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1 Introduction and main results

Let Y7,...,Y, be a sequence of lifetimes with distribution function F. In
survival analysis, the lifetime Y may be observed exactly or may be known
only up to a certain value. Along with the Y-sequence, let C,...,C, be
an independent sequence of random variables following a censoring distri-
bution function G. So only the censored lifetimes Z; = min(Y;, C;) and
d; = lyy,<c,) are observable. Here §; is an indicator of whether Y; has
been observed or not. A nonparametric estimator of F' based on the sam-
ple (Z;,6;) , i = 1,...,n, is given by the Kaplan-Meier estimator defined
by:

- 5271
1—-F,(t) = H[l #}Hzimgz}.

Pl n—1t+1
Here 7., < ... < Z,,., are the ordered Z- values, where ties within life times
or within censoring times are ordered arbitrarily and ties among lifetimes
and censoring times are treated as if the former precedes the latter. d(;.,, is
the concomitant of the ith-order statistic, that is, dj;.,) = 0; if Zi.n = Z;.
But, often, in practice it occurs that, along with each (Z,d), there is some
additional information on the patient such as age, sex, blood pressure etc.
In this case the available data are of the form (X, Z;,;), where X, is a
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p-variate vector of covariables paired with the possibly unobserved Y;. To
this end, Stute (1993) introduced an extension of the univariate Kaplan-
Meier estimate to a multivariate setup, which is an estimator of the joint
distribution function F° of (X,Y):

Fg(m,y) = Z Winl{X[i:n]Sm’Zi:né’y}

i=1
where for i = 1,...,n
W — Olizn) ﬁ[ n—j %)
. n—z’—|—1j:1 n—j7+1

is the mass attached to Z;.,, by Fn, and X[;.,, is the i-th X-concomitant.
Assume that ¢ is a Borel-measurable function from RP*! into the real line.
Set

S;'f = Z Win@(X[i:n] ’ Z[zn])

i=1

a so-called Kaplan-Meier integral.

Throughout this paper it will be assumed that the distribution function H
of Z is continuous. Besides, for identifiability reasons we will assume

(7) Y and C are independent

(i) P(Y <CIX,Y)=P(Y <(C|Y)

Assumption () is standard in survival analysis, while (i¢) states that, given
the lifetime, the censoring indicator and the covariates are independent.
Note that this assumption (i4) does not eliminate the possible dependences
between the censoring time C' and X. See Stute (1993, 1996a) for further
discussion. Write

T = inf{z: H(z) =1},

S = / wdF°.
{Y<ru}

Stute (1993) proved that, under (i) and (i), with probability one and in
the mean it holds
lim SY = S%. (1.1)

n—00

Now, introduce the following sub-distribution functions:

HY(z,2)=P(X <2,Z < zd6=1),
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H(2) = P(Z < 2,0 =0).

Under continuity we have:

w 70 » _
S¥ :/go(x,w) exp{/o %}H”(dm,dw).

For completely observable Y’s,; S¥ collapses to the sample mean of ¢(X;, Y;),
i =1,...,n. Then, the central limit theorem states that, in distribution,

n/?[S¢ — 5¥] — N(0,0?)

o? = /¢2dF0 - [/godFO]z.

In the general case, with censored data, the limit variance becomes much
more complicated. To discuss the structure of the variance and the assump-

tions needed, set
/ HO dz
=exp{
1

f6) = 175 / ol who(w) B (dr, ),

with

T

and

// Loy, v<w}90 -7;)1]1;)'70( w) ~O(dv)ﬁ11(d$,dw)

/ 1{v<y} 1%}(1())1.;’0((1’1}).

Now, consider the following conditions:
a) [lp(X, Z)70(2)8)2dP < oo

b) [e(z,w)|g(K(w))F°(dz,dw) < oo, where K (w fo

and qisa positive non-decreasing weight function on R+
o) [¢3K)dK < oo

Under (¢), (4¢) and a) — ¢), in distribution,

nt/?[S¢ — §¢] = N(0,0?)
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where
o? = () = Var{o(X, 2)10(2)8 + 17 (2)(1 = 8) — 75 (2)}.

See Theorem 1.1 in Stute (1996a). In this paper, we focus on the estima-
tion of the limit variance o2. Stute (1996b) proved the consistency of the
jackknife estimate of variance in the case without covariates. Here we ex-
tend his consistency result to the more general setting in which a vector of
covariates is attached to each lifetime. Besides, in order to cover important
applications such as e.g. variance estimation in multivariate (censored) lin-
ear regression (Stute 1993, 1996a), estimation of the covariance between
two Kaplan-Meier integrals with covariates will be considered.

Specifically, to write the limit covariance (or variance, as a special case) in
a simple way, introduce

£ = 0i(X, Z)%0(2)0 +47(Z2)(1 = 6) = 5" (2)

and
0y = Cou(£9,£7) = B(EP657) — (€7 E(¢%).
‘We have:
BOE @0 -0 = [apair = [ [T ap g i)
- / 2§ () H(dv) = B{(2$"(2))
and,

E{i(X, Z)0(2)075 (2)} = / il vy g () (de, dy)

= [t [ 1o < oy o) i e dy)

= [0 ©nr i)
— By (207 (2)(1 - 8)}

= E{p; (X, 2)10(2)675"(2)}-

We also have,
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E{($ (218 (2)} = / 2 (e () H (dy)

= ///1{y > max(u,v)}ly_f;ijzl) 1%21&)11((19)?[0@“)1{[0(05“)

_ @i (y uw < v ’Yfi(“) 70 ( du) FO (do
= [ar @ [ 1< oy ) )
+ / ~F () / 1{v <u}%f[o(dv)f[0(du)
= [0 Eng @B + [ 27 wng @ i)

= E{v{ (Z)75(2)(1 = 8)} + E{r{"(Z)vs’ (Z)(1 - 9)}.
Conclude that:

0i; = B{pi(X, 2)p;(X, 273 (2)8} — E{y{ (27 (2)(1 = 6)}
_E{Soi(Xﬂ Z)’VO(Z)(S}E{WJ(X’ Z)P)’O(Z)é}‘

In particular, for the asymptotic variance we have

0% = B{p*(X, 2)75(2)0} — B{("{ (2))*(1 = 8)} — E*{ (X, Z)70(2)5}.

Now, introduce the notation

5 =57 =[x () do,dw) = E(e1(X. 2)0(2)9)

and

T = 5% = / o, w0 (w) HY (d, dw) = Eipa(X, Z)70(2)9),

so that
012 = E{o1(X, 2)02(X, 2)75(2)6} — E{v{ (Z){*(Z2)(1 = 6)} — S.T.

The jackknife estimator is based on the so-called pseudo values, which are
obtained by computation of the estimator on the n leave-one-out subsam-

ples of the initial dataset. For k = 1, ..., n, denote by S’f(k) the Kaplan-Meier
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integral with (X.n], Zk:n, Opk:n)) deleted from the sample. The pseudo val-
ues equal

k—1

Setk) = Z p(X ”Ln _ZZ” )9izn] H 5[a nl

i=1 j=1

5[”L] n—1-7 Giml s n—j Sijin
* Z n—z+1 H n-—j i H (m)[ ]

1=k+1 j=1 j=k+1

while the mean of the pseudo values is given by

_ 6[nn](1 — 5["_1:n]) n—2 n—i—1 5
S;’f = S;’f — @(X[nn], Zn:n) n Hl[ n Z ] [z.n],
see Stute and Wang (1994). Set S,, = S¥* and T,, = S¥2; S = gk
and TT(Lk) = S’ny(k). Also S, = 8¢ T, = 5¢2.
The Jackknife estimate of covariance of S,, and T,, is now defined as
nCov(Jack) = (n—1) (S — S, )T — T,)

k=1

=(n-1) Z SEOTE) _p(n—1)S,T,
k=1

Hence, the calculation of a sum of cross products is needed. This is given
in our first result.

Theorem 1.1: We have

nC'/o\v(Jack)
= {(n— V(P02 0 Gy~ 1) =" — (o~ 1)S, T,
+(n—1); m] JH ”*nil EZ_Z)Jrl)]%“m]

n n

X[ Z ¥1 (X[zn]aZzn)Wzn}[ Z (pz(X[l’l’L]7Z’LTL>W’LTL]
i=j+1 1=j+1
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n—1 i—1 .
1 n—j—1.s.
+(n—1 4 Xin 7Zi:n 2 in 7Zi:n 5zn . . Lzm]
( ); 1( [i:n] )e2( [i:n] )[ ](n_z)2j21[ n—j ]

+(n - I)Rn()@l (X[n:n]a Zn:n)‘pZ (X[n:n]a Z7L:7L)W72m

n—2 .
n—1—1.5
+(TL - ]-)Tn‘pl(X[nn]a Znn)é[nn](l - 5[n—1:n]) H [7-]6[“”]

n—1
=1

n—2 .
n—t—1.
+(n - 1)Sn(p2(X[nn]7Znn)6[nn](1 - 5[n71:n]) H [7.]6[‘”1]

: n—1
=1
n-1 n_Qn—i—l
(pl(X[nn]a nn)<p2<X[nn]a nn)(s[nn](l 5[77, 1:n] H ﬁ]Qé[im]
=1
where
1 1 1 1
T == (n—j)? (n-j-1) (n—)j)
and
n—2
n m—k—=1)(n—k+1)
R,=—— — n [kin]
(n—1)2 ; n] = JH (n—k)(n—k) ]
n—1 . Jj—
n—j+1 m—k—-—1)(n—k+1)
+ 6n - k
2 1 G5 1}[ CERCET

Dn—Fk+1).5,
_H D) }5[ 1.

The representation in Theorem 1.1 is crucial to prove the consistency of
the Jackknife approach. It contains three main terms plus remainders. Each
of these three terms corresponds to one of the terms for o5 given above.
To be precise, we will prove that the first term in Theorem 1.1 corre-
sponds to —S.T. On the other hand, it will be seen that the second and
third terms in Theorem 1.1 converge to —E{y{"(Z)7{*(Z)(1 — ¢)} and
E{p1(X, Z)p2(X, Z)y3(Z)5} respectively. The term involving R,, will con-
verge to zero. As regards the last three terms, they vanish asymptotically
when both ¢j(x,z) and ¢a(z, z) vanish to the right of some z strictly
smaller than 7. For general ¢ and (2 however, the proof is more in-
volved. More specifically, the consistency of nC’ov(Jack) does not hold
when 6,_1.,) = 0 and [,y = 1. In this situation we artificially set
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Ofpn) = 0, and denote the modified estimate of covariance by nCov’ (Jack).

Then the corresponding artificial Kaplan-Meier integrals ), and T}, coin-
cide with the mean of their pseudo values (S and T, respectively) and
consistency can be established.

To formally established the consistency of @(J ack) a condition stronger
than a) is required. So, assume

(iid) [ ¢1(X, 2)¢2(X, Z) (30(2)5)* {~ (1 — /H(Z))}dP < oo

that is
/cpl(m, 2)pa(w, 2)72 (2).{—In(1 — \/H(z))}I:Iu(dx, dz). < oo
As mentioned, we will also refer to the following support condition:

() pi(x,z) =0 for i=1,2 and z > zp for some zy < 7g.

Theorem 1.2. Under (i), (iv) we have with probability 1

lim n@)(Jack) =o012.
n—oo

Theorem 1.3. Under (ii¢) we have with probability 1

li_)m ngo\v*(,]ack‘) = 019.

We prove our main results in Section 2.
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2 Proofs

Proof of Theorem 1.1. To prove Theorem 1.1 it is enough to calculate
Zk 1S k)T(k) Because n remains fixed, to simplify the notation we omit
it. Also the covariates play no role in the proof. Along this proof we will
use the following form of notation:

s EZln 6 E(S P = in— ———— i.71 _— 6[1]
(i) iy O[4) [z.n]aw W. n—i+1HJ=1(n—j+l)
and
wl(Z(z)) =% (X[zn]a Z?,n) ’ 902(Z(z)) = </72(X[zn]a Zi:n)~
Then,
Sp =3 Wior(Z)) » T = iy Wiwa(Z ()
and PRy
1— -1-
Sr(tk):Zf 11 501( (z)) [z]H 1(n ]) .
n—j
) k—1 n i—1 n—j
d 5[1 — 7 Y = §1(k) 4 gok)
+zk: n—z—i—l 1:[ J,H (n—j—i—l)J +
i=k+1 Jj=1 j=k+1
Z)0 1—7
1) =yt el oy oL
n-— —-J
e2(Z0)d T w, n—J
0)/° 141 A vy e o} NGO R o510
+Xk: n—1i+1 H I[ (n—j—i—l)J +
1=k+1 j=k+1

see Stute and Wang (1994) page 605. Therefore,

> sk = Z Sk Tl(k)+z S1®) ok +Z S2<k>T1<k>+Z 2k o),

k=1 k=1 k=1

Now, for 1 < i <r <n put



10 Jackknife Kaplan-Meier Integrals

1 _1n n—j—1

Ay = b 200 7171 3150
g L Il (L,
1
By =0}
k=itl (n —i)(n —r + 1)
i—1 . r—1
[n_j_ll]%mn[n_j__l]%] H[ n=J %01,
i n—j = n—J j:k+1n7‘7+1
; 1
Cir =30
Z:k—l(nfiJrl)(nfr+1)
k—1 . i—1 . -1 .
xn[in_j_.l]%m ZI_I [771_.] ]25[3'17"1_[[7”_.] 1901,
e n—j j:k+1n—]+1 j:in—j—i—l
1 i 1 .
D= I }25[-f1,1<z<n71
n—1 n—j
i—1 1 k=1, —J — 26 n—j 2681
E; =%, mH L - ] [J]H] kﬂ[m] 4],

2 < i < n. Then, after some calculation we obtain,

S oS1BITI® = N 01 (Z04))02(Z0) 00 Airt Y 01(Zir))2(Z(1)) 511y A

i=1 1<i<r<n 1<i<r<n

+ > 01(Za))ea(Zi)) 81 D

1<i<n

where A;, = 0, by convention;

ZSl(k)TQ(’f): Z 01(Zi))p2(Z(r)) 015101 B
k_

1<i<r<n

Similarly

Y5201 = N 01(Zy)p2(Zs)) 01301 Bir

k=1 1<i<r<n
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and finally

ZSWC)T?W: Z 01(Ze))p2(Z 1)) 01011 Cir+ Z ©1(Z))p2(Z(iy) 01101 Cir
k=1

1<i<r<n 1<i<r<n
+ > 01(Zaw))e2(Z3)) 0 Es.
1<i<n

Altogether we have

DSETE = 3" (01(Za)e2(Zin)+01(Zr) 2(Z() 0101 (Airt+ Bir+Cir)
k=1

1<i<r<n

+ Z 01(Zy)p2(Zi)) 01 (Di + Ey)

1<i<n

+01(Z1))e2(Z1))0) D1 + ¢1(Zn)2(Z (1)) Opn) En

=1+ 11+ p1(Z0))e2(Z1))0111D1 + 01(Z ) 2(Z(n))Oin) En-

By following Corollary 2.2 and Lemma 2.3 in Stute (1996b) and by replacing

20(Zi))p(Z(ry) by (p1(Z30))p2(Z(r) + p1(Z(r))p2(Z(iy)) in Lemma 2.4 in
Stute (1996b), we obtain

= {n[n T—l 2}6[1] [%]26[1] + ((5[1] — l)ﬁ} Z @1(Z(1‘))802(Z(7-))W7;Wr
iEr
n—2 j—1 . n—k—
3t =0 TG e
j=1 k=1
and
1= ("2 0 (6 = 1) ) S er(Z)ea(Zio)W
=2
+ i(%’] — b H[(n (S - ;;EZ - Z) Dy g,
j=1 k=1
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n—1 il
1 n—j—1yos
7 78 (41
+Zs01( @) ¥2(Zi)) M(n i)2 ] [ n—j e
=2 =1
where
L= Y (01Zw)e2(Zi) + e1(Zin)ea(Za) Wil
Jj<i<r<n
and
n—1
Ti= 30 e1(Z)ea(Z)W?
i=j+1

By collecting the terms it can be easily seen that

" G _ g™ 2020 "
D SIOTE = {nl = =10 =g P+ O = D Z gy} SaT

+z_:(6[ _1 JH n—(:—F;;EZ_:)_l)F(S[k]

j=1 k=1
X[ e1(Za)Will Y ea(Za)Wi)
i=j+1 i=j+1
i—1
1 n—j—1
+ Z #1(Z)e2(Zw) [ )27

(i)

+P7L(Z(1)) + Qn(Z(n))

in which

n

Pa(Zy) = —{n[*—= ]5“ [—

—— [+ (6y 1)

W}‘Pl( 1) p2(Za)) Wi

1
+e1(Zw)e2(Z0)o D1 = 1(Z)#2(Z)on =5
and

n- 2]5[1] [L

n n—1

}26[1]+(5[1]71) 2}§01(Z(7L))§02(Z(7L))W3

QulZw) = —1{nl oTr
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= 2_ (0 — Db H = _:fiign — Z)_ Dy P1(Zw))e2(Z() )Wy,
j=1 k=1

Since for both o) = 0 and dpy; = 1, P,(Z(1)) = 0, using Lemma 2.5 in
Stute (1996b) and rearranging terms complete the proof. OJ

To prove the consistency of n@(J ack) we will compare the first three
terms in the representation of Theorem 1.1 with those corresponding to
o12. Let ¥(z, 2) = p1(x, 2)pa(x, 2), and assume ¢ (z, z) > 0, without loss of
generality. Here we switch the notation to use Zj.., dfi:n]; ©5(X(in)» Z(in))5
7 =1,2, again. Set

]:n = U(Zi:na X[in]75[zn]71 < 0} < n, Zi7Xi76i77; > ’I’L)
and
-2 J -1 25 .
’I’L—l Zé[zn]w zn n—z H L
which is the third term in the representation of Theorem 1.1. Tt is easily

seen that U, is adapted to F,,, and {F,},>1 is a nonincreasing sequence
of sigma algebras. Following Stute (1996b) we have

E{U |~7:n+1} - (n - 1) Z = [ n+1]w( [i: n+1]aZi:n+1)V;,n+1

1
+(n = 1611 (Xfnm+1), Zn: +1)n+1
nflkfln_j_l n—1 n—j
% Z H[i ]25[j:n+1] H [———— ]25[j:n+1]
=1 =1 T PPl
where
n—i+1 i—1 n—j—126_
Vin = | ——————|*%ln+1]
n+1 (77,*2)2(77,‘#1) Hg_l[ n—j ]
i—1k—1 . i—1

1 n—7—1,5 n—7 95
. P S P
+(n—i+1)2(n+1)ZH[ n—j ] H[n—j—i-l]

k=1j=1 j=k+1
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Lemma 2.1. We have

”—J
n — j+1

25[j:n+1]

E{Un‘]:n-&-l} > Un+1 - 36[n:n+1]w(x[n:n+1]7Zn:n+1 H
B (2.1)

Proof: Lemma 2.1 may be proved similarly to Corollary 2.8 in Stute
(1996b), using Lemma 2.6 and Lemma 2.7, in Stute (1996b). O

Lemma 2.2. We have

E{nw(x[nn]v Znn)W3n|]:n+l}
Z (n + l)w(X[n+1:n+1] ) Zn+1:n+1)W3+1n+1 (22)

_Zw(X[nJrl:nJrl]a Zn+1:n+1)W3+1n+1

Proof: Just replace ©?(Z,.,) by Y(Xn:n]s Zn:n) in the proof to Lemma 2.9
in Stute (1996b). O

Lemmas 2.1 and 2.2 state that the sequences {Uy,},,~1 and {ny)(Xnin]s Znn) Wiy}, o,
are slightly disturbed reverse-time submartingales with respect to {F, }n>1. B
Lemma A in Stute (1996b) is a generalization of martingale convergence
theorem, ensuring that, under appropriate conditions, such sequences con-

verge with probability 1 (and in the mean) to a finite limit. To justify the
applicability of Lemma A, the following Lemma is needed. Note that con-

dition (b) below is just condition (iii) in Lemma A, Stute (1996b), while
condition (a) ensures condition (iii) in the referred Lemma A and, in its

turn, allows for the identification of the limit.

Lemma 2.3. Under (iii), we have

(a) With probability 1, nE{w(X[nm],an)me} —0
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(b)anz E(w(X[n:n]a Zniﬂ)Wr%n) <0

Proof: As in the proof of Lemma 2.10 in Stute (1996b), without loss of
generality, it can be assumed that Zs are uniformly distributed on [0, 1].
Let m(t) = P(6 = 1|Z = t) and ¢(2) = E(¢(X, Z2)d|Z = z).

Then,
[t
nE(w(X[""]’Z”n)WELn) = nE(w(X[nn]a Zn, n H n—1-+ 1 26[7::71])
=1

—1

1261 Z1ps ooy Ziin)).-
’L+1 | liny ooy : ))

By applying Lemma 2.1 in Stute (1993) and the distributional theory of
uniform order statistics, we have

1-— - -
n—i+1 (n—i+1)2

)

m(Zy)) | 1=m(Z)

1 1.
E(¢(Z 4 2,=Z0n) | | n_Rm = m)Q] (Zi<2n})
H m(Zin-1)) | 1 —m(Zin-1) )
/ (b E{].{Z,, 1m—1<u} — + (n_Z)Q ]1{2, no1< }}du7

where R;, is the rank of Z; among Zi,...,Z,. By Lemma 2.13 of Stute
(1996b) the inner product converges to 73 (u) with probability 1 for each
0 < u < 1. If we use the dominated convergence argument and Chauchy-
Schwarz inequality to bound the E-term, it can be shown that the last term
is bounded from above, up to a constant factor, by

1 [t no1
o[ dnEs

Applying dominated convergence again implies that nE{n (X, Znm)W2,} —
0 with probability 1, which is (a). And, since
Zn/2

> - = —In(1 —2),
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condition (iii) yields (b). O

By (2.2), and Lemma 2.3(b), for nt)(Xy:n], Zn:n)W2,, it has been shown
that the conditions of Lemma A in Stute (1996b) are met. So

lim ’Il’(/)( [nin]» Zn:n)W2

nn
n—oo

n— oo

Finally, because R,, = O(1), we have with probability 1

Ry Xnin)s Znin ) Wi — 0. (2.3)

Now, we study the sequence {U,}, ;. In order to show that U,, converges
almost surely and in the mean to a finite limit, we should prove (cf Lemma
A in Stute, 1996b)

n—2 .
n—Jj—Llog,
Z EW(Xpn-1:n]) Zn—1:n)0[n—1:n] H [f]%“” )
n>2 j=1 n J

is finite. Before, we determine E(U,) in the following Lemma.

Lemma 2.4. Let m(t) = P(§ = 1|Z = t) and ¢(z) = E((X, Z)d|Z =
z).Then

n

TB(V(X, 2)0g,-1(2))

20 —=m(Zin)) 1=—m(Zim
+
n—i (n —1)2

Proof: By Lemma 2.1 of Stute (1993),

i—1

5"n
E(U,) = (n—1)E Z(sm (X jiin)s Zim) (0 — )72 T[ 11— 222112

=t T
S Tt 20l Opin
E(Z E(J[zn]d)(X[zn]7Zzn)(n71)72 H[lfﬁ“i’ﬁﬂzlna
i=1 j=1
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— (0= DECE i) i) [J1 - 2], 2
L o T e 20 m(Zi)) | 1= m(Zsm)
- — <;¢<Zm)j=1[l+ noi-1 -1
- n — E(¢( ]‘{Z <Zn:n} H jn{j)l)+(nl—_RTjriL(Z—j)l)Z}l{Zj<Zn})

Since on {Z; < Z,} we have Rj,, = Rj,_1, also Z, < Z., if and only if
Zy < Zp_1.n—1, conditioning on Z,, completes the proof. [

Lemma 2.5. Under (iii)

E H 1
E X[n 1: n TL 1: n)é[n 1: n ni—]]Q(S[j:n]) < 00
n>2 j=1

Proof: The proof is similar to the proof of Lemma 2.3. Just note that

n—2 .
n—j—1
E(w(X[n—l:n]v anlzn)(s[n—lzn] H [ni—j
j=1

O / S E{1{z, 4. \<u<zy s}

}25[.7':»11)

- m(Zin1)) | L= mZin s, e
1;[ n—j—l * (n—j—l)Q] . n

is bounded from above by

1
/ &(u)vg(u)u%du
0

n—1
.0

Corollary 2.6. Under (iii), with probability 1,

lim U, = lim E(U,) = E()(X, Z)y2(Z)9).

n—oo n—oo

Proof: Apply Lemma 2.13 and Lemma A in Stute (1996b), and Lemma 2.1
and Lemma 2.5 above. Then, by Hewitt-Savage 0-1 law, we get the result.
O
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We now study

n—2

=k —k+1) 5,
IIL,Ol,Am = (n_ 1) (5j:n - l)b] [ ] [f:n]
2 Gy =00 ===

<

n n

i=j+1 i=j+1

Lemma 2.7. Assume that o1, ¢9 satisfy the support condition (iv). Then,
II,, ,, converges to —E{y{"(Z)7{*(Z)(1 — &)} with probability 1.

Proof: Since under (iv) we have ©1(X(in), Zisn) = 92(Xjin]» Zin) = 0
at least for large i’s (and large n), the summation may be restricted to
1 <j <n(l—c¢) for some appropriate 0 < ¢ < 1. Then, with probability
1, it can be seen that, the sum is asymptotically equivalent to

J=1 i=j+1 i=j+1

which can be written as:

1 - . ~
Y I 1(z, 2)FO(d, dz o(x, 2) FO(dx, dz)|HO (dt
| ), e B st ) Bl )

1 - 1
where H, (t) = - S Yzi<ey and H) () = - >y Liz,<t,5,=0} - For each
fixed ¢, and ¢ = 1,2, the Strong Law of Large Numbers for Kaplan-Meier
integrals with covariates provides

tw [ il ) ENdnd) = [ gl 2 Y d )
n=o0 Jiz>t} {z>t}

with probability 1. By a standard Glivenko-Cantelli argument it can be

shown that this convergence is uniform in ¢. In total , under condition (iv),

with probability 1 it holds
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1

i D a— Y z,2)FO(dz, dz QaczAOx,z~O
[ el e R e Bl do) i

= [ar e om

=EC0{ (27 (2)(1 - 9)

Proof of Theorem 1.2 . Since Z,,.,, — 7y with probability 1, then with
probability 1 there exists ng so that for n > ng we have 1 (Xn:n]; Znin) =0
02(X[nin)s Znin) = 05 also , S, = S,, T,, = T,. So representation for
ngo\v(Jack), in Theorem 1.1, reduces to the following formula

néo\v(Jack)
n n—2 n
— -1 v N28[m) T & 5[1;"] -1 _ -1 T
{(n — (L2 0 4 (5 - D" (- 1)S,T,
n—2
mn—k—1n-k+1
0 - 0=
j=1
i=j+1 1=j+1
_ i1
n 1 Z@l [i:n]s zn)<p2(X[7,n]a in 5['Ln] H 26J"-
Jj=1

(2.4)

For both dj1.,) = 0, dp1.y) = 1, {...} equals —nl. Therefore, by apply-
n_

ing the Strong Law of Large Numbers for Kaplan-Meier integrals with
covariates (see (1.1)), the first term converges to —S.T with probability
1. Under condition (iv) in Lemma 2.7 it has been proved that the middle
sum, I, ,,, converges to —E{y{" (Z)v{?(Z)(1—46)}. Finally, the last sum

, Un, by Corollary 2.6 converges to E{t(X, Z)y3(Z)d} with probability 1
as n — oco. [
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Similar to the Jackknife estimate of variance of a Kaplan-Meier integral in
Stute (1996b), when the support condition (iv) is not satisfied, the consis-

tency of C’/o\v(.]ack) is violated if d;,1.,) = 0 and d},.) = 1. In this case,

as mentioned, we introduce C/(;)*(J ack), a modified estimate of covariance
with 67, = 0. We have

nC’/o\v*(Jack)
n S[im) (0 — 2 Oi1:n n * ok
= (= (P2 1 4 0~ 1)~ (- D)
= I n—k—1)(n—k+1)
-1 o —1)b. v — 26[k:n]
+(n )Z(a[j-n] )bj H[ (n—k)(n — k) ]
Jj=1 k=1
n—1 n—1
1=j+1 i=j+1
n—1 n B ] 9
+(n_1) Z@l(X[Zn]aZzn><p2(X[ Zin 6[7, n] 2 H 251 n]
i=1 7j=1

(2.5)

Since Z,.,, converges to 7y with probability 1, the application of the Strong
Law of Large Numbers for Kaplan-Meier integrals with covariates indicates
that

[ e1(a, z)l{Z":n:Z}FS(dx, dz) converges to zero with probability 1. There-
fore | S} —Sy,| and | T, —T,,| are asymptotically negligible. Convergence of the
first term and last sum in (2.5) hold for general ;1 and @9, so to prove the
consistency of Cov’ (Jack) we will show that the convergence of the middle
sum is not destroyed even if the support condition is not satisfied. To this
end, consider zg < 7g large enough and for i = 1,2 let ¢; = ¢, + ¢;°,
where @;_ (x,2) = @i(z,2)1{2<20y and @;°(z, 2) = @i(2, 2)1 {25201

Now we rewrite the middle sum as
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n—1
X[ Z (Qolzo (X[zn]a Zzn) + QOTO (X[i:n]v Zzn))Wm]
i=j+1
n—1
[ Z (@220 (X[zn]7Z1n) + 9030 (X[Zn]7Z1n))W1n]
i=j+1
=L, oy I o I 1L .
Lemma 2.8. We have
lim IT* 2o = lim IT*:, =0
n—oo  PlzgrP2 n—oo  ¥P1 ¥P2z
Proof: We have that
117 =(n-1 > 5 1 b-ji1 (k=D =k + 1),
P140:95" =(n- )Z( ) — 1) JH[ (n—k)(n—k) ]
j=1 k=1
n—1 n—1
X[ Z 90120 (X[zn]aZln)Wzn][ Z wgo(X[i:n]vzi:n)Win}
i=j+1 i=j+1

is zero unless @1, (X[in]; Zin) > 0 and ©5° (X[n), Zi:n) > 0 for some i
and k , which implies Z;.,, < 29 and Z., > 2zp. In this case we must have
Zj+1 < zp, that means we can reduce the summation to 1 < j < n(l —¢)
for some appropriate 0 < € < 1. Therefore, similarly to the proof of Lemma

2.7, IT* 2o 1S written as
PlzgP2

71 0 20 0 r70
/ e /{ Pl B a2 /{ ) 8 B, d) S

and we may restrict the integration to ¢'s bounded away from 7. The
Strong Law of Large Numbers for Kaplan-Meier integrals with covariates
provides

fim [ e @) B ds) = [ (20 Y (de )

N0 Jia>t} {z>t}

- / o, )L oy 0 (2) T (der, d2)
{z>t}
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and since we chose zg large enough the limit is negligible and this completes
the proof. [J

Lemma 2.9.
lim II ZO Lpzo =0.

n— oo

Proof: Without the loss of generality we consider ¢; > 0 and ¢o > 0.

So IT* 270 20 is not positive and it is sufficient to show that IT* 270 20 is
P1 9Po P1 5Pz

nonnegative asymptotically. Since for i = 1,2, ¢;° < ¢7° + ¢3°

n—2
. (n—k—1)(n—k+1),,,
II«ﬂf"wi“ 2(”_1); [jin] — JH (n—k)(n— k) |70tksnd
J:
n—1
X[ Z (‘pio (X[zn]a Zi:n) + ()0;0 (X[zn]vzzn))Wzn}z
i=j+1

Let ¢ = p7° + ©3°; by (2.5) we have (in obvious notation)

n@*(Jack:)
n =2 *
= (= (P (P2 4 (5 1) 1))
1) S g - 1y TLOE DO D
n [7:m] J (nfk)(nfk)
j=1 k=1
n—1
X[ Z ¢(X[z n]sz n)Wzn]
=j+1
n—1 —
n_l ¢ in zn zn 26[J”~
; fien] l;[ —

Since S¢* = Z?;ll Win®(X(in]> Zjizn)) converges to S¢ = f{Y<TH} GdFO,
and since the last sum converges to E{¢*(X, Z)72(2)d} with probability 1

(cfr. Corollary 2 .6 above), the non-negativity of n@*(Jack) completes
the proof. [
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Proof of Theorem 1.3. As we have discussed before, the first term in (2.5)
converges to —S.T', the last sum, Uy, does not contain Jj,.,; and by Corol-
lary 2.6 converges to E{¢1(X, Z)p2(X, Z)v3(Z)6} and along Lemmas 2.8
and 2.9 we showed that the middle sum, I} is asymptotically equiva-

p1p2?
lent to 11;120 $2.g where 1, ,p2,, satisfy the support condition. Therefore

the middle sum converges to —E{v{*(Z)v5*(Z)(1 — &)} by Lemma 2.7. [J

Remark. As to the Jackknife estimate of variance of a Kaplan-Meier in-
tegral with covariates, the results of this paper hold. In such a case, in
proofs we deal only with one Borel-measurable function, that is ¢1(z,2) =

wa(z, 2) = p(z, 2).
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