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Abstract

One major goal in clinical applications of multi-state models is the estimation
of transition probabilities. The usual nonparametric estimator of the tran-
sition matrix for non-homogeneous Markov processes is the Aalen-Johansen
estimator (Aalen and Johansen [1]). However, two problems may arise from
using this estimator: first, its standard error may be large in heavy censored
scenarios; second, the estimator may be inconsistent if the process is non-
Markov. Happily, there have been several recent contributions that account
for these problems. In this work we consider the estimation of the transition
probabilities, using TPmsm a software application for R. It describes the ca-
pabilities of the program for estimating these quantities using seven different
approaches. In two of these approaches the transition probabilities are esti-
mated conditionally on current or past covariate measures. The software is
illustrated using data from two real data sets.

Keywords: Conditional Survival, Dependent Censoring, Illness-death
model, Kaplan-Meier, Multi-state model, Transition probabilities
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1. Introduction

In many longitudinal studies it is often of interest to investigate time to
an event of interest. In medicine the event is an ultimate outcome, such
as diagnosis of “death” of the patient or “relapse of the disease”. In ad-
dition to this primary event of interest one may observe also a number of
intermediate (“transient”) states, such as “local recurrence” and “distant
metastasis” in cancer studies. Analysis of such studies where individuals
may experience several events can be successfully performed using a multi-
state model (MSM). A MSM is a stochastic process (X(t), t ∈ T ) with a
finite state space, where X(t) represents the state occupied by the process
at time t ≥ 0. Graphically, these models are represented by diagrams with
rectangular boxes and arrows between them indicating respectively possible
states and possible transitions. In general, the future state transitions of a
MSM may depend on past events. However, for the special case of a Markov
model the past and future are independent given its present state. There
exists an extensive literature on MSMs. Main contributions include books
by Andersen et al. [4] and Hougaard [17]. Recent reviews on this topic may
be found in the papers by Hougaard [16], Commenges [10], Andersen and
Keiding [5], Putter et al. [28] and Meira-Machado et al. [22].

The simplest form of a MSM is the mortality model for survival analy-
sis with only two states “alive” and “dead” with a single transition. Other
common models include the progressive three-state model, the illness-death
model and the competing risks model. The illness-death model is probably
the most used model in literature, in particular for studying progression of
many diseases. This model describes the dynamics of healthy subjects who
may move to an intermediate “diseased” state before entering into a terminal
absorbing state. Many longitudinal medical data with multiple endpoints can
be reduced to this structure. Thus, methods developed for the illness-death
model have a wide range of applications. There are several issues of inter-
est in an illness-death multi-state model: study of the relationship between
covariates and disease evolution; estimation of transition probabilities; state
occupation probabilities; distributions of time spent in each state, among
other topics. In this paper we will focus on the inference for the transition
probabilities. These quantities provide estimates of the clinical prognosis of a
patient at a given point in disease progression, allowing long-term predictions
of the process.

Aalen and Johansen [1] introduced a nonparametric estimator for these
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quantities for non-homogeneous Markov models. Their estimation method
extends the Kaplan-Meier estimator (Kaplan and Meier [19]) to Markov
chains. As for the Kaplan-Meier, the standard error of the Aalen-Johansen
estimator may be large when the censoring is heavy, particularly with a small
sample size. To overcome this problem, Moreira et al. [27] propose a mod-
ification of Aalen-Johansen estimator based on presmoothing (Dikta [13]),
which allows for a variance reduction in the presence of censoring. In a
recent paper, Meira-Machado et al. [21] introduce a substitute for the Aalen-
Johansen estimator in the case of a non-Markov illness-death model. They
showed that when the Markov assumption does not hold, their estimator
may behave much better than the Aalen-Johansen which may be systemat-
ically biased. The idea behind their estimator is to weight the data by the
Kaplan-Meier weights pertaining to the distribution of the total survival time
of the process. However, by removing the Markov condition, the proposed
substitute for the Aalen-Johansen estimator provides undesirable large stan-
dard errors. This problem becomes worse when there is a large proportion of
censored data. In order to overcome this problem, Amorim et al. [3] propose
a modification of Meira-Machado estimator based on presmoothing. Other
estimators were proposed to estimate the transition probabilities. A valid
estimator was provided by Van Keilegom et al. [30] for a progressive three-
state model. This methodology assumes that the vector of gap times (time in
State 1 and time in State 2) satisfies the nonparametric location-scale regres-
sion model, allowing for the transfer of tail information from lightly censored
areas to heavily ones. All these approaches assume independent censoring
and do not account for the influence of covariates. To this regard in a recent
work, in a regression setup, Meira-Machado et al. [23] introduced feasible
estimation methods for the transition probabilities in an illness-death model
conditionally on current or past covariate measures.

Software for multi-state survival analysis has been developed recently. A
comprehensive list of the available packages in the Comprehensive R Archive
Network (CRAN) can be seen in the CRAN task view “Survival Analysis”
(Allignol [2]). An issue of the Journal of Statistical Software, entirely de-
voted to these models, was published in 2011. In R, (R Development Core
Team [29]) several packages provide functions for estimating the transition
probabilities. The timereg package can be used to obtain the cumulative
incidence probability of a specific cause of failure in competing risks data. It
also provides an estimate of its variance at each fixed time point, and con-
structs (1−α)100% simultaneous confidence bands over a given time interval.
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The package cmprsk (Gray [15]) can also be used to obtain the same quanti-
ties. The package etm computes and displays the transition probabilities for
the Aalen-Johansen estimator. This package also features a Greenwood-type
estimator of the covariance matrix. The msm (Jackson [18]) can be used to
obtain estimates for the transition probabilities in time-homogeneous Markov
models. The p3state.msm (Meira-Machado and Roca-Pardiñas [24]) pack-
age enables the user to perform inference in the illness-death model. The
main feature of the package is its ability for obtaining non-Markov estimates
for the transition probabilities. Finally, the msSurv package (Ferguson et al.
[14]) estimate the state occupation probabilities along with the correspond-
ing variance estimates, and lower and upper confidence intervals. All of the
existing software presents, however, some limitations in practice. Most of
them assume the process to be Markovian and assumes independent censor-
ing. Furthermore they do not account for the influence of covariates. In
addition, possible comparisons between different packages is rather difficult
because each of the current programs requests its own data structure.

This paper describes the R-based TPmsm (available from the Comprehen-
sive R Archive Network at http://CRAN.R-project.org/package=TPmsm)
package’s capabilities for implementing nonparametric and semiparametric
estimators for the transition probabilities in 3-state models. The pack-
age implements the so-called Aalen-Johansen estimator typically assumed
in Markov processes but it also provide alternative methods which have been
proved to be consistent even without the Markov assumption. Inverse cen-
soring probability reweighting is used in some methods to deal with right cen-
soring. These approaches lead to consistent estimators even in the presence
of dependent censoring. Finally, two different estimators are implemented
that account for the influence of covariates. Bootstrap confidence bands are
provided for all methods. In this article we explain and illustrate how numer-
ical and graphical output for all methods can be obtained using the TPmsm

package.
In Section 2 we introduce the notation for the illness-death stochastic

model and describe in detail the proposed estimation methods. In Section 3
we describe the implementation of the methods in package TPmsm. Some
of the methods are illustrated using generated data in Section 4. Finally,
Section 5 illustrates the packages’ capabilities using two real data examples,
and Section 6 give some concluding remarks and proposals for future work.
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2. Methodological background

In this paper we consider the progressive illness-death model depicted
in Figure 1. We assume that all subjects are in State 1 at time t = 0,
and that they may either visit State 2 at some time point; or not, going
directly to the absorbing state (State 3). The stochastic behavior of the
process is represented by a random vector (T12, T13, T23) , where Thj is the
potential transition from State h to State j, 1 ≤ h < j ≤ 3, in which
T23 is the sojourn time in State 2. In this model we have two competing
transitions 1→ 2 and 1→ 3. Therefore, we denote by ρ = I(T12 ≤ T13) the
indicator of visiting State 2 at some time, and introduce Z = min(T12, T13)
the sojourn time in State 1. The survival time of the process is given by
T = Z + ρT23. However, censoring may occur due to follow-up limitations,
lost cases and so on. Because of this, rather than (Z, T, ρ) one observes

(Z̃, T̃ ,∆1,∆,∆1ρ) where Z̃ = min(Z,C), T̃ = min(T,C), ∆1 = I(Z ≤ C)
and ∆ = I(T ≤ C). Here C denotes the potential censoring time, which we
assume to be independent of the process (that is, C and (Z, T ) are assumed
to be independent).

Given two time points s < t, define the transition probabilities as phj(s, t) =
P (X(t) = j|X(s) = h). The transition between the three stochastic states is
illustrated in Figure 1. There are five different transition probabilities to es-
timate: p11(s, t), p12(s, t), p13(s, t), p22(s, t) and p23(s, t). However, only three
of them need to be estimated since the two other transition probabilities can
be obtained from the following relations: p11(s, t) + p12(s, t) + p13(s, t) = 1
and p22(s, t) + p23(s, t) = 1.

1. Healthy 2. Diseased

3. Dead

1. Healthy 2. Diseased

3. Dead
 

Figure 2: Illness-death model. 

 More examples of multi-state models can be found in books by Andersen et al. 

(1993) and Hougaard (2000), or in papers by Putter et al. (2007) and Andersen and 

Perme (2008).   

 Despite its potential, multi-state modeling is not used by practitioners as 

frequently as other survival analysis techniques. It is our belief that lack of knowledge 

of available software and non-implementation of the new methodologies in user-

friendly software are probably responsible for this neglect. One important contribution 

to this issue was given by the R/S-PLUS survival package. Thanks to this package, 

survival analysis is no longer limited to Kaplan-Meier curves and simple Cox models. 

Indeed, this package enables users to implement the methods introduced by Therneau 

and Grambsch (2000) for modeling multi-state survival data. In R (R Development Core 

Team 2008), multi-state regression can also be performed using the msm package 

(continuous-time Markov and hidden Markov multi-state models), the changeLOS 

package (Wrangler et al. 2006) implements the Aalen–Johansen estimator for general 

multi-state models, and the etm package has recently enabled the transition matrix to be 

computed, along with a covariance estimator.   

 This paper describes the R-based p3state.msm package's capabilities for 

analyzing survival data from an illness-death model. It extends existing semi-parametric 

regression capabilities included in many statistical software programs, such as R, S-

PLUS, SAS, etc. Moreover, p3state.msm enables several quantities of interest to be 

estimated, such as transition probabilities, bivariate distribution function, etc. In 

Figure 1: Illness-death model

In Markov models, the transition probabilities can be calculated from the
transition intensities (that we shall assume exist) that we express as

αhj(t) = lim
∆x→0

phj(t, t+ ∆t)

∆t
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by solving the so-called forward Kolmogorov differential equation (Cox
and Miller [11]). For the illness-death model the transition probabilities
have explicit expression,

p11(s, t) = exp(−A12(s, t)− A13(s, t))

p22(s, t) = exp(−A23(s, t))

p12(s, t) =

∫ t

s

p11(s, u)α12(u)p22(u, t) du

where Ahj(s, t) =
∫ t
s
αhj(u) du is the cumulative or integrated intensity

between s and t.
In time homogeneous Markov models the explicit expressions for the tran-

sition probabilities are given by

p11(s, t) = exp(−α12(t− s)− α13(t− s))

p22(s, t) = exp(−α23(t− s))

p12(s, t) =
α12

α12 − α23

[exp(−α23(t− s))− exp(−α12(t− s))]

Details about the inference for the transition intensities can be seen in
Andersen and Perme [6].

The transition probabilities can also be estimated nonparametrically or
semiparametricaly using the notation shown in the top of this section. The
expressions for the transition probabilities are given by

p11(s, t) =
P (Z > t)

P (Z > s)
, p12(s, t) =

P (s < Z ≤ t, T > t)

P (Z > s)
,

p13(s, t) =
P (Z > s, T ≤ t)

P (Z > s)
, p22(s, t) =

P (Z ≤ s, T > t)

P (Z ≤ s, T > s)

p23(s, t) =
P (Z ≤ s, s < T ≤ t)

P (Z ≤ s, T > s)
.
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2.1. Aalen-Johansen estimator

The transition probabilities may be estimated via the nonparametric
(Aalen-Johansen estimator) model. This can be thought as the general-
ization of the Kaplan-Meier (Kaplan and Meier [19]) approach for the simple
mortality model and was proposed by Aalen and Johansen [1] for general
non-homogeneous Markov models with a finite number of states. Explicit
formulae of the Aalen-Johansen estimator for the illness-death model are
available (Borgan [8]). Here we give alternative expressions for this estima-
tor using the notation introduced above. The Aalen-Johansen (AJ) estimate
of the transition probability p11(s, t) is the Kaplan-Meier estimator

p̂AJ11 (s, t) =
∏

s<Z̃i≤t

[
1− ∆1i

nM̃0n(Z̃i)

]
(1)

where

M̃0n(y) =
1

n

n∑
j=1

I(Z̃j ≥ y).

Similarly, the estimate of the transition probability p22(s, t) is the Kaplan-
Meier estimator

p̂AJ22 (s, t) =
∏

s<T̃i≤t,Z̃i<T̃i

[
1− ∆i

nM̃1n(T̃i)

]
(2)

where

M̃1n(y) =
1

n

n∑
j=1

I(Z̃j < y ≤ T̃j).

Finally, the estimator for p12(s, t) is given by

p̂AJ12 (s, t) =
1

n

n∑
i=1

p̂AJ11 (s, Z̃−i )p̂AJ22 (Z̃i, t)I(s < Z̃i ≤ t, Z̃i < T̃i)

nM̃0n(Z̃i)
(3)

where

p̂AJ11 (s, t−) = limu↑tp̂
AJ
11 (s, u)
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2.2. Presmoothed Aalen-Johansen estimator

The standard error of the Aalen-Johansen estimator may be large when
the censoring is heavy, particularly with a small sample size. Interestingly,
the variance of the Aalen-Johansen estimator may be reduced by presmooth-
ing (Dikta [13]). Presmoothing the Aalen-Johansen (Moreira et al. [27])
involves replacing the censoring indicators (in the transition probabilities
p11(s, t) and p22(s, t)) by a smooth fit (e.g. using logistic regression). Then,
the corresponding presmoothed Aalen-Johansen (PAJ) estimator is given by

p̂PAJ11 (s, t) =
∏

s<Z̃i≤t

[
1− m0n(Z̃i)

nM̃0n(Z̃i)

]
(4)

where m0(Z̃) is the conditional probability of the event ∆1 = 1 given Z̃;
which can be estimated using logistic regression. The presmoothed version
of (2) given by

p̂PAJ22 (s, t) =
∏

s<T̃i≤t,Z̃i<T̃i

[
1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
(5)

where m1(Z̃, T̃ ) is the conditional probability of the event ∆ = 1 given (Z̃, T̃ )
and given that transition 1→ 2 is observed (∆1ρ = 1). Finally the transition
probability p12(s, t) can be estimated by plugging (4) and (5) into equation
(3).

In the paper by Moreira et al. [27] the authors derive the consistency
of the PAJ estimator while showing that this approach may be much more
efficient than the original AJ estimator.

2.3. Kaplan-Meier weighted estimator

Recently Meira-Machado et al. [21] verified that in non-Markov situations,
the use of Aalen-Johansen estimators to empirically estimate the transition
probabilities may be inappropriate. These authors propose, in the scope of
the illness-death model, alternative “Markov-free” estimators for the transi-
tion probabilities, which do not rely on the Markov assumption. The idea
behind estimation is to use the Kaplan-Meier estimator pertaining to the
distribution of the total time to weight the bivariate data. The proposed
estimator (Kaplan-Meier Weighted Estimator, KMW ) is given by
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p̂KMW
11 (s, t) =

∑n
i=1 W1iI(Z̃i > t)∑n
i=1W1iI(Z̃i > s)

(6)

p̂KMW
12 (s, t) =

∑n
i=1 WiI(s < Z̃i ≤ t, T̃i > t)∑n

i=1W1iI(Z̃i > s)
(7)

p̂KMW
22 (s, t) =

∑n
i=1 WiI(Z̃i ≤ s, T̃i > t)∑n
i=1 WiI(Z̃i ≤ s, T̃i > t)

(8)

where Wi (and W1i) are Kaplan-Meier weights attached to T̃i (respectively,

Z̃i) when estimating the marginal distribution of T (respectively, Z) from

(T̃i,∆i)’s (respectively, (Z̃i,∆1i)). The expression for the Kaplan-Meier weights,

Wi, is given by Wi = ∆i

n−i+1

∏i−1
j=1

[
1− ∆j

n−j+1

]
.

2.4. Kaplan-Meier presmooth weighted estimator

Recently, Amorim et al. [3] propose a modification of estimator (6)-(8)
based on presmoothing, which allows for a variance reduction in the pres-
ence of censoring. Basically, this method is obtained by replacing the cen-
soring indicator variables in the expression of the Kaplan-Meier weights by
a smooth fit of a binary regression. In this estimator (Kaplan-Meier Pres-
mooth Weighted Estimator, KMPW ) the presmoothed Kaplan-Meier weights

are given by W ?
i = m(T̃1i,Ỹi)

n−Ri+1

∏i−1
j=1

[
1− m(T̃1j ,Ỹj)

n−Rj+1

]
. Here, m(x, y) = P (∆2 =

1|T̃1 = x, Ỹ = y,∆1 = 1), belongs to a parametric (smooth) family of binary
regression curves, e.g., logistic. Our package provides the results assuming
that m denotes a logistic regression model (KMPW ). In practice, we assume
that m(x, y) = m(x, y; β) where β is a vector of parameters which typically
will be computed by maximizing the conditional likelihood of the ∆2’s given
(T̃1, T̃2) for those with ∆1 = 1. In the limit case of no presmoothing, the
KMPW estimator reduces to the KMW estimator. Conditions under which
both estimators are consistent is fully discussed in papers by Meira-Machado
et al. [21] and Amorim et al. [3]. In the latter paper the authors compare
the performance of the presmoothed (semiparametric) estimator with the
purely nonparametric estimator (without presmoothing) and concluded that
the presmoothed estimator improves efficiency.
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2.5. Inverse probability of censoring weighted estimator

To account for the influence of covariates, Meira-Machado et al. [23] in-
troduced estimation methods for the transition probabilities conditionally on
current or past measures which we denote by X. The authors provide two
competing nonparametric regression estimators for the conditional transition
probabilities, phj(s, t|X), both valid under mid regularity conditions even
when the system is non-Markov. The two estimators use different schemes
of inverse censoring probability reweighting to deal with right censoring. In
both estimators, local smoothing is done by introducing regression weights
that are either based on a local constant (i.e. Nadaraya-Watson) or a local
linear regression. To introduce these estimators, we need to introduce first
the d.f. of C given X, GX . Let GXi

denote the conditional distribution

function of C | X = Xi and let ĜXi
stand for its estimator. This can be done

using the estimator introduced by Beran [7],

Ĝx(t) =
∏

Ti≤t,∆i=0

[
1− W0i(x, an)∑n

j=1 I(Tj ≥ Ti)W0j(x, an)

]
(9)

with

NW0i(x, an) =
K0 ((x−Xi)/an)∑n
j=1 K0 ((x−Xj)/an)

where NW0i(x, an) are the Nadaraya-Watson (NW) weights, K0 is a known
probability density function and an is a sequence of bandwidths. This esti-
mator reduces to the so-known Kaplan-Meier (Kaplan and Meier [19]) esti-
mator when all weights are equal. Then, the Inverse Probability Censoring
Weighted estimators (IPCW) are given by

p̂IPCW11 (s, t|X = x) =

∑n
i=1 NW1i(x, bn) I(Z̃i>t)∆i

1−ĜXi
(T̃−)∑n

i=1 NW1i(x, bn) I(Z̃i>s)∆i

1−ĜXi
(T̃−)

(10)

p̂IPCW12 (s, t|X = x) =

∑n
i=1NW1i(x, bn) I(s<Z̃i≤t,T̃i>t)∆i

1−ĜXi
(T̃−)∑n

i=1 NW1i(x, bn) I(Z̃i>s)∆i

1−ĜXi
(T̃−)

(11)
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p̂IPCW22 (s, t|X = x) =

∑n
i=1 NW1i(x, bn) I(Z̃i≤s,T̃i>t)∆i

1−ĜXi
(T̃−)∑n

i=1 NW1i(x, bn) I(Z̃i≤s,T̃i>s)∆i

1−ĜXi
(T̃−)

(12)

where NW1i(x, bn) are NW weights as introduced above. Alternatively local
linear weights can also be introduced.

An alternative approach that also accounts for the influence of covariates
is based on the Lin et al. [20] approach for the bivariate distribution function.
Then, a different set of estimators (LIN) are given by

p̂LIN11 (s, t|X = x) =

∑n
i=1 NW1i(x, bn) I(Z̃i>t)

1−ĤXi
(t−)∑n

i=1NW1i(x, bn) I(Z̃i>s)

1−ĤXi
(s−)

(13)

p̂LIN12 (s, t|X = x) =

∑n
i=1 NW1i(x, bn) I(s<Z̃i≤t,T̃i>t)

1−ĜXi
(t−)∑n

i=1 NW1i(x, bn) I(Z̃i>s)

1−ĜXi
(s−)

(14)

p̂LIN22 (s, t|X = x) =

∑n
i=1NW1i(x, bn) I(Z̃i≤s,T̃i>t)

1−ĜXi
(t−)∑n

i=1NW1i(x, bn) I(Z̃i≤s,T̃i>s)
1−ĜXi

(s−)

(15)

where ĤX stands for the Kaplan-Meier estimator of the conditional distribu-
tion of C given X based on the (Z̃i, 1−∆1i)’s.

Here we assume that C is independent of (Z, T ) given X; this assumption
does not exclude the possibility of dependent censoring.

2.6. Location scale estimator

Other estimators were proposed to estimate the transition probabilities.
A valid estimator was provided by Van Keilegom et al. [30]. This methodol-
ogy assumes that the vector of gap times (Z, Y ), where Y = T −Z, satisfies
the nonparametric location-scale regression model, allowing for the transfer
of tail information from lightly censored areas to heavily ones. An automatic
bandwidth procedure was proposed by Meira-Machado et al. [25] for this
methodology.

Consider the nonparametric location-scale regression model (LS ) Y =
m(Z)+σ(Z)ε, where the functionsm and σ are ‘smooth’, and ε is independent
of Z. Under this model, the authors propose a nonparametric estimator of the
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distribution of the error variable, Fε, to introduce nonparametric estimators
for the transition probabilities. They use a Kaplan-Meier estimator of Fε
based on the (Êi,∆2i)’s (where Êi = (Ỹi − m̂(Z̃i))/σ̂(Z̃i)) which is the key
for the construction of an estimator for the conditional distribution of the
second gap time, F̂ (y|x) = F̂ε(

y−m̂(x)
σ̂(x)

). The location and scale functionals

are estimated using an extension of the Beran [7] estimator, which copes
with censoring in the first gap time. Then, estimators for the transition
probabilities can be obtained from the following expressions:

p̂LS11 (s, t) =
(

1− F̂1(t)
)
/
(

1− F̂1(s)
)
,

p̂LS12 (s, t) =
1

1− F̂1(s)

∫ t

s

[
1− F̂ (t− u|u)

]
F̂1(du),

p̂LS22 (s, t) =

∫ s
0

[
1− F̂ (t− u|u)

]
F̂1(du)∫ s

0

[
1− F̂ (s− u|u)

]
F̂1(du)

.

where F1(·) is the marginal distribution of the first gap time, which we may
estimate by the Kaplan-Meier estimator based on the (Z̃i,∆1i)’s.

Simulations reported in Meira-Machado et al. [25] suggest that the trans-
fer of tail information may improve the estimation of the transition proba-
bilities specially in points where the uncensored information is scarce. As a
drawback, this method can only be used in the progressive three-state model.

2.7. Occupation probabilities

Another important target in multi-state modeling is the estimation of
the state occupation probabilities. For the illness-death model there are in
essence three state occupation probabilities to calculate, p11(0, t), p12(0, t)
and p13(0, t). Datta and Satten [12] show that these quantities can be esti-
mated using Aalen-Johansen estimators even when the process is not Markov.
Though all methods introduced in the previous sections provide valid esti-
mators for these quantities, the Markovian approaches (AJ and PAJ) are
recommended.

12



3. Package Description

The TPmsm software contains functions that calculate estimates for the
probabilities. As mentioned in Section 2, this package can be used to im-
plement seven methods (AJ, PAJ, KMW, KMPW, IPCW, LIN and LS ).
This software is intended to be used with the R statistical program R De-
velopment Core Team [29]. Our package is composed by several functions
that allow users to obtain estimates and plots of the transition probabilities.
Table 1 provides a summary of some of the functions in this package. Details
on the usage of these functions can be obtained with the corresponding help
pages.

It should be noted that to implement the methods described in Section 2
one needs the following variables: time1, event1, Stime and event. A sin-
gle covariate can also be included (they are necessary only for IPCW and
LIN methods). The variable time1 represents the observed time is State
1 (“healthy”), and event1 the corresponding status/censoring indicator (if
the survival time is a censored observation, the value is 0 and otherwise the
value is 1). The variable Stime represents the total survival time (time to
the absorbing state). If event1 = 0, then the total survival time is equal to
the observed time in State 1. The variable event is the final status of the
individual (takes the value 1 if the final event of interest is observed and 0
otherwise).

4. Data generation

Users may use the function dgpTP to generate data from the illness-
death model. We assume that all individuals are in the “healthy” state at
time t = 0. Therefore, the patient’s history (or course) may be divided
into two groups according to whether the disease occurred (that is, passing
through State 2) (1 → 2 → 3) or not (1 → 3). We separately consider
these two possible subgroups of individuals. For the first subgroup of indi-
viduals, the successive gap times (Z, T − Z) are simulated from two of the
most known copula functions: Gumbel’s bivariate exponential distribution,
also known as the Farlie-Gumbel-Morgenstern distribution and the bivariate
Weibull distribution.

In the following, using the dgpTP function we will simulate data from the
illness-death model using Gumbel’s bivariate exponential distribution (dist =
”exponential”)

13



Function Description
dgpTP A function that generates data from an illness-death model

(based on some known copula functions). By default returns
a dataset of class survTP.

corrTP Provides the correlation between the bivariate times for some
copula distributions.

survTP Provides the adequate dataset for implementing all the meth-
ods. The new dataset is of class survTP.

transAJ Provides estimates for the transition probabilities for the
Aalen-Johansen estimator, AJ.

transPAJ Provides estimates for the transition probabilities for the pres-
moothed Aalen-Johansen estimator, PAJ.

transKMW Provides estimates for the transition probabilities for the
Kaplan-Meier Weighted estimator, KMW.

transKMPW Provides estimates for the transition probabilities for the
Kaplan-Meier Presmoothed Weighted estimator, KMPW.

transIPCW Provides estimates for the transition probabilities for the In-
verse Probability of Censoring Weighted estimator, IPCW.

transLIN Provides estimates for the transition probabilities for the LIN-
based estimator, LIN.

transLS Provides estimates for the transition probabilities for the
location-scale estimator, LS.

plot A function that provides the plots for the transition probabil-
ities.

Table 1: Summary of functions in the package.

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}] with unit exponential
margins
(dist.par = c(1, 1)). The parameter θ controls for the amount of depen-
dency between the gap times (Z, T − Z). Theoretical correlation between
the gap times can be obtained using the corrTP function. For the second
subgroup of individuals (those that go directly from State 1 to State 3), the
corresponding survival time is simulated according to an exponential with
rate parameter 1.

R> library("TPmsm")

R> set.seed(999)
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R> sim_data_exp <- dgpTP(n = 1000, corr = 0, dist = "exponential",

dist.par = c(1, 1), model.cens = "uniform", cens.par = 3,

state2.prob = 0.5, to.data.frame = FALSE)

This input command will simulate 1000 observations (n = 1000) assum-
ing no correlation in Gumbel’s bivariate exponential distribution (corr = 0 ),
using an independent uniform censoring time (model.cens = ”uniform”), ac-
cording to model U(0, 3) (cens.par = 3 ). The use of corr = 0 in Gumbel’s
bivariate exponential distribution leads to independent gap times and there-
fore to Markov data. The proportion of transitions into State 2 is given by the
argument state2.prob (a value of 1 corresponds to the progressive three-state
model).

To obtain the estimates for the methods proposed in Section 2 we can use
the functions shown in Table 1. As in the simulation by Amorim et al. [3] and
Moreira et al. [27] we are going to obtain estimates for transition probabili-
ties at values s = 0.5108 and t = 0.9163. The true values for the transition
probabilities are: p11(s, t) = 0.667, p12(s, t) = 0.135 and p22(s, t) = 0.666.
The following two input commands provide the estimate for the AJ and
PAJ methods. Since the process is Markovian these are the recommended
approaches. With these input commands we obtain the estimates for the
transition matrix together with 95% (conf.level = 0.95 ) pointwise confidence
intervals (conf = TRUE ) using 1000 bootstrap replicates (n.boot = 1000 ).
The construction of the pointwise confidence intervals is obtained by ran-
domly sampling the n items from the original data set with replacement.

R> transAJ(object = sim_data_exp, s = 0.5108, t = 0.9163, conf = TRUE,

conf.level = 0.95, n.boot = 1000)

Aalen-Johansen Transition Probabilities

Estimates of P(0.5108, 0.9163)

1 2 3

1 0.6519322 0.134169 0.2138988

2 0.0000000 0.653653 0.3463470

3 0.0000000 0.000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.6056049 0.1038933 0.1407961
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2 0.0000000 0.5808443 0.2712684

3 0.0000000 0.0000000 1.0000000

97.5%

1 2 3

1 0.6965086 0.1626953 0.2905018

2 0.0000000 0.7287316 0.4191557

3 0.0000000 0.0000000 1.0000000

R> transPAJ(object = sim_data_exp, s = 0.5108, t = 0.9163, conf = TRUE,

conf.level = 0.95, n.boot = 1000)

Presmoothed Aalen-Johansen Transition Probabilities

Estimates of P(0.5108, 0.9163)

1 2 3

1 0.6578824 0.1314391 0.2106785

2 0.0000000 0.6536405 0.3463595

3 0.0000000 0.0000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.6193136 0.1056526 0.1427685

2 0.0000000 0.5875608 0.2799410

3 0.0000000 0.0000000 1.0000000

97.5%

1 2 3

1 0.694234 0.1629975 0.2750338

2 0.000000 0.7200590 0.4124392

3 0.000000 0.0000000 1.0000000

Results reveal accuracy for both methods for which the true values are
within the bootstrap confidence bands. The bootstrap confidence bands
are narrower in the case of the presmoothed Aalen-Johansen revealing less
variability for this method. A second and a third set of 1000 resamples
gave similar results for the bootstrap confidence intervals, suggesting that
the number of resamples are enough. The CPU time needed for running the
transAJ function varies according to whether bootstrap confidence bands are
requested or not, the sample size, and the type of processor in the computer.
The command presented above took no more than 1 second on a PC with a
four Core Intel i7 processor with 8 GB memory. The same input command
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but with n = 10000 resamples took less than 2 seconds. Efficient algorithms
were developed and implemented in the C programming language. The most
computationally demanding parts of the code, namely those that involve the
boostrap and cross-validation techniques, were parallelized by means of the
OpenMP API. This should considerably increase performance on multi core/
multi threading machines.

Non-Markov data can also be generated using correlated gap times in
Gumbel’s bivariate exponential distribution. For example, using a maximum
correlation of 25% (using corr = 1 in the dgpTP function) as shown below.

R> set.seed(999)

R> sim_data_exp2 <- dgpTP(n = 1000, corr = 1, dist = "exponential",

dist.par = c(1, 1), model.cens = "uniform", cens.par = 3,

state2.prob = 0.5, to.data.frame = FALSE)

The following input commands provide the estimates (with bootstrap
confidence bands) for the KMW and KMPW methods at values s = 0.5108
and t = 0.9163. True estimates for the transition probabilities at these
values are: p11(s, t) = 0.667, p12(s, t) = 0.134 and p22(s, t) = 0.558. Since
the process is not Markov these are the recommended approaches.

R> transKMW(object = sim_data_exp2, s = 0.5108, t = 0.9163, conf = TRUE,

conf.level = 0.95, n.boot = 1000)

Kaplan-Meier Weighted Transition Probabilities

Estimates of P(0.5108, 0.9163)

1 2 3

1 0.6519322 0.1322640 0.2158037

2 0.0000000 0.5893447 0.4106553

3 0.0000000 0.0000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.6071541 0.05080364 0.1759236

2 0.0000000 0.47997294 0.3007566

3 0.0000000 0.00000000 1.0000000

97.5%

1 2 3

1 0.6954185 0.2169223 0.2537778
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2 0.0000000 0.6992434 0.5200271

3 0.0000000 0.0000000 1.0000000

R> transKMPW(object = sim_data_exp2, s = 0.5108, t = 0.9163, conf = TRUE,

conf.level = 0.95, n.boot = 1000)

Presmoothed Kaplan-Meier weighted transition probabilities

Estimates of P(0.5108, 0.9163)

1 2 3

1 0.6578824 0.1304881 0.2116295

2 0.0000000 0.5795985 0.4204015

3 0.0000000 0.0000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.6180715 0.06166128 0.1803257

2 0.0000000 0.47823537 0.3292443

3 0.0000000 0.00000000 1.0000000

97.5%

1 2 3

1 0.6971003 0.2016028 0.2412385

2 0.0000000 0.6707557 0.5217646

3 0.0000000 0.0000000 1.0000000

Results reveal that both methods perform very well. As expected, the
presmooth method achieved less variability, with narrower bootstrap confi-
dence bands. Results for the Aalen-Johansen type estimators (AJ and PAJ )
reveal a systematic bias on transition from State 2 to State 3 (results not
shown).

In addition to the numerical results graphical output can also be obtained.
This will be shown in the next section using two data sets: the widely used
and well-known colon cancer data and data from a bladder cancer study.
Details about these data sets are given below.
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5. Examples of Application

To illustrate our estimators we consider two real data sets. One of these
data sets comes from the well-known colon cancer study which is freely avail-
able as part of the R survival package (Moertel et al. [26]). In addition
to this data set we also use data from a bladder cancer study (Byar [9])
conducted by the Veterans Administration Cooperative Urological Research
Group.

5.1. Colon cancer data

For illustration, we apply some of the proposed methods of Section 2 to
data from a large clinical trial on Duke’s stage III patients, affected by colon
cancer, that underwent a curative surgery for colorectal cancer (Moertel et
al., 1990). In this study, some of these patients have residual cancer, which
lead to disease recurrence and death (in some cases). From the total of
929 patients, 468 developed a recurrence and among these 414 died. 38
patients have died of causes unrelated to their disease and without evidence
of recurrence. The remaining 423 patients contributed with censored survival
times. For each individual, an indicator of his/her final vital status (censored
or not), the survival times (time to recurrence, time to death) from the entry
of the patient in the study (in days), and a vector of covariates including age
(in years) and recurrence (coded as 1 = yes; 0 = no) were recorded. The
covariate recurrence is a time-dependent covariate which can be expressed as
an intermediate event and modeled using the illness-death model with states
“alive and disease-free”, “alive with recurrence” and “dead”.

By including covariates depending on the history (using a Cox propor-
tional hazards model), we verified that the mortality transition for recurring
patients is affected by the time spent in the previous state (p-value ¡ 0.001).
This allowed us to conclude that the Markov assumption may be unsatisfac-
tory for the colon cancer data set and that, consequently, Aalen-Johansen
type estimators should not be used. Thus, in this section we illustrate the
use of two “Markov-free” estimators (KMW and KMPW ) as well as two
additional estimators (IPCW and LIN ) that were proposed to estimate the
transition probabilities conditionally on current or past covariate measures
such as age.

Below is an excerpt of the data with one row per individual.

R> data("colonTP", package = "TPmsm")

R> head(head(colonTP[ , c(1:4, 7)]))
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time1 event1 Stime event age

968 1 1521 1 43

3087 0 3087 0 63

542 1 963 1 71

245 1 293 1 66

523 1 659 1 69

904 1 1767 1 57

Each line represents the information from one individual in study. The
variable time1 denotes the sojourn time in State 1 whereas Stime is the sur-
vival total time. event1 and event are the corresponding indicator statuses.
Among the first five observations, only individual represented by line 2 re-
main alive (and without having had a recurrence) at the end of the study.
All the remaining individuals had a recurrence and died before the end the
study. For example, the individual represented by line 1 had a recurrence
at day 968 and died at day 1521. Note that time1<Stime means that a
transition from State 1 to State 2 (i.e. recurrence) occurred.

We computed the estimated values for the transition probabilities phj(s, t)
for several pairs (s, t), s < t. For illustration purposes we only report the
estimated values of phj(365, 1096) (one year and three years) for the KMW
and KMPW methods with 95% bootstrap confidence intervals.

R> colon_obj <- with(colonTP, survTP(time1, event1, Stime, event, age))

R> colon_obj_TP <- transKMW(object = colon_obj, s = 365, t = 1096, conf = TRUE,

conf.level = 0.95)

R> colon_obj_TP

Kaplan-Meier Weighted Transition Probabilities

Estimates of P(365, 1096)

1 2 3

1 0.7192603 0.1432380 0.1375017

2 0.0000000 0.1570985 0.8429015

3 0.0000000 0.0000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.6873746 0.0846545 0.1129464

2 0.0000000 0.1032093 0.7808738

3 0.0000000 0.0000000 1.0000000
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97.5%

1 2 3

1 0.751812 0.1996789 0.1635335

2 0.000000 0.2191262 0.8967907

3 0.000000 0.0000000 1.0000000

R> colon_obj2_TP <- transKMPW(object = colon_obj, s = 365, t = 1096,

conf = TRUE, conf.level = 0.95)

R> colon_obj2_TP
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Presmoothed Kaplan-Meier Weighted Transition Probabilities

Estimates of P(365, 1096)

1 2 3

1 0.7194552 0.1433486 0.1371961

2 0.0000000 0.1582020 0.8417980

3 0.0000000 0.0000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.6865474 0.08722968 0.1137634

2 0.0000000 0.10561472 0.7850447

3 0.0000000 0.00000000 1.0000000

97.5%

1 2 3

1 0.7497079 0.1996891 0.1630624

2 0.0000000 0.2149553 0.8943853

3 0.0000000 0.0000000 1.0000000

The outputs for the transition probabilities are useful displays that greatly
help to understand the patients course over time. Plots for these quantities
can easily be obtained. Figure 2 plots the transition probabilities phj(365, t)
for all allowed transitions using the KMW method. This plot can be obtained
using the following input commands:

R> colon_obj_TP <- transKMW(object = colon_obj, s = 365, conf = TRUE,

conf.level = 0.95)

R> plot(colon_obj_TP, col = seq_len(5), lty = 1, ylab = "p_hj(365,t)")

Figure 3 depict the KMW estimates of p12(s = 365, t) as functions
of the time (for a fixed value of s = 365) together with a 95% pointwise
confidence bands based on simple bootstrap. The estimates shown in the
main curve indicate that this probability increases until around time t = 600
and afterwards decreases.

R> plot(colon_obj_TP, tr.choice = "1 2", conf.int = TRUE, ylim = c(0, 0.2),

legend = FALSE, ylab = "p12(365,t)")

Estimates for the conditional transition probabilities can be obtained us-
ing two methods (IPCW and LIN ). Below we present the input command to
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Figure 2: Transition probability estimates using the KMW method. Colon cancer data.
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Figure 3: Transition probability estimates, with bootstrap confidence bands, using the
KMW method. Colon cancer data.

obtain these estimates for the IPCW method for a vector of two ages (40 and
68). Results suggest a real influence of the covariate age in the survival prog-
nosis. More specifically, patients with 40 years have a larger probability of
recurrence than patients with 68 years old. Note that the estimate obtained
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for those patients with 40 years old is not within the bootstrap confidence
bands obtained for those with 68 years old. These insights can also be seen
in Figures 4 and 5 which depict respectively the IPCW estimates of the
conditional transition probabilities p11(age; 365, 1096) and p12(age; 300, 1096)
as functions of the covariate age together with a 95% pointwise confidence
bands based on simple bootstrap. In both plots it is seen that these curves are
not constant. Furthermore, the effects of age depicted in Figure 5, suggest a
real influence of age on survival. More specifically, patients near forties have
a larger probability of recurrence than older patients. Note that it would not
be possible to include an horizontal line within the confidence bands in this
plot. An alternative method that accounts for the influence of continuous
covariates is the LIN method. This is achieved using the transLIN function
which is similar to transIPCW.

R> CTP_obj <- transIPCW(colon_obj, s = 365, t = 1096, x = c(40, 68),

conf = TRUE, n.boot = 1000, method.boot = "percentile")

R> CTP_obj

Inverse Probability of Censoring Weighted Conditional Transition Probabilities

Estimates of P(365, 1096 | 40)

1 2 3

1 0.6586309 0.3004002 0.0409689

2 0.0000000 0.2063084 0.7936916

3 0.0000000 0.0000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.5333882 0.188645880 0.0000000

2 0.0000000 0.000058748 0.5555978

3 0.0000000 0.000000000 1.0000000

97.5%

1 2 3

1 0.7724357 0.4307260 0.2779659

2 0.0000000 0.4444022 0.9999413

3 0.0000000 0.0000000 1.0000000

Estimate of P(365, 1096 | 68)

1 2 3

1 0.6893005 0.1321605 0.1785390
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2 0.0000000 0.1325104 0.8674896

3 0.0000000 0.0000000 1.0000000

Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.6171176 0.08263308 0.06565011

2 0.0000000 0.04071673 0.75191695

3 0.0000000 0.00000000 1.00000000

97.5%

1 2 3

1 0.7487732 0.1855767 0.3002493

2 0.0000000 0.2480830 0.9592833

3 0.0000000 0.0000000 1.0000000

R> plot(CTP_obj, plot.type = "c", tr.choice = "1 1", conf.int = TRUE,

xlab = "Age", legend = FALSE, ylab = "p11(age;365,1096)")
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Figure 4: Evolution of the transition probability p11(365, 1096) along the covariate age
with 95% bootstrap confidence bands based on the IPCW method. Colon cancer data.
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R> plot(CTP_obj, plot.type = "c", tr.choice = "1 2", conf.int = TRUE,

xlab = "Age", legend = FALSE, ylab = "p12(age;365,1096)")
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Figure 5: Evolution of the transition probability p12(365, 1096) along the covariate age
with 95% bootstrap confidence bands based on the IPCW method. Colon cancer data.

Alternatively, we can view all transitions in the same plot using the fol-
lowing input command:

R> plot(CTP_obj, plot.type = "c", col = seq_len(5), lty = 1, xlab = "Age",

ylab = "p_hj(age;365,1096)")

A contour plot of the transition probabilities can be obtained using the
contour function; a grid of colored or gray-scale rectangles with colors corre-
sponding to the values of the transition probabilities can be obtained using
the image function. Details on the usage of these functions can be obtained
with the corresponding help pages.

5.2. Example of Application: Bladder Cancer Study

The methods described in Section 2.6 are illustrated using data from a
bladder cancer study (Byar [9]) conducted by the Veterans Administration
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Figure 6: Evolution of the transition probabilities phj(365, 1096) along the covariate age,
based on the IPCW method. Colon cancer data.

Cooperative Urological Research Group. In this study, patients had super-
ficial bladder tumors that were removed by transurethral resection. Many
patients had multiple recurrences (up to a maximum of 9) of tumors dur-
ing the study, and new tumors were removed at each visit. For illustration
purposes we re-analyze data from 85 individuals in the placebo and thiotepa
treatment groups; these data are available as part of the R survival package.
Here, only the first two recurrence times (in months) and the corresponding
gap times, Z and Y = T − Z, are considered. Thus, we have a progressive
three-state model with state “alive and disease-free”, “first recurrence” and
“second recurrence”. From the total of 85 patients, 47 relapsed at least once
and, among these, 29 experienced a new recurrence.

For large values of s and t, the transition probabilities phj(s, t) will be
hard to estimate in a completely nonparametric way. This will be particularly
true in situations where censoring percentages are high as for our data set
for which we have a total amount of censoring of 66%. The location-scale
method is appropriate for the bladder cancer data since this methodology
is mainly relevant for estimating in the right tail of the distribution where
the censoring effects are strong at those points (uncensored information is
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scarce).
We will calculate estimates for the transition probabilities in several

points and plot these estimates. This will be done using the function transLS.

R> data("bladderTP", package = "TPmsm")

R> head(bladderTP)

time1 event1 Stime event

1 0 1 0

4 0 4 0

7 0 7 0

10 0 10 0

6 1 10 0

14 0 14 0

We computed the estimated values for the transition probabilities phj(s, t)
for the several pairs (s, t), s < t. For illustration purposes we only report
the estimated values of phj(3, 8) for the LS method with 95% bootstrap con-
fidence intervals. The success of the LS method greatly depends on the
choice of an appropriate bandwidth. The selection of the optimal band-
width is highly computationally intensive, but is crucial to the success of
the location-scale method. To select the bandwidth we use a weighted cross-
validation error criterion, with weights based on the Kaplan-Meier estimator.
Details about these procedures can be seen in the paper by Meira-Machado
et al. [25]. Results for the transition probabilities phj(3, 8) shown below were
obtained using a grid of 100 bandwidth values (nh = 100 ) over the interval
between 0.0001 and 1 (h = c(0.0001, 1)) and considering 100 cross-validation
samples (ncv = 100 ).

R> bladderTP_obj <- with(bladderTP, survTP(time1, event1, Stime, event))

R> LS_obj <- transLS(object = bladderTP_obj, s = 3, t = 8, h = c(0.0001, 1),

nh = 100, ncv = 100, conf = TRUE)

R> LS_obj

Location-Scale transition probabilities

Estimates of P(3, 8)

1 2 3

1 0.8391534 0.1537124 0.007134183

2 0.0000000 0.9013920 0.098607987

3 0.0000000 0.0000000 1.000000000
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Bootstrap confidence bands with 1000 samples

2.5%

1 2 3

1 0.7427197 0.06451004 0.000000000

2 0.0000000 0.83351131 0.004499503

3 0.0000000 0.00000000 1.000000000

97.5%

1 2 3

1 0.9265745 0.2470999 0.1927703

2 0.0000000 0.9955005 0.1664887

3 0.0000000 0.0000000 1.0000000

Plots for the transition probabilities can also be obtained. Figure 7 plots
the transition probabilities phj(3, t) for all allowed transitions. In Figure 8
we can see the plot for the transition probability p12(3, t) along the pointwise
confidence bands using the LS method. These plots are obtained using the
following input commands:

R> LS2_obj<-transLS(object = bladderTP_obj, s = 3, t = 60, h = c(0.0001, 1),

nh = 100, ncv = 100, conf = TRUE)

R> plot(LS2_obj, col = seq_len(5), lty = 1, ylab = "p_hj(3,t)")

R> plot(LS2_obj, tr.choice = "1 2", conf.int = TRUE, ylab = "p12(3,t)",

ylim = c(0, 0.3), legend = FALSE)
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Figure 7: Transition probability estimates using the LS method. Bladder cancer data.

6. Conclusion

This paper discusses implementation in R of some newly developed meth-
ods for the transition probabilities in the illness-death model. The TPmsm

package uses seven nonparametric and semiparametric estimators. One of
these estimators is the Aalen-Johansen estimator (Aalen and Johansen [1])
typically assumed if the process is Markovian. A modification of Aalen-
Johansen estimator (Moreira et al. [27]), based on a preliminary estimation
(presmoothing) of the censoring probability for the total time, given the
available information is also implemented. This method allows for a variance
reduction in the presence of censoring, in particular for situations with high
percentages of censored total time among the uncensored subjects in State
1.

If there is no evidence against the Markov condition then the time hon-
ored Aalen-Johansen estimator and its presmoothed version will be preferred.
If the Markov property is violated, then the consistency of these estimators
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Figure 8: Transition probability estimates, with bootstrap confidence bands, using the LS
method. Bladder cancer data.

can not be ensured in general. Exceptions to this are the estimator for the
occupation probabilities. Alternative estimators of the transition probabil-
ities not relying on the Markov condition were recently proposed (Meira-
Machado et al. [21]; Amorim et al. [3]) and are implemented in the package.
As a drawback, these alternative methods will suffer from a larger variance
in estimation, particularly when the sample size is small and there is a large
censoring degree. One alternative method for these scenarios was provided by
Van Keilegom et al. [30] for a progressive three-state model (only). The key
of this methodology is the transfer of tail information from lightly censored
areas to heavily ones.

The package also implements two methods that account for dependent
censoring and allow for the inclusion of covariates. These two approaches are
free from the Markov assumption. Numerical results as well as graphics can
be easily obtained.

A function called adaptp3state can be used to adapt an object of class
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data.frame with the structure of the data input as described in Section 3 to
the structure of the data input used in the p3state.msm package. Essentially,
this involves a transformation of some variables and a renaming of other
variables. With this function users may connect the TPmsm package with the
p3state.msm package and perform Cox-type multi-state regression.

We plan to constantly update TPmsm package to cope with other estima-
tors.
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[23] Meira-Machado, L., de Uña-Álvarez, J. and Somnath, D. [2012]. Con-
ditional transition probabilities in a non-markov illness-death model,
Submitted .

[24] Meira-Machado, L. and Roca-Pardiñas, J. [2011]. p3state.msm: Ana-
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