction, a conservative version of the SGoF
metatest was proposed in de Uña-Álvarez (2011) when n is large. This con-
servative rule rejects the N∗n,α(γ) = nFn(γ)− b∗n,α(γ) + 1 nulls attached to the

smallest p-values, where b∗n,α(γ) = nγ +
√
nFn(γ)(1− Fn(γ))zα. Adjusted p-

values for Conservative SGoF may be introduced as for original SGoF. For this,
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we take α = γ as above and we denote b∗n,α(α) and N∗n,α(α) by b∗n(α) and N∗n(α)
respectively.

Definition 2. Let p1, ..., pn be a sequence of p-values corresponding to n
nulls H01, ...,H0n. The conservative SGoF adjusted p-value of pi (1 ≤ i ≤ n) is
defined as

p̃∗i = inf {α ∈ (0, 1) : nFn(pi) ≤ N∗n(α)}

if the set {α ∈ (0, 1) : nFn(pi) ≤ N∗n(α)} is not empty. Otherwise, p̃∗i = 1.
Properties of p̃∗i can be derived similarly as for p̃i. This is clear for Properties

2 and 3, where the arguments used for p̃i are still valid. However, since the
function α → b∗n(α) is not necessarily non-decreasing, some care is needed for
Properties 1, 4 and 5. For example, in order to prove p̃∗i ≥ pi, i = 1, ..., n
(Property 1), we note that N∗n(α) ≤ nFn(α) is not ensured in general and,
therefore, one can not follow the steps in the proof for p̃i. It can be seen,
however, that b∗n(α) > 0 holds (and thus N∗n(α) ≤ nFn(α) follows) in most
practical cases; more specifically, if the maximum p-value is smaller than 0.999,
the result is valid for n > 2. When avoiding degenerated cases, Property 1 may
be established for p̃∗i similarly as for p̃i by using the right-continuity of N∗n(α).
On the other hand, the formal derivation of Property 4 for p̃∗i is more involved
(if true). Still, by using the fact that α ∈ [p(j), p(j+1))→ b∗n(α) is increasing (at

least) when 1−Φ(
√

(log(2n/π))) < p(j) < p(j+1) ≤ 1−Φ(−
√

(log(2n/π))) (here
Φ stands for the cumulative distribution function of a standard normal), one
may argue that the discrete approximation given in Property 4 will work exactly
also for p̃∗i (at least) when p̃∗i ∈ [p(j), p(j+1)) for some p(j) satisfying the given
inequalities. This would exclude in principle an exact result for small and large
adjusted p-values. An alternative to overcome this issue would be to re-define
p̃∗i as min{pj : nFn(pi) ≤ N∗n(pj)}; this is indeed the way in which adjusted
p-values for conservative SGoF are implemented in the R (R Core team, 2013)
package sgof (Castro-Conde and de Uña-Álvarez, 2013). The application of
conservative SGoF is illustrated in the real data example of Section 4.3.

4 Examples of application

4.1 Needleman data

Needleman et al. (1979) studied the neuropsychologic effects of unidentified
childhood exposure to lead by comparing various psychological and classroom
performances between two groups of children differing in the lead level observed
in their shed teeth. While there is no doubt that high levels of lead are harmful,
Needleman’s findings regarding exposure to low lead levels were controversial.
Needleman’s study was attacked on the ground of methodological flaws. One
of the methodological flaws pointed out is control of multiplicity. Needleman et
al. (1979) present three families of endpoints, and comment on the results of
separate multiplicity adjustments within each family. Benjamini and Yekutieli
(2011) discussed results of BH procedure for Needleman’s data when controlling
for multiplicity both separately and jointly. For illustration of SGoF multitesting
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procedure, we will focus on the first family of endpoints, which corresponds to
the teacher’s behavioral ratings.

Table 1: Summary of the results obtained for Needleman data

Adjusted p-values

p-value (pi) Hochberg BH SGoF Nn(pi) Ñn(pi)

Distractible 0.003 0.027 0.011 0.01 2 0

Does not follows sequence of directions 0.003 0.027 0.011 0.010 2 0

Low overall functioning 0.003 0.027 0.011 0.010 2 0

Impulsive 0.010 0.070 0.022 0.050 4 3

Daydreamer 0.010 0.070 0.022 0.050 4 3

Easily frustrated 0.040 0.140 0.061 0.050 4 3

Not persistent 0.050 0.140 0.061 1.000 7 6

Dependent 0.050 0.140 0.061 1.000 7 6

Does not follow simple directions 0.050 0.140 0.061 1.000 7 6

Hyperactive 0.080 0.140 0.088 1.000 8 6

Disorganized 0.140 0.140 0.140 1.000 8 6

Using Hochberg method (aimed to control the FWER; Hochberg, 1988) at
0.05 level, three hypotheses are rejected. By applying the BH procedure at 0.05
FDR level, two more nulls are rejected (see Table 1 in Benjamini and Yekutieli,
2011). On the other hand, SGoF is able to reject 7 null hypotheses when taking
α = γ = 0.05, but a correction of the number of rejections is needed because ties
are present in this set of p-values. Note that it is not possible to reject exactly
7 p-values without making different decisions for the null hypotheses sharing
the tied value pi = 0.05. In order to avoid that, we compute the corrected
number of rejections introduced in Remark 2 and we obtain Ñn(α) = 6. Under
this correction, the number of SGoF adjusted p-values smaller than α = 0.05 is
also 6 (note that, unlike for Ñn(α), Nn(α)=7 violates Property 3 in this case
due to ties). In this example, the largest SGoF adjusted p-value smaller than
1 is p[n] = p̃(6), where 6 corresponds to the maximum number of rejections

coming from Ñn (see Remark 3). Table 1 shows the adjusted p-values reported
by Hochberg (computed with MuToss package, MuToss Coding Team et al.,
2012), BH and SGoF procedures, together with the number of rejections (the

original, Nn, and the correction for ties, Ñn) given by SGoF, when taking as
level α = γ each original p-value pi. It is seen that BH and SGoF adjusted
p-values are smaller than those of Hochberg (only true for the six smallest p-
values for SGoF), revealing the greater power of the former methods. On the
other hand, SGoF adjusted p-values may be smaller or larger than those of the
BH procedure. This indicates that, for this dataset, SGoF method may reject
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an amount of nulls larger or smaller than that of BH depending on the level.
For example, by inspection of the adjusted p-values, one may see that SGoF and
BH reject 3 and 0 nulls respectively when taking α = 0.01, while these figures
change to 3 and 5 respectively when considering α = 0.025.
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Figure 2: Needleman data.

In Figure 2 we depict the (corrected) number of SGoF rejections Ñn (left)
and the empirical cumulative distribution function of the p-values (right). From
this Figure 2, it can be seen that the number of rejections increases as the level
grows (in the range 0 − 0.14), according to the increasing deviations of Fn(α)
with respect to the uniform distribution. This illustrates the way in which SGoF
method looks for significance.

4.2 Neuhaus data

In second place, we will analyze a vector of n = 15 p-values obtained from
Neuhaus, von Essen et al. (1992). In this paper, the effects of two different treat-
ments for acute myocardial infarction (improved thrombolysis (rt-PA), which
has been reported to yield higher patency rates than those achieved with stan-
dard regimens of thrombolytic treatment, and anisoylated plasminogen strep-
tokinase activator (APSAC)) were investigated in a randomized multicenter trial
in 421 patients. Four families of hypotheses were identified in that study. We
will focus on the results obtained for the study of cardiac and other events after
the start of thrombolitic treatment (15 hypotheses related to reinfarction, recur-
rent ischemia, blood pressure decrease, bleeding, allergic reaction, cardiogenic
shock and in-hospital death). In the original paper, there is no attention to the
problem of multiplicity of tests and the authors concluded that the improved
rt-PA treatment is more favorable than ASPAC with fewer bleeding compli-
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cations and a substantially lower in-hospital mortality rate. Full results are
displayed in Table 2. Benjamini and Hochberg (1995) analyzed this dataset and
they reached to the conclusion that Hochberg procedure at 5% level just rejects
the 3 smallest p-values corresponding to allergic reaction and to two different
aspects of bleeding, but no significance is found in the comparison of mortality.
On the other hand, the BH method at FDR of 5% is able to reject one more
null hypothesis which does indicate a mortality decrease (Table 2).

Table 2: Summary of the results obtained for Neuhaus data

Adjusted p-values

p-values (pi) Hochberg BH SGoF Nn(pi) Ñn(pi)

Allergic reaction 0 to 24 h 0.0001 0.0015 0.0015 0.0004 0 0

Bleeding puncture site 0.0004 0.0056 0.0030 0.0019 1 1

Bleeding overall 0.0019 0.0247 0.0095 0.0095 2 2

In hospital death 0.0095 0.1140 0.0356 0.0278 3 3

Bleeding transfusion 0.0201 0.2211 0.0603 0.0298 3 3

Cardiogenic shock 90 min to 48 h 0.0278 0.2682 0.0639 0.0344 4 4

Blood pressure decrease 0 to 90 min 0.0298 0.2682 0.0639 0.0459 5 5

In hospital death 0 to 48 h 0.0344 0.2752 0.0645 1.0000 6 6

Cardiogenic shock 0 to 90 min 0.0459 0.3213 0.0765 1.0000 7 7

Pericardial tamponade 0.3240 1.0000 0.4860 1.0000 4 4

Blood pressure decrease 90 min to 48 h 0.4263 1.0000 0.5813 1.0000 4 4

Cerebrovascular ischemia 0.5719 1.0000 0.7149 1.0000 4 4

Reinfarction 0.6528 1.0000 0.7532 1.0000 4 4

Bleeding recurrent ischemia 0.7590 1.0000 0.8132 1.0000 4 4

Bleeding cerebral 1.000 1.0000 1.0000 1.0000 16 15

If we apply SGoF (α = γ = 0.05) to that sequence of 15 p-values we obtain
7 rejections which makes also significant another aspect of bleeding (bleeding
transfusion), cardiogenic shock, and a blood pressure decrease. Moreover, the
largest SGoF adjusted p-value smaller than 1 is p[n] = p̃(7), where 7 corresponds

to N [n], the maximum number of rejections (excluding pi = 1), coming from
Nn(α) because, in this case, there are no ties in this data set (see Remark
3). Table 2 shows the adjusted p-values reported by Hochberg, BH and SGoF
methods, and the number of rejections (the original, Nn, and the ones corrected

for ties, Ñn) given by SGoF, when taking as level α = γ each original p-value pi.

Both sequences Nn(pi) and Ñn(pi) coincide but for the largest p-value, which
takes the value 1. Note that the value of 16 reported by Nn(1) makes no sense
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since there are only 15 hypotheses under consideration.
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Figure 3: Neuhaus data.

The values of Ñn(α) for α ∈ {pj , j = 1, ..., n} and the empirical cumulative
distribution function of the p-values are depicted in Figure 3 (left and right re-

spectively). In this Figure 3 we see that Ñn is an increasing-decreasing function
of the level α, which reaches it maximum in the open (0, 1) interval at α = p(9),
where the largest deviance between Fn(α) and α is encountered (Figure 3, right).
Another point which is visible from Figure 3, left, is that one may construct a
monotone rejection rule from the adjusted p-values, by considering the amount
of p̃i’s smaller than or equal to α (dashed line in the Figure).

From Table 2 we see that adjusted p-values for Hochberg and BH methods
are greater than for SGoF procedure, but for the 8 largest p-values for which
SGoF provides an adjusted p-value of 1. As a result, for Neuhaus data SGoF
method will reject more nulls than Hochberg and BH methods whenever the
metatest is performed at level α = 0.05 or smaller. Since the ’excess of significant
cases’ Nn(α) = nFn(α) − bn(α) + 1 in the binomial metatest is never above 7,
there is no chance for SGoF to reject any of the 15−7 = 8 nulls with the largest
p-values. Note that, for example, BH with FDR control of 10% rejects 9 nulls;
therefore, just like for Needleman’s data, the power of SGoF relative to BH may
vary with the level.

4.3 Diz data

In Diz et al. (2009), multiple comparison procedures were applied to a set of
n =261 p-values coming from protein expression experiments in eggs of the
marine mussel Mytilus edulis. In that study, the authors compared M. edulis
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female protein expression profiles of two lines differing in sex ratio of their
progeny. 26 out of the 261 p-values were smaller than 0.05. BH FDR-controlling
procedure was applied, being unable to detect any significant feature even when
allowing for a 20% of false discoveries. Indeed, the minimum adjusted p-value
for BH procedure takes the value 0.2231. When applying SGoF method with
α = γ = 0.05, the seven null hypotheses corresponding to the minimum seven
p-values were rejected (p(7) = 0.0077).

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

Level

N
um

be
r 

of
 r

ej
ec

tio
ns

(a) Solid line: Number of rejections of
SGoF for α ∈ {p1, ..., pn}. Dotted line
: number of rejections of Conservative
SGoF. Dashed line: number of SGoF ad-
justed p-values smaller than or equal to
α.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−values

(b) Empirical cumulative distribution
function of the p-values (solid) and uni-
form distribution (dashed line).

Figure 4: Diz data.

The values of Nn(α) for α ∈ {pj , j = 1, ..., n} are depicted in Figure 4. We

do not consider the correction for ties Ñn in this case since there is only one
repetition with a negligible impact in the results. Since n is relatively large,
we compute in this case the (asymptotic) conservative version of SGoF, N∗n(α).
Results are displayed in Figure 4, left, where it is seen that conservative SGoF
rejects fewer nulls when the level α = γ is small. On the other hand, Figure
4, right, depicts the cumulative edf of the original p-values; this Figure shows
a local maximum around p(94) = 0.244703, which corresponds to the maximum
distance between Fn(α) and α.

In Figure 5 we plot SGoF adjusted p-values versus BH adjusted p-values
(left) and conservative SGoF adjusted p-values as defined in Definition 2 (right).
It becomes clear from this Figure 5 that, for Diz et al. (2009)’s p-values, SGoF
method entails a more powerful significance criterion compared to FDR con-
trolling strategies. Moreover, we see that the adjusted p-values of SGoF and
conservative SGoF are very similar, although the second one tends to be more
conservative for small α’s. This is in agreement with the relative values of Nn(α)
and N∗n(α) in Figure 4, left.

13



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BH adjusted p−values

S
G

oF
 a

dj
us

te
d 

p−
va

lu
es

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Conservative SGoF adjusted p−values
S

G
oF

 a
dj

us
te

d 
p−

va
lu

es

Figure 5: Left: Comparison between SGoF and BH adjusted p-values. Right:
Comparison between SGoF and conservative SGoF adjusted p-values.

5 Main conclusions

In this paper adjusted p-values for SGoF multitesting procedure have been
introduced, and their main properties have been established. These properties
are crucial to understand the way in which SGoF adjusted p-values should be
implemented and interpreted in practice. Adjusted p-values, as introduced here,
allow for an automatic inspection of SGoF results, by letting the ’level’ of the
test α = γ to vary on the unit interval. Explicitly, the adjusted p-value is
the smallest level at which SGoF procedure would still reject the given null
hypothesis, while controlling for the multiplicity of tests.

The practical usage of SGoF adjusted p-values has been illustrated through
the analysis of three biomedical or biological data sets. It has been seen that,
unlike for other multitesting corrections, the adjusted p-values fall in the set of
the original p-values. Since SGoF multitest is based on the excess of significance
when comparing two proportions (the observed and the expected amounts of
p-values below a given threshold), it turns out that the n−N [n] largest p-values
are adjusted to be 1, where n is the number of tests and N [n] is the maximum
number of nulls rejected by SGoF when letting the level vary. However, among
the smallest N [n] p-values, SGoF method provides in many instances adjusted
p-values smaller than those obtained by ordinary FWER or FDR controlling
procedures. This is a result of the weak control of FWER which is imposed by
SGoF strategy.

Two practical scenarios for which some care is needed have been discussed.
These are the situations with tied p-values and the case in which the largest

14



p-value is equal to 1. Suitable correction for SGoF has been proposed and
investigated to this regard. Also, it has been pointed up that the theoretical
properties of SGoF adjusted p-values may not be so immediate to obtain (if
true) when using the asymptotic normal approximation, as conservative SGoF
method does. Another remark is that, since the amount of nulls rejected by
SGoF is in general an increasing-decreasing function of the level, the number of
adjusted p-values below α is only an upper bound for the number of rejections
at that level α. In practice, when an adjusted p-value falls below α, one should
only conclude that the corresponding null is rejected by SGoF at some level
α′ ≤ α.

SGoF adjusted p-values have been introduced and investigated under the as-
sumption of independence among the tests. In many real life problems, however,
the sequence of n p-values at hand will suffer from some kind of dependence.
A correction of SGoF method for serially dependent p-values has been recently
proposed (de Uña-Álvarez, 2012); such a correction basically takes into account
that the SGoF rejection rule Nn(α) must be updated to deal with the increasing
variance coming from the existing correlation. Therefore, in principle adjusted
p-values for SGoF metatest under dependence could be introduced following
the ideas in this paper. This problem is currently under investigation and the
corresponding results will be provided as soon as they become available.

A Technical Lemmas

In order to prove our main Lemma 2 we need a preliminary result. For each

n and b = 1, ..., n introduce the function f
(n)
b (α) = P (Bin(n, α) ≥ b) − α =∑n

k=b

(
n
k

)
αk(1−α)n−k−α, 0 < α < 1. In Figure 7 these functions are displayed

for the case n = 5.
Lemma 1. The function α ∈ (0, 1)→ f

(n)
b (α) is strictly increasing in every

α∗ such that f
(n)
b (α∗) = 0.

Proof. In first place we consider the cases b = 1 and b = n. In both
cases, the only zeros of fnb (α) are 0 and 1, but we are considering that α ∈ (0, 1)
and hence there is nothing to prove. On the other hand, for b ∈ {2, ..., n − 1},
it is easily seen that fnb (α) takes the value zero when α = 0, 1. Now, the first
derivative of fnb (α) is given by n

(
n−1
b−1
)
αb−1(1−α)n−b−1 , which is −1 when α =

0, 1. Besides, the second derivative of fnb (α) is αb−2(1−α)n−b−1{b−1−(n−1)α},
which is positive for all α < b−1

n−1 and negative for all α > b−1
n−1 . Summarizing,

fnb (α) takes negative values for small α, decreases toward zero as α approaches
to 1, and has a unique inflexion point; this allows to conclude that the function
fnb (α) increases when crossing the line y = 0. See Figure 7 for an illustration in
the case n = 5.�

Lemma 2. The function α ∈ (0, 1)→ bn(α) is non-decreasing.
Proof. Take α < α′ = α+ε for some ε > 0 small enough. We will show that

bn(α) ≤ bn(α′). We assume bn(α) ≥ 1 since otherwise the result is immediate.
We will consider separately two different cases. First (case I), suppose that bn(α)
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is such that f
(n)
bn(α)

(α) < 0; then, by continuity, we have that f
(n)
bn(α)

(α′) < 0 and,

again by continuity, f
(n)
bn(α)−1(α′) > 0 since f

(n)
bn(α)−1(α) > 0 which follows from

bn(α) = inf{b ∈ {0, ..., n} : fnb (α) ≤ 0}. Hence bn(α′) = bn(α) in case I. Second

(case II) if f
(n)
bn(α)

(α) = 0 then f
(n)
bn(α)

(α′) > 0 by Lemma 1, and f
(n)
b (α′) > 0

∀b ≤ bn(α). Hence, bn(α′) = inf{b ∈ {0, ..., n} : fnn (α′) ≤ 0} > bn(α) in case II,
which concludes the proof. �
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