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Abstract

Beta-Binomial SGoF (or BB-SGoF) method for multiple hypotheses
testing has been recently proposed as a suitable modification of the Se-
quential Goodness-of-Fit (SGoF) multitesting method when the tests are
correlated in blocks. In this paper we investigate the power, the false dis-
covery rate, and the conservativeness of BB-SGoF in an intensive Monte
Carlo simulation study. Important features such as automatic selection
of the number of existing blocks and preliminary testing for independence
are explored. Our study reveals that (a) BB-SGoF method maintains the
properties of original SGoF in the dependent case; (b) BB-SGoF weakly
controls for FDR even when the Beta-Binomial model is violated and the
number of blocks k is unknown; and that (c) the loss of power of the auto-
matic selector for the number of blocks relative to the benchmark method
which uses the true k varies depending on the proportion and the type
(strong, intermediate or weak) of the effects, being strongly influenced by
the within-block correlation too.

1 Introduction

Multiple testing procedures have become more and more important in the last
years due to the increasing availability of information in fields like genomics,
transcriptomics, or proteomics. In many occasions the goal is to control for
the number of type I errors (or false positives) along a sequence of hundreds,
thousands or tens of thousands of hypotheses which are tested simultaneously.
Methods traditionally used in this setting control for the family-wise error rate
(FWER) or for the false discovery rate (FDR) at a pre-specified level α. FWER-
controlling procedures ensure that no type I error will be committed with prob-
ability at least 1 − α; on the other hand, FDR-based methods control at level
α the expected proportion of false positives among the null hypotheses being
rejected. FWER methods include, among others, Bonferroni and Holm (step-
down) procedures, while the standard approach for controlling the FDR is the
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Benjamini-Hochberg method (Benjamini and Hochberg, 1995). See Nichols and
Hayasaka (2003) or Dudoit and van der Laan (2008) for a deeper introduction
to this area.

Unfortunately, it has been quoted by several authors that FWER and FDR
controlling methods sometimes exhibit a low power. Here, the power of a multi-
testing method is defined as the proportion of non-true nulls which are rejected.
This has motivated the introduction of alternative decision criteria. General-
ized FWER criterion was studied in van der Laan et al. (2004) or Lehmann
and Romano (2005), among others. Genovese and Wasserman (2002) suggested
to minimize the loss function FNR + λFDR, where FNR stands for the false
non-discovery rate (which is the expected proportion of non-true null hypothe-
ses among the accepted ones), while λ is a pre-specified penalty. Storey (2003)
proposed as a possible thresholding criterion to minimize a weighted average
of the positive FDR and FNR, where the choice of the weight is left to the
researcher who must proceed according to the importance of the rate of false
discoveries relative to that of false non-discoveries. Other approaches based on
p-value thresholding are reviewed in Genovese and Wasserman (2004).

More recently, Carvajal-Rodŕıguez et al. (2009) introduced a sequential
goodness-of-fit (SGoF) test to make a decision on the number and allocation of
non-true nulls. Carvajal-Rodŕıguez et al.’s SGoF method starts by comparing
the observed amount of p-values below an initial threshold γ to the expected
amount under the intersection or complete null (i.e., under the assumption that
all the null hypotheses are true). Such a comparison is performed through a
binomial test at level α; the excess of observed p-values below γ with respect
to the critical point at level α in the binomial test is then used to identify
the non-true nulls. Statistical properties of this approach were explored in de
Uña-Álvarez (2011). SGoF’s procedure controls for FWER (and FDR) at level
α, but only in the weak sense (i.e. under the complete null), which makes
a difference with other, more standard procedures. That is, SGoF method is
liberal with respect to the strong control of FWER or FDR, which are not
a priori bounded when some of the nulls are false. However, SGoF multitest
controls at the pre-specified level α the probability that the number of false
positives exceeds the number of false non-discoveries with p-value below γ (de
Uña-Álvarez, 2012). This property of conservativeness is unique to the SGoF
approach. SGoF method has become in short time a popular tool for applied
scientists; as an indicator, we mention that, according to the Web of Knowledge,
the seminal paper Carvajal-Rodŕıguez et al. (2009) has been cited 19 times only
in one year (2012).

In practice, the test statistics along the multiple tests may be dependent. An
adaptation of SGoF method to the case of dependent tests based on the beta-
binomial model was introduced by de Uña-Álvarez (2012); this beta-binomial
SGoF (or BB-SGoF) shares the main properties of original SGoF while tak-
ing the serial dependence of the p-values into account. Unlike for SGoF, the
practical performance of its beta-binomial extension has not been extensively
investigated so far. For example, evaluation of the FDR and the power of
BB-SGoF is presently missing; similarly, it is still unclear how BB-SGoF will
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perform when the underlying assumptions for the beta-binomial model are vi-
olated. Although de Uña-Álvarez (2012) reported a simulation study, it was
restricted to the beta-binomial case; besides, due to the design of that study, it
did not allow to distinguish the p-values coming from true and non-true nulls
and, therefore, only the total amount of rejections and the family-wise rejection
rate (rather than FDR or power) could be computed. This paper aims to fill
these gaps.

In this paper we investigate the power, FDR and conservativeness of BB-
SGoF methods through an intensive Monte Carlo simulation study. The orga-
nization of the paper is as follows. In Section 2 we briefly revisit SGoF and
BB-SGoF procedures. In Section 3 the simulated scenarios are described. Sim-
ulation results are reported and commented in Section 4. Finally, in Section 5
we give the main conclusions of our research.

2 SGoF and BB-SGoF revisited

2.1 SGoF method

Carvajal-Rodŕıguez et al (2009) proposed a new method for p-value thresh-
olding in multitesting problems. This method, called SGoF (from Sequential-
Goodness-of-Fit), can be summarized as follows. Let Fn be the empirical distri-
bution of the n p-values attached to the null hypotheses being tested, and let γ
be an initial significance level, typically γ = 0.05. Under the complete null that
all the n null hypotheses are true, the expected amount of p-values below γ is
just nγ and therefore if nFn(γ) is much larger than nγ, one gets evidence about
the existence of a number of non-true nulls, or effects, among the n tests. Let F
be the underlying distribution function of the p-values; SGoF multitest starts
by performing a standard one-sided binomial test for H0 : F (γ) = γ versus the
alternative H1 : F (γ) > γ at level α, based on the critical region

Fn(γ)− γ√
V ar(0)(Fn(γ))

> zα,

where V ar(0)(Fn(γ)) = γ(1− γ)/n and zα is the 1−α quantile of the standard
normal. Here, the Gaussian distribution is used as an approximation to the
binomial model since, in practice, the number of hypotheses n will be large
(hundreds, thousands, etc). If H0 is rejected, then the number of effects declared
by SGoF is given by

N (0)
α (γ) = n[Fn(γ)− γ]− n

√
V ar(0)(Fn(γ))zα + 1,

which is the excess in the number of observed p-values below the threshold γ
when compared to the expected amount, beyond the critical point zα. Then,

SGoF claims that the effects correspond to the N
(0)
α (γ) smallest p-values. In

this metatest, the FWER and the FDR are controlled at level α in the weak
sense (Carvajal-Rodŕıguez et al, 2009). SGoF method relates to the notion of
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second level significance testing (or higher criticism) introduced by Tukey in
1976, and further explored by Donoho and Jin (2004, 2008).

A more conservative version of SGoF is obtained when declaring as true

effects the N
(1)
α (γ) smallest p-values, where

N (1)
α (γ) = n[Fn(γ)− γ]− n

√
V ar(1)(Fn(γ))zα + 1,

and where V ar(1)(Fn(γ)) = Fn(γ)(1 − Fn(γ))/n. In this conservative ver-
sion, the variance is estimated without any restriction, which has two im-
portant consequences. First, since often γ < Fn(γ) < 0.5, it turns out that

V ar(1)(Fn(γ)) > V ar(0)(Fn(γ)) and, therefore, N
(1)
α (γ) < N

(0)
α (γ), leading to

a smaller amount of rejections compared to original SGoF. Second, the value

N
(1)
α (γ) may be regarded as the lower bound of a 100(1−α)% confidence inter-

val for n(F (γ) − γ), which in its turn is smaller than the expected number of
non-true nulls with p-value below γ; indeed, by using the conservative version
of SGoF, one ensures that the number of false discoveries among the p-values
below γ is smaller than the number of non-discoveries with probability 1 − α,
which is a reasonable error criterion (de Uña-Álvarez, 2012).

Unlike for other multitesting procedures, the power of SGoF increases with
the number of tests n. The reason for this is in the −n

√
V ar term appearing

in the number of rejection, which decreases as n grows. Besides, since SGoF
imposes no strong control of FWER nor FDR, in many instances its power is
often greater than FWER- or FDR-controlling methods. Simulations and ex-
amples provided in Carvajal-Rodŕıguez et al (2009) and de Uña-Álvarez (2011,
2012) indicate that this is indeed the case when the number of tests is large, and
there is a relatively small to moderate proportion of weak effects. Summaryz-
ing, SGoF provides a flexible criterion of significance for multitesting problems,
offering a good balance between error control and power. Unfortunately, SGoF
method (in both its original and conservative versions) is very sensitive to cor-
relation among the tests and, indeed, it may be very anticonservative (it tends
to reject more than it should) in dependent scenarios, where it loses its weak
FDR control (de Uña-Álvarez, 2012). This motivates the correction of SGoF
reviewed in the next section.

2.2 BB-SGoF method

BB-SGoF (from Beta-Binomial SGoF, de Uña-Álvarez, 2012) is a correction of
SGoF for correlated tests. It assumes that there exist k independent blocks of
correlated p-values, where k is unknown. As SGoF, BB-SGoF makes a decision
on the number of effects with p-values smaller than γ, but depending on the
number of blocks k and the within-block correlation.

Given the initial significance threshold γ, BB-SGoF starts by transforming
the initial set of p-values u1, ..., un into n realizations of a Bernoulli variable:
Xi = I{ui≤γ}, i = 1, ..., n. Then, by assuming that there are k independent
blocks of p-values of sizes n1, ..., nk (where n1 + ... + nk = n), the number of

4



successes sj within each block j, j = 1, ..., k, is computed. Here, Xi = 1 is called
success. After that, a set of independent observations {(sj , nj), j = 1, ..., k} is
available, where sj (j = 1, ..., k) is assumed to be a realization of a beta-binomial
variable with parameters (nj , p, η). In this setting, p = F (γ) represents the
average proportion of p-values falling below γ, which under the complete null
is just γ; while η is the correlation between two different indicators Xi and Xj

inside the same block (i.e., the within-block correlation between indicators). The
beta-binomial model can be regarded as a frailty model in which the random
probability π of the event Xi = 1 is shared within each block of tests; a beta
distribution is used for π, and the variance of this beta distribution is responsible
for the within-block correlation η (de Uña-Álvarez, 2012).

The main aim of BB-SGoF method is to construct a one-sided confidence in-
terval for τn(γ) = n(p−γ) = n(F (γ)−γ), similarly as SGoF does but considering
the possible existing correlation. This confidence interval may be constructed
from the asymptotic normality of the maximum-likelihood estimator (MLE) p̂
of p. In practice, in order to perform an unrestricted optimization of the beta-
binomial likelihood function, the logit reparametrization β1 = log(p/(1−p)) and
β2 = log(η/(1 − η)) is used. Introduce the 100(1 − α)% one-sided confidence
interval for τn(γ)

I(τn(γ)) = (n(exp(low1)/(1 + exp(low1))− γ),∞)

where low1 = β̂1 − se(β̂1)zα, with se(β̂1) the standard error of the MLE β̂1
of β1. Formally, BB-SGoF acts as follows. If 0 ∈ I(τn(γ)), the complete null
is accepted and no effect is declared. On the contrary, if 0 /∈ I(τn(γ)), then
BB-SGoF declares as effects the smallest NBB

α (γ; k) p-values, where

NBB
α (γ; k) = n(exp(low1)/(1 + exp(low1))− γ).

By definition, and according to the asymptotic normality of β̂1, BB-SGoF
weakly controls the FWER at level α when the number of tests n is large (see
de Uña-Álvarez , 2012, for details.) A crucial issue of this method is how to
choose the value of k, because in practice it will be unknown. Another point
to consider is the size of the blocks. A reasonable automatic choice for k is
kN = arg minkN

BB
α (γ; k), corresponding to the most conservative decision of

declaring the smallest number of effects along k. In this criterion, minimization
may be performed along a grid k = kmin, ..., kmax where kmin is the smallest
number of existing blocks (i.e. the strongest allowed correlation), and kmax =
n/nmin, where nmin is the smallest allowed amount of tests in each block. Here,
for simplicity, it is assumed that all the blocks have the same size. This kN
ensures the weak control of FWER at the nominal level α when the number of
blocks is unknown, as long as it falls between kmin and kmax.

Of course, the application of the automatic criterion kN to choose the number
of blocks entails a certain loss of power. This issue was somehow illustrated in
a preliminary simulation study (Uña-Álvarez , 2012). Therefore, in practice
a preliminary test for independence is recommended; if the p-values are not
correlated, one may apply SGoF procedure for independent tests to increase
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the power. In the setting of the beta-binomial model, Tarone (1979) introduced
a procedure for testing HT

0 : η = 0 against HT
1 : η > 0; if HT

0 is true, then
the beta-binomial model collapse to the binomial model and SGoF multitesting
method may be applied. In the case of equal nj ’s, Tarone’s test is based on the
Z–statistic

Z =
nηn − k√

2k
,

where (recall) n =
∑k
j=1 nj and ηn is a estimator of the correlation η, rejecting

HT
0 for large values of Z. That is, significant positive correlation is found when

ηn is large relative to its expected value under the binomial model (k/n). The
ability of this test to detect dependencies in our setting is explored through
simulations below.

3 Simulated scenarios

We have designed a simulated scenario similar to the study of Hedenfalk data
(Hedenfalk , Duggan, et al., 2001), where the mean expression levels of about
3000 genes in two different groups A and B of individuals (with sample sizes of
7 and 8) were compared. In order to study the influence of the number of null
hypotheses in the performance of the multitesting procedures, we considered the
cases n = 500, n = 1000, and n = 3000. Hedenfalk’s sample sizes of 7 and 8 were
taken for groups A and B respectively. The samples were drawn from n-variate
Gaussian populations with different correlation structures. The 2-sample t-test
was applied to test for each null hypothesis, the sequence of n p-values coming
from the computation of two-sided tails of the Student’s t distribution with 13
degrees of freedom. To summarize numerical results, 1000 Monte Carlo trials
were performed.

The proportion of true nulls (i.e. ’genes equally expressed’) Π0 was 1 (com-
plete null), 0.9 (10% of effects), or 0.67 (33% of effects). Mean was always taken
as zero in group A, while in group B it was µ for 1/3 of the effects and −µ
for the other 2/3 of effects, with µ = 1 (weak effects), µ = 2 (intermediate
effects), or µ = 4 (strong effects). Random allocation of the effects among the n
tests (’genes’) was considered. Within-block correlation levels of ρ = 0, 0.2 and
0.8 were taken, where ρ = 0 means independence and ρ = 0.8 indicates strong
correlation. With regard to the number of blocks, we considered k = 20, so we
had 25 tests per block when n = 500, 50 tests per block when n = 1000 and 150
tests per block when n = 3000. For random generation, the function rmvnorm

of the R software (R Core Team,2013) was used.
In Figure 1, fitted beta densities are shown for particular Monte Carlo trials

in four different situations of the case n = 1000. The beta density was estimated
by maximizing the beta-binomial likelihood based on the true number of blocks
k = 20 and the true numbers of block sizes (50 tests per block). For this, we
just note that, if P (ui ≤ γ) follows a Beta(a, b) distribution, then p = a/(a+ b)
and η = 1/(a + b + 1) (in the notation of Section 2.2) and, therefore, the
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Figure 1: Fitted Beta densities Vs. sampling densities for particular trials in
four different situations (n = 1000)

MLE’s of a and b are directly obtained from those of p and η. Regarding
the simulated density, this was estimated by the kernel method by taking as
initial sample the 20 within-block proportions of p-values falling below γ =
0.05. This Figure 1 shows that the simulated trials may not fit the beta model
well; indeed, it is suggested that the beta-binomial assumption may entail some
underdispersion compared to the simulated scenario. This is interesting, since
theoretical properties of BB-SGoF are only valid when P (ui ≤ γ) follows a
beta distribution. Simulations reported in the next Section indicate however
that BB-SGoF procedure may perform well even under departures of the beta
model.

BB-SGoF method with γ = α = 0.05 was applied under perfect knowledge
of the true value of k but also when underestimating (k/2) or overestimating
(2k) the true number of blocks. We also applied the automatic (data-driven)
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choice of k (kN ) by minimizing the number of effects declared by BB-SGoF
along the grid k = 2, ..., 61. Since the true number of blocks was k = 20, the
grid somehow represents the uncertainty one may have in practice.

For each situation, we computed the FDR, the power (both averaged along
the 1000 Monte Carlo trials), and the proportion of trials for which the number
of declared effects was not larger than the number of effects with p-value below
γ (this is just 1-FDR under the complete null); as indicated in de Uña-Álvarez
(2012), under the beta-binomial model BB-SGoF guarantees that this propor-
tion (labeled as COV in Tables below) is asymptotically (i.e. n → ∞) larger
than or equal to 1 − α, a property which is not shared by other multitesting
methods. Since the simulated models are not beta-binomial (Figure 1), it is
interesting to see to what extent COV differs from 95% in our simulations.
Because of the same reason, there is not guarantee that the FDR of BB-SGoF
will bounded by α under the complete null, even when using the true value of
k (benchmark method). Computation of these quantities for the conservative
SGoF method for independent tests and for the BH method (with a nominal
FDR of 5%) was also included to compare. The results are given in the following
section.

4 Simulation results

Tables 1 to 3 report the results of the 1000 Monte Carlo simulations for the
case n=3000 (the results for n = 500, 1000 were similar and they are briefly dis-
cussed in Section 4.4). In each table we report the FDR, Power (POW) and the
Coverage (COV) of six methods: conservative SGoF (denoted by SGoF), BH,
BB-SGoF(k) (BB-SGoF with the real number of blocks, benchmark method),
BB-SGoF(k/2) (BB-SGoF when underestimating the real number of blocks),
BB-SGoF(2k) (BB-SGoF when overestimating the real number of blocks), and
Auto BB-SGoF (the automatic BB-SGoF procedure based on kN ). In these
tables we represent by Π0 the proportion of true nulls (1-proportion of effects).

4.1 Complete null hypothesis

First we analyze the case of no effects (Π0 = 1), i.e. we consider the com-
plete null hypothesis. It should be recalled that, under the complete null, all
the rejected null hypotheses are Type I errors and therefore FDR = FWER.
Obviously, the power in all these situations is 100% since there are no effects.
Moreover, the coverage coincides to 1−FDR as indicated above. This explains
why only figures corresponding to FDR are given in Table 1.

From Table 1 we see that all the methods respect the nominal FDR of 5%
fairly well in the independent setting (ρ = 0). For example, SGoF, BH and BB-
SGoF(k) report an FDR of 0.048, 0.057 and 0.039, respectively. The automatic
BB-SGoF reports a FDR below nominal (0.003), something expected due to its
conservativeness. As correlation grows, original SGoF for independent tests loses
control of FWER; for example, when ρ = 0.2, FDR = 0.178 and when ρ = 0.8

8



Table 1: Simulation results of n = 3000 tests and proportion of true nulls Π0 = 1
ρ = 0 ρ = 0.2 ρ = 0.8

SGoF 0.048 0.178 0.358
BH 0.057 0.051 0.036
BB-SGoF(k) 0.039 0.056 0.07
BB-SGoF(k/2) 0.033 0.056 0.033
BB-SGoF(2k) 0.044 0.094 0.135
Auto BB-SGoF 0.003 0.023 0.017

, FDR = 0.358, i.e., it is 7 times the nominal. Interestingly, BB-SGoF method
adapts well to the correlated settings; this is particularly true for the benchmark
method which uses the true k, and for BB-SGOF(k/2) which underestimates
the number of existing blocks. For instance, in the case of strong correlation
(ρ = 0.8) these methods report a FDR of 0.07 and 0.033, respectively. Again, the
automatic BB-SGoF reports a FDR below nominal, revealing its conservative
nature.

On the other hand, when the researcher overestimates the number of blocks
(BB-SGoF(2k)), the FDR is above the nominal (FDR=0.094 for ρ = 0.2 and
FDR=0.135 for ρ = 0.8); this is because BB-SGoF decision becomes more liberal
as the assumed dependence structure gets weaker. The BH method respects the
nominal FDR regardless the value of ρ, something expected since the well-known
robustness property of Benjamini-Hochberg method in dependence settings.

Summarizing, the results for the benchmark BB-SGoF are relevant, since
they suggest FWER control (in the weak sense) even when the simulated model
is not beta-binomial. Besides, since in practice the true number of blocks will
be unknown, it is interesting to see that its automatic version preserves the level
well.

4.2 Case of Π0 = 0.9 : 10% of effects

In this section we focus on the case of 10% of effects (Π0 = 0.9, Table 2).
When the effects are weak (µ = 1), we can see that the only method which
respects the FDR al level α is BH. BB-SGoF(k) shows a FDR as large as 33%,
although decreasing as the correlation ρ grows. The same features are seen for
the automatic BB-SGoF method. This relatively large FDR is connected with a
larger power; certainly, the power of automatic BB-SGoF relative to BH is above
43 under independence (POW=0.175 and 0.004 respectively), and above 41 with
ρ = 0.2 (POW=0.167 and 0.004 respectively). With strong correlation (ρ = 0.8)
this rate becomes smaller (about 9). In the independent setting, this poor power
of BH procedure with a large number of tests and a small proportion of weak to
moderate effects was reported in previous research (Carvajal-Rodŕıguez et al.,
2009); interestingly, the automatic BB-SGoF method is able to detect about
17% of the existing non-true nulls in situations in which BH FDR-controlling
method only reports less than 1% (ρ = 0, 0.2).
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Table 2: Simulation results of n = 3000 tests and proportion of true nulls
Π0 = 0.9

ρ = 0 ρ = 0.2 ρ = 0.8
FDR POW COV FDR POW COV FDR POW COV

SGoF 0.334 0.200 1 0.328 0.201 0.962 0.262 0.175 0.725
BH 0.044 0.004 1 0.048 0.004 1 0.026 0.007 0.997

µ = 1 BB-SGoF(k) 0.331 0.197 1 0.314 0.183 0.998 0.195 0.109 0.870
BB-SGoF(k/2) 0.329 0.194 1 0.313 0.183 0.995 0.166 0.087 0.959
BB-SGoF(2k) 0.332 0.198 1 0.321 0.191 0.987 0.221 0.136 0.815
Auto BB-SGoF 0.310 0.175 1 0.300 0.167 0.998 0.119 0.061 0.983
SGoF 0.079 0.731 1 0.083 0.731 0.978 0.097 0.689 0.739
BH 0.045 0.607 1 0.045 0.606 1 0.039 0.605 0.986

µ = 2 BB-SGoF(k) 0.078 0.725 1 0.075 0.713 0.998 0.066 0.612 0.876
BB-SGoF(k/2) 0.076 0.721 1 0.075 0.712 0.995 0.051 0.579 0.957
BB-SGoF(2k) 0.079 0.727 1 0.078 0.721 0.994 0.081 0.648 0.814
Auto BB-SGoF 0.065 0.685 1 0.066 0.683 0.999 0.041 0.534 0.982
SGoF 0.0004 0.848 1 0.001 0.849 0.978 0.041 0.794 0.740
BH 0.046 0.999 0 0.045 0.999 0 0.042 0.999 0.151

µ = 4 BB-SGoF(k) 0.0004 0.839 1 0.0005 0.822 0.998 0.018 0.706 0.873
BB-SGoF(k/2) 0.0004 0.833 1 0.0005 0.821 0.995 0.004 0.660 0.967
BB-SGoF(2k) 0.0004 0.842 1 0.0007 0.834 0.996 0.032 0.747 0.811
Auto BB-SGoF 0.0002 0.786 1 0.0003 0.781 0.999 0.002 0.603 0.986

The situation with a 10% of strong effects (µ = 4) is different. In Table 2
we see that the FDR of SGoF-type methods may be very small compared to
γ or α (less evident with increasing correlation). For example, SGoF(k) and
Auto BB-SGoF reported a FDR of 0.0004 and 0.0002 in the case of ρ = 0 and
0.018 and 0.002 in the case of strong correlation (ρ = 0.8), respectively. This
is because, with such strong effects, the p-values corresponding to the non-true
nulls concentrate aroung zero, being well separated from the p-values pertaining
to the true nulls; BB-SGoF method is able to detect this and to automatically
report a small rate of false discoveries. On the contrary, the nominal FDR of 5%
imposed by BH method is too large when the effects are strong, as it can be seen
by analyzing the values of COV; even when BH is detecting almost 100% of the
effects, most of the times (100% for ρ = 0, 0.2, 85% for ρ = 0.8) this is done at
the price of committing more false discoveries than false non-discoveries, as long
as the interest is on the p-values below γ = 0.05. On the other hand, the power
of benchmark BB-SGoF is never below 70%. In these situations, BB-SGoF
method offers a good compromise between power and conservativeness.

In the case of intermediate effects (µ = 2), the relative results achieved by
the several multitesting methods are similar to those corresponding to weak or
strong effects, although FDR and power take intermediate values. In particular,
the FDR of BB-SGoF methods varies between 4% and 8% (depending on the
decision on the number of blocks and the existing correlation), close to the
nominal 5% of BH, and therefore the power is homogeneous along the several
procedures (around 50− 70% depending on the correlation).

An important issue is that of the losing of power when using automatic BB-
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SGoF compared to the benchmark method. From Table 2 we see that the power
of the auotmatic method relative BB-SGoF(k) is above 85%, with the case of
strong correlation and weak effects as an exception, when it breaks down to 56%.
In this case, automatic BB-SGoF deals unsuccessfully with the uncertainty on
k together with the poor expectatives on the power, which are a consequence of
the closeness of the alternative hypotheses to the nulls and the large correlation.
One should note that a large value of ρ will result in a relatively large variance
and, consequently, in a lower number of rejections when applying BB-SGoF
method. Finally, we see in Table 2 that coverage values of BB-SGoF are nicely
large, although they become as low as 81% with strong correlation when the
number of blocks is overestimated. For BB-SGoF(k), COV is always above 87%
(99.8% when ρ ≤ 0.2), without reaching the nominal 95% in the case ρ = 0.8
which holds asymptotically. Since the number of tests is large (n = 3000),
one may wonder why the coverage of the benchmark method which makes use
of the true number of blocks is below 95%. A possible explanation is found
in the departure of the simulated scenarios with respect to the beta-binomial
assumption (Figure 1, bottom); we also mention that, with large correlation, a
larger sample size n could be needed to reflect the asymptotic behaviour of a
given method. Coverages reported by the automatic BB-SGoF are above 98%
regardless the correlation and, therefore, in practice it may be recommended as
a conservative approach.

4.3 Case of Π0 = 0.67: 33% of effects

In Table 3 the results corresponding to a 33% of weak effects (Π0 = 0.67) are
given. Compared to Table 2, it is seen that the FDR of all the methods decreases,
while the power increases; this is because the existence of a larger amount of
non-true nulls. As in Table 2, in Table 3 we see that nor SGoF neither BB-SGoF
are controlling for FDR at any pre-specified level. Again, the FDR attained by
BB-SGoF may be regarded as a suitable proportion of false discoveries given the
situation at hand; BB-SGoF(k), for example, reports a FDR of about 10− 13%
with weak effects, but it goes down to about 3% and 0.01% with intermediate
and strong effects respectively. The power of BB-SGoF method increases with
the effect level (from weak to strong) and it decreases as the correlation grows,
similarly as in Table 2.

Compared to BH approach, BB-SGoF(k) reports a relative power of about
8-13 with weak effects, being about 7-12 when comparing automatic BB-SGoF
to BH; this reveals once more that BB-SGoF strategy may represent a large
gain in power when the effect level is weak (true and non-true p-values well
mixed). When the effects are intermediate or strong, the situation is the oppo-
site, according to the lower FDR of BB-SGoF. However, with strong effects for
example, the power of automatic BB-SGoF relative to BH is always above 84%,
which again indicates a good balance between conservativeness and ability to
detect true alternative hypotheses. On the other hand, conservativeness of BB-
SGoF procedure may be assessed through the attained coverages; in this sense,
benchmark BB-SGoF coverages are above 96% in all the situations (improving
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Table 3: Simulation results of n = 3000 tests and proportion of true nulls
Π0 = 0.67

ρ = 0 ρ = 0.2 ρ = 0.8
FDR POW COV FDR POW COV FDR POW COV

SGoF 0.135 0.301 1 0.135 0.302 1 0.124 0.301 0.901
BH 0.036 0.023 1 0.032 0.023 1 0.024 0.031 1

µ = 1 BB-SGoF(k) 0.134 0.298 1 0.131 0.293 1 0.103 0.249 0.995
BB-SGoF(k/2) 0.134 0.297 1 0.132 0.293 1 0.103 0.249 0.997
BB-SGoF(2k) 0.135 0.299 1 0.133 0.297 1 0.111 0.269 0.979
Auto BB-SGoF 0.129 0.286 1 0.128 0.284 1 0.097 0.233 0.997
SGoF 0.032 0.826 1 0.032 0.826 1 0.034 0.823 0.932
BH 0.033 0.831 1 0.033 0.831 1 0.031 0.832 0.961

µ = 2 BB-SGoF(k) 0.031 0.823 1 0.031 0.821 1 0.026 0.795 0.992
BB-SGoF(k/2) 0.031 0.820 1 0.031 0.819 1 0.026 0.794 0.993
BB-SGoF(2k) 0.032 0.824 1 0.032 0.823 1 0.029 0.807 0.979
Auto BB-SGoF 0.028 0.805 1 0.028 0.803 1 0.024 0.776 0.995
SGoF 0.0001 0.908 1 0.0001 0.907 1 0.003 0.902 0.933
BH 0.033 0.999 0 0.033 0.999 0 0.032 0.999 0.011

µ = 4 BB-SGoF(k) 0.0001 0.903 1 0.0001 0.900 1 0.0004 0.864 0.994
BB-SGoF(k/2) 0.0001 0.900 1 0.0001 0.898 1 0.0003 0.861 0.996
BB-SGoF(2k) 0.0001 0.905 1 0.0001 0.903 1 0.001 0.881 0.978
Auto BB-SGoF 0.0001 0.882 1 0.0001 0.879 1 0.0002 0.840 0.998

its results with 10% of effects, see Table 2), and this percentage increases to
99.5% when considering automatic BB-SGoF. These figures may be as low as
1% or even 0% for BH (strong effects), similarly as in Table 2, situations in
which this method could be regarded as too anticonservative, at least as long
as COV is concerned.

Regarding the power of automatic BB-SGoF relative to the benchmark BB-
SGoF, from Table 3 we see that this rate is always above 94%, the worst situation
being again the case with strongest correlation and weakest effects. This im-
proves substantially the worst rate of 56% found from Table 2 and, therefore,
the presence of a larger amount of non-true nulls is beneficial to the data-driven
BB-SGoF method. This improvement could be explained by the fact that, with
µ = 1 and ρ = 0.8, the automatic number of blocks kN tends to be larger
with 33% of effects than with 10% (see Table 6 below) and, consequently, Auto
BB-SGoF becomes more liberal.

4.4 Influence of the number of test (n)

As mentioned at the beginning of this Section, simulations with a lower number
of tests n = 500, 1000 were performed. In Table 4 we report the results corre-
sponding to n = 500 in the case of no effects (complete null). The results in
this Table 4 are similar to those in Table 1 for the case n = 3000; all the meth-
ods respect the nominal FDR of 5% but SGoF procedure for independent tests
(which fail in the presence of correlation) and BB-SGoF when overestimating
the number of blocks (it is anticonservative when ρ = 0.8). Results for n = 1000
were roughly the same and they are not shown.
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Table 4: Simulation results of n = 500 tests and proportion of true nulls Π0 = 1
ρ = 0 ρ = 0.2 ρ = 0.8

SGoF 0.051 0.092 0.288
BH 0.056 0.055 0.037
BB-SGoF(k) 0.043 0.056 0.059
BB-SGoF(k/2) 0.043 0.058 0.045
BB-SGoF(2k) 0.041 0.070 0.136
Auto BB-SGoF 0.013 0.017 0.025

In Table 5 we report the FDR, the power and the coverage of the several
methods when the proportion of effects is 10% and n = 500. The features
one can appreciate here are similar to those in Table 2. However, due to the
smaller number of tests, the FDR and power of BB-SGoF method are smaller.
This is because the property of SGoF-type methods, for which the power is an
increasing function of n. According to this, the coverages of BB-SGoF get better;
for example, for BB-SGoF(k) they are always above 93%, and this increases to
98% for automatic BB-SGoF. These coverages may be very low for BH with
strong effects (similarly as in the case n = 3000), ranging from 11.6% in the
independent setting to 41.5% when ρ = 0.8.

Table 5: Simulation results of n = 500 tests and proportion of true nulls Π0 =
0.9

ρ = 0 ρ = 0.2 ρ = 0.8
FDR POW COV FDR POW COV FDR POW COV

SGoF 0.282 0.137 0.994 0.270 0.136 0.986 0.228 0.135 0.835
BH 0.0425 0.012 1 0.050 0.013 1 0.023 0.016 0.997

µ = 1 BB-SGoF(k) 0.269 0.130 0.998 0.255 0.125 0.992 0.162 0.084 0.943
BB-SGoF(k/2) 0.268 0.128 0.996 0.249 0.125 0.994 0.135 0.074 0.967
BB-SGoF(2k) 0.272 0.132 0.996 0.261 0.123 0.991 0.185 0.106 0.909
Auto BB-SGoF 0.219 0.093 1 0.209 0.089 0.998 0.095 0.050 0.989
SGoF 0.053 0.623 0.999 0.057 0.622 0.995 0.077 0.603 0.861
BH 0.044 0.607 1 0.045 0.607 1 0.042 0.609 0.972

µ = 2 BB-SGoF(k) 0.051 0.609 0.999 0.052 0.605 0.998 0.053 0.535 0.937
BB-SGoF(k/2) 0.050 0.608 0.999 0.052 0.602 0.999 0.046 0.516 0.967
BB-SGoF(2k) 0.051 0.613 0.999 0.054 0.611 0.997 0.062 0.566 0.913
Auto BB-SGoF 0.039 0.537 1 0.040 0.539 0.999 0.037 0.455 0.982
SGoF 0.0001 0.711 0.999 0.0006 0.711 0.995 0.022 0.699 0.869
BH 0.044 0.999 0.116 0.045 0.999 0.130 0.042 0.999 0.415

µ = 4 BB-SGoF(k) 0.0001 0.695 0.999 0.0003 0.688 0.998 0.008 0.619 0.936
BB-SGoF(k/2) 0.0001 0.692 0.999 0.0002 0.686 0.998 0.003 0.592 0.972
BB-SGoF(2k) 9.573e-05 0.698 1 0.0004 0.696 0.997 0.011 0.655 0.917
Auto BB-SGoF 9.924e-05 0.611 1 0.0001 0.609 0.999 0.001 0.519 0.988

The power of BB-SGoF(k) is about 5-11 times that of BH with weak effects,
but it may be as low as 0.6 with strong effects and strong correlation. There-
fore, performance of BB-SGoF relative to BH is poorer with a smaller n; this
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reinforces the fact that BB-SGoF is more suitable for multitesting problems in
high dimensions. Interestingly, the power of automatic BB-SGoF relative to
benchmark SGoF is above 60% in all the cases (the worst situation is again
that with weak effects and ρ = 0.8). Compared to the figures in Table 2, it
is seen that a smaller number of tests is not beneficial for the automatic BB-
SGoF criterion, for which the power relative to that of BB-SGoF(k) is 87% with
n = 3000 (averaging the nine simulated scenarios) but only 81% with n = 500.

Results for n = 500 and 33% of effects were also obtained, as well as results
for the case n = 1000 with 10% or 33% of effects. These results (not shown)
provided no other relevant evidences than those discussed above.

4.5 Automatic choice of the number of blocks

Automatic BB-SGoF implements a preliminary estimation of the number of
blocks of dependent p-values. Since this estimation is performed on the basis of
a conservative criterion (this is, to minimize the number of rejections), it does
not lead in general to a precise approximation of the true k. In order to illustrate
this point, we report in Table 6 the number of blocks detected on average (i.e.
the mean of kN ) and its standard deviations (in brackets), in the case n = 3000.
Recall that the true number of blocks is 20.

Table 6: Number of blocks detected on average and it standard deviations (in
brackets), n = 3000

µ = 1 µ = 2 µ = 4
Π0 = 1 Π0 = 0.9 Π0 = 0.67 Π0 = 9 Π0 = 0.67 Π0 = 0.9 Π0 = 0.67

ρ = 0 6.43(11.30) 3.67(8.09) 1.93(4.51) 2.93(6.67) 1.25(1.23) 2.59(6.41) 1.25(1.84)
ρ = 0.2 6.02(6.11) 4.63(5.45) 3.62(4.48) 3.02(4.51) 1.37(1.65) 3.04(4.19) 1.48(1.67)
ρ = 0.8 6.09(5.46) 4.74(4.51) 7.62(6.39) 4.42(4.29) 5.71(5.54) 4.32(3.82) 5.35(5.03)

Results in Table 6 indicate that kN strongly underestimates the value of k,
which is a result of the conservativeness of the underlying criterion. Note that
fewer blocks represents a situation with a stronger dependence structure and,
consequently, a smaller number of rejections when applying BB-SGoF. More
specifically, under the complete null, the average of kN is about 6, with a stan-
dard deviation which decreases as the correlation increases. With weak effects,
this average varies depending on the proportion of effects and the correlation
degree; the same happens with intermediate or strong effects. Roughly, it is
seen that the average (also the standard deviation) of kN decreases as the ef-
fect level changes from weak to strong, while it increases with the correlation.
Therefore, it seems that kN is protecting BB-SGoF against situations in which
the amount of rejections could be too large, due to the strength of the effects
or the low correlation. Interestingly, a larger proportion of effects results in a
smaller value of kN when ρ = 0.2 but the opposite is true for ρ = 0.8, so no
general conclusion can be given to this regard. Overall, it can be said that kN
plays an important role when looking for conservativeness but it is a biased,

14



highly dispersed estimator of the true number of blocks.

4.6 Tarone test

As mentioned in Section 2, Tarone (1979) introduced a test for the binomial
model HT

0 : η = 0 against the beta-binomial alternative HT
1 : η > 0. Here we

denote by η the correlation between Bernoulli outcomes I{ui≤γ} sharing the same
block, which is different from ρ, the correlation between the normally distributed
’gene expression levels’ in our simulations (but we have η = 0 when ρ = 0).
In Figure 2 we show the rejection proportion (along the 1000 simulations) of
Tarone’s test performed at level 0.05, in the case when the value of k is correctly
specified, for several correlation degrees ρ = 0, 0.2, 0.8 (represented in the x axis)
and n = 3000, 500 (top and bottom, respectively).
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Figure 2: Proportion of rejections of the Tarone’s test.

In Figure 2 we can see that, when ρ = 0, the rejection proportion is about
5%, indicating that Tarone’s test respects the level well. As ρ departs from zero,
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the rejection proportion grows, and the same happens when moving from the
case n = 500 to n = 1000; both features were of course expected. In general, the
power of Tarone’s test decreases as the proportion and/or the level of the effects
(non-true nulls) increase; this suggests that the presence of effects introduces
noise when testing for correlation.

5 Main conclusions

BB-SGoF method may control the FWER in the weak sense even when the
underlying model is not beta-binomial. This suggests that the beta-binomial
model may have enough flexibility to represent the correlation structure among
the tests in practice. BB-SGoF method is also robust with respect to miss-
specification of the number of existing blocks, although it becomes too liberal
when this parameter is overestimated. The automatic BB-SGoF procedure per-
forms well, with only a moderate loss of power (5 − 15%) with respect to the
benchmark version in most of the cases. However, when there is a small propor-
tion (10%) of weak effects, this loss of power may be as large as 44%, particularly
when the correlation within the blocks of tests is strong. Therefore, more ef-
forts are needed to select the unknown number of blocks in an automatic (data
driven) way. Another interesting finding of our simulation study is the ability
of Tarone’s test to detect dependence in practice. When the null hypothesis
of no correlation is accepted, application of original SGoF (rather than BB-
SGoF) is recommended. As SGoF for independent tests, BB-SGoF method is
liberal with respect to the FDR or the FWER, and this explains why it is able
to exhibit a good power in difficult situations where FWER and FDR control-
ling procedures fail to detect non-true nulls (this is typically the case when the
number of tests is large, and there is a small to moderate proportion of weak
effects). Furthermore, conservativeness of BB-SGoF has been assessed; more
specifically, BB-SGoF method ensures that, with large probability, the number
of false discoveries will not exceed the number of false non-discoveries (at least
when the focus is on the p-values below a given threshold), thus offering a good
compromise between false discovery rate and power.
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