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Abstract

This paper was focused on regression models incorporating the so-called
factor-by-curve interaction, where the effect of a continuous covariate on re-
sponse varies across groups defined by levels of a categorical variable. This
study sought to compare regression curves and their derivatives that may
vary across groups defined by different experimental conditions. The goals
of this paper ware a) to provide a global test to detect significant features
of regression curves through the study of their derivatives, and b) to draw
inferences about critical points (such as maxima or change points) linked
to the derivative curves. The regression curves were estimated using local
polynomial kernel smoothers. Such nonparametric regression models allow
for a more flexible fit of real data than do the parametric regression tech-
niques usually used. Similarly, they make it possible for the derivatives of
the regression curve to be calculated. Bootstrap methods were used to draw
inferences from the derivative curves, and binning techniques were applied to
speed up computation in the estimation and testing processes. A simulation
study was conducted to assess the validity of these bootstrap-based tests.
This methodology was applied to study the relative growth of barnacles, in
particular, in the estimation of the minimum size of capture of this species.
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1. Introduction

In many practical situations, the target response, Y , depends on a con-
tinuous covariate, X . In this regression framework, consideration might well
be given to the nonparametric regression model

Y = m(X) + ε (1)

where m is a smooth unknown function and ε is the error, which is assumed
to be independent of the covariate X . By studying m we can establish
the functional relationship between the mean response and the covariate X .
Additionally, it might be interesting to make inferences about critical points
of m, called x0 (e.g. minima, maxima or inflection points which signal the
change in the sign of curvature) studying for this purpose the derivatives of
m. For instance, in the application to real data shown below, it is necessary
to determine which point maximizes the first derivative of the regression
curve m. Explicitly, the cited point, x0, is defined as follows

x0 = argmax
x
m1(x)

being m1(x) the first derivative of m at the point x. In some circumstances,
the relationship between Y and X can vary among subsets defined by levels
1 . . . ,M of a categorical covariate F resulting in a regression model with
factor-by-curve interactions. In this framework, we will denote x0l as the
critical point specific to the l level of F . For instance, x0l can be defined as

x0l = argmax
x
m1

l (x)

being ml(X) = E(Y |X = x, F = l). At this stage, it is of interest to test the
null hypothesis H0 : x01 = . . . = x0M .

It is important to highlight that it is possible to observe that the specific
critical points could coincide even if the derivative regression curves of ml

are different. One example of this can be observed in the application to
real data of this paper. In this section, we will apply this methodology in
studying the growth of the stalked barnacle, Pollicipes pollicipes (Gmelin,
1789), in particular, in the estimation of the minimum size of capture of
this species. The study of derivatives is extremely useful when it comes to
establishing this ideal size. In particular, in this work we propose that the
minimum size corresponds to the point (or size) where the first derivative
reaches the maximum. From this point onwards, weight gain from one size
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to the next decreases, so that the yield obtained ceases to be profitable. At
this point, the proposed methodology lets us compare the derivatives of the
growth curves between the two years of study. Also, it shows how the point
which maximizes the first derivative is the same in both years.

The possibility of incorporating the factor-by-curve interactions in non-
parametric regression models has already been discussed by Hastie and Tib-
shirani (1990). Also, Ruppert and Wand (1994) presented an algorithm based
on penalized splines (P-splines), which would enable these types of interac-
tions to be incorporated into these types of models. Recently, Cadarso-Suárez
et al. (2006) and Roca-Pardiñas et al. (2006) have successfully applied these
types of interactions for estimating neuron firing rates.

Additionally, a question that tends to arise in this type of model is to
know if the estimated curves are equal to each other. This problem - testing
for the equality of nonparametric regression curves - has also been widely
treated in the statistical literature. Relevant papers on this topic are Bow-
man and Young (1996); Dette and Neumeyer (2001); Hardle and Marron
(1990); Pardo-Fernández et al. (2007); Kulasekera (1995); Neumeyer and
Dette (2003); Srihera and Stute (2010); Young and Bowman (1995) among
others. However, unlike the above references where are given global tests to
detect significant differences between curves, with this paper we add, over
existing approach, the possibility of testing locally curves, allowing to draw
inference about critical points.

The main goals of this paper are (1) to provide a global test to detect
globally significant features of regression curves by studying their derivatives
and (2) to propose a new methodology that can be used to draw inferences
about critical points (such as maxima or change points) linked to the deriva-
tive curves. To this end, a computational algorithm was developed and
implemented, based on local kernel polynomial smoothers, which allowed for
nonparametric estimation of the curves. The bootstrap method was used
for practical implementation of tests capable of detecting the significance of
these curves.

The layout of this paper is as follows. The estimation algorithm based
on kernel smoothers is presented in Section 2. In Section 3, we propose
bootstrap methods for the implementation of different tests designed to de-
tect significant features of the curves based on the study of their derivatives.
Practical questions, such as bandwidth selection and computational acceler-
ation based on binning techniques are addressed in Section 4. In Section 5,
we present the results regarding the numerical performance of the different
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test statistics under review. In Section 6, the above-described methodology
was applied in the evaluation of the relative growth of P. pollicipes. Finally,
we conclude the paper with a discussion section.

2. Nonparametric Estimation Procedures

In this paper the following nonparametric regression model including
factor-by-curve interactions was considered

Y = f0(X) +





f1(X) + ε1 if F = 1
...

fM(X) + εM if F = M

(2)

where ε1, . . . , εM are the mean zero errors for each factor’s levels, f0 represents
the global effect of X on the response, and fl is the specific effect of X

associated with the lth level of the factor F . Note that under model (2) the
regression curves ml(x) = E(Y |X = x, F = l) are given by

ml(X) = f0(X) + fl(X) for l = 1, . . . ,M

In order to avoid different combinations of f0, f1, . . . , fM that lead to the
same model, we assume that the sum of the specific effects across the levels
must be zero. That is, for each x,

∑M
l=1 fl (x) = 0 is satisfied. Note that

this condition does not represent restrictions on our model because it can be
modified to conform to the said identifiable condition.

The factor-by-curve regression model in (2) was estimated using local
polynomial kernel smoothers (Wand and Jones, 1995). Given a sample
{(Xi, Fi, Yi)}

n
i=1 the estimate of the f0 at a point x is given by f̂0(x) = α̂0(x)

where
(
α̂0 (x) , α̂1 (x) , . . . , α̂R (x)

)
is the minimizer of

∑n

i=1

{
Yi −

∑R

r=0
αr (x) (Xi − x)r

}2

·K

(
Xi − x

h

)

where K(x) = exp(−0.5x2) is the kernel function, h is the smooth band-
width and R is the degree of the polynomial. Once obtained the estima-
tion of f̂0, for l = 1, . . . ,M , we obtain the estimates f̂l(x) = α̂0

l (x) with(
α̂0
l (x) , α̂

1
l (x) , . . . , α̂

R
l (x)

)
minimizing

∑n

i=1

{
Y l
i −

∑R

r=0
αr
l (x) (Xi − x)r

}2

·K

(
Xi − x

h

)
I{Fi=l}
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with Y l
i = Yi−f̂0 (Xi). Note that it is not necessary for the obtained estimates

to have satisfied the imposed identification condition. To do so, the following
procedure is used. For each x, calculate the mean of the specific effects of
each level, S(x) = M−1

∑M
l=1 f̂l(x), and replace the originalf̂(x) and f̂l(x)

respectively by f̂l(x)− S(x) and f̂0(x) + S(x). Finally, the estimated curves
for each level at point x are given by

m̂l(x) = f̂0(x) + f̂l(x) for l = 1, . . . ,M

Moreover, the estimated rth(r ≤ R) derivative of m̂l(x) is given by m̂r
l (x) =

f̂ r
0 (x) + f̂ r

l (x) where f̂ r
0 (x) = r!α̂r

0(x) and f̂ r
l (x) = r!α̂r

l (x).

3. Inferences

When a factor-by-curve interaction is detected in model (2), it might be
interesting to make inferences about some critical points of curves (such as
minima, maxima or inflection points) studying for this purpose the deriva-
tives. In general, the critical point x0l referring to the l level will be obtained,
for some r, from the derivative curve mr

l (x). For example, in the application
to real data, we will be interested in determining, for each l level, which point
x0l maximizes the first derivative of the regression curve m1

l (x).
The proposed procedure in this section allows us to test the hypothesis

that the critical points among the levels of the factor are equal. Based on
this goal, we first need to propose a global test that assumes the following
null hypothesis

Hr
0 : mr

1(·) = . . . = mr
M(·) (3)

Note that if Hr
0 is not rejected, then the equality of critical points

x01, . . . , x0M will be also accepted. By contrast, if Hr
0 is rejected, the conclu-

sion about these critical points should be postponed, and it will be necessary
to use the local test that we propose below.

3.1. Global test

Here we propose a bootstrap procedure that allows us to test the null
hypothesis (3) based on the model (2). Note that this hypothesis is equivalent
to f r

1 (·) = . . . = f r
M(·) = 0 and, therefore, fl(x) =

∑r−1
j=0 a

j
lX

j is satisfied for
l = 1, . . . ,M . Accordingly, the null regression model is given by
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Y = f0(X) +





∑r−1
j=0 a

j
1X

j + ε1 if F = 1
...∑r−1

j=0 a
j
MXj + εM if F = M

(4)

To test Hr
0 we propose the use of a statistic based on direct nonparametric

estimates of f r
l curves. This statistic test is as follows:

T =
M∑

l=1

n∑

i=1

|f̂ r
l (Xi)|

Note that if Hr
0 is verified, the T value should be close to zero, but

generally greater. The test rule based on T consists of rejecting the null
hypothesis if T > T 1−α, where T p is the empirical p−percentile of T under
H0. Nevertheless, it is well known that, within a nonparametric regression
context, the asymptotic theory for determining such percentiles is not closed,
and resampling methods such as the bootstrap introduced by Efron (1979)
(see also Efron and Tibshirani, 1993; Härdle and Mammen, 1993; Kauermann
and Opsomer, 2003) can be applied instead. The testing procedure used here
involves the following steps:
Step 1. Compute the T value from the sample as explained above.
Step 2. Estimate the null regression model in (4) and obtain for i = 1, . . . , n
the pilot estimates

m̂Fi
(Xi) = f̂0(Xi) +

∑r−1

j=0
â
j
Fi
X

j
i

Step 3. For b = 1 . . . B (e.g. B=1000), generate bootstrap samples{
Xi, Fi, Y

•b
i

}n
i=1

with Y •b
i = m̂Fi

(Xi) + ε•bi being

ǫ̂•bi =

{
ǫ̂i ·

(1−
√
5)

2
with probability p = 5+

√
5

10

ǫ̂i ·
(1+

√
5)

2
with probability p = 5−

√
5

10

where ǫ̂i = Yi − m̂Fi
(Xi) are the errors under the H0, and compute T •b as in

Step 1.

Finally, the test rule based on T consists of rejecting the null hypothesis if
T > T 1−α, where T p is the empirical p−percentile of values T •b(b = 1, ..., B)
obtained before.
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3.2. Local test

As we mentioned before, if the previous test is significative and therefore
we reject the equality of the mr

l curves (l = 1, . . . ,M), we will be interested
in testing the null hypothesis of equality of critical points. Note that, it
is possible that these points can be equal, even if the curves and/or their
derivatives are different.

For instance, taking into account the maxima of the first derivatives, the
interest lies in testing the following null hypothesis

H0 : x01 = . . . = x0M

The cited hypothesis is true if D = x0j − x0k = 0 being

(j, k) = arg max 1≤l<m≤M |x0j − x0k|

otherwise, H0 is false. It is important to highlight that, in practice, the true
x0j are not known and consequently neither isD, so an estimate D̂ = x̂0j−x̂0k

is used, where, in general, x̂0l are the estimates of x0l based on the estimated
curves m̂l.

In our application, we need to know the point which maximizes the first
derivative of the ml curves. Accordingly, we have defined this point, x0l for
each l level, as

x0l = argmax
x
m1

l (x)

A natural estimator of the cited x0l can be obtained as the maximizer of

m̂1
l (k1), . . . , m̂

1
l (kN)

with k1, . . . , kN being a grid of N equidistant points in a range of the X

values.
Of course, since D̂ is only an estimate of the true D, the sampling un-

certainty of these estimates need to be acknowledged. Hence, a confidence
interval (a, b) is created for D for a specific level of confidence (e.g., 95%).
Based on this, the null hypothesis is rejected if a zero value is not within the
interval.

The steps for construction of the bootstrap confidence interval for the
true D are as follows:
Step 1. Obtain from the sample data {(Xi, Fi, Yi)}

n
i=1 the estimates of x0l

based on the model in (2) and consequently retrieve the D̂ value.
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Step 2. For b = 1, . . . , B (e.g. B=1000), generate bootstrap samples{
(X•b

i , F •b
i , Y •b

i )
}n
i=1

by randomly sampling the n items from the original
data set with replacement (that is, each individual value (Xi, Fi, Yi) has a
probability n−1 of occurring), and compute D̂•b as in Step 1.

Finally, the 100(1− α)% limits for the confidence interval of D are given
by

I =
(
D̂α/2, D̂1−α/2

)

where D̂p represents the p-percentile of D̂•1, . . . , D̂•B.

4. Bandwidth Selection and Computational Aspects

Bandwidth Selection

It is well known that the nonparametric estimates m̂r
l (X) depend heavily

on the bandwidths h0, h1, . . . , hM used in the kernel-based algorithm for the
estimation of the partial functions f0, f1, . . . , fM . Various methods for an
optimal selection have been suggested, such as Generalized Cross Validation
(GCV) (Golub et al., 1979) or plug-in methods (see e.g. Ruppert et al.,
1995). For a nice overview on this topic, we recommend the reading of
Wand and Jones (1995). However, given the difficulty of asymptotic theory,
optimal bandwidth selection is still a challenging problem. Furthermore, the
results obtained from the tests presented in Section 3 depend heavily on
the smoothing parameter, and a distinction should be drawn between the
bandwidth choice for estimation and for testing.

As a practical solution, in the first step of the estimation algorithm,
bandwidth h0 is selected automatically by minimizing the following cross-
validation criterion:

CV0 =
∑n

i=1

(
Yi − f̂

(−i)
0 (Xi)

)2
(5)

where f̂
(−i)
0 (X) indicates the fit at X leaving out the i-th data point. Like-

wise, windows hj (j = 1, . . . ,M) are selected by minimizing

CVl =
∑n

i=1
I{Fi=l}

(
Yi − f̂0 (Xi)− f̂

(−i)
l (Xi)

)2
(6)
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Computational Aspects

Bootstrap resampling techniques are time-consuming processes because
it is necessary to estimate the model many times. Moreover, the use of
the cross-validation technique for the choice of the bandwidths used in the
nonparametric estimates implies a high computational cost, inasmuch as it
is necessary to repeat the estimation operations several times to select the
optimal bandwidths.

Additionally, in the application to real data, we have a large amount of
data (n = 16562). Consequently, recourse to some computational accelera-
tion technique is fundamental to ensure that the problem can be addressed
adequately in practical situations.

To speed up this process, in this paper we have used binning techniques.
A detailed explanation of this technique can be found in Fan and Marron
(1994). There now follows a brief description of the procedure that we used
to construct the binning versions of the estimators f̂0 (x) and f̂l (x) given in
Section 2.

In the first step of the algorithm, we consider a grid of N equidistant

points X•
1 < . . . < X•

N and construct the binned sample
{
X•

j , Y
•
j

}N
j=1

with

weights
{
W •

j

}N
j=1

where

Y •
j =

∑n

i=1

(
1−

∣∣Xi −X•
j

∣∣/δ
)
+
Yi and

W •
j =

∑n

i=1

(
1−

∣∣Xi −X•
j

∣∣/δ
)
+

with X+ = max {0, X} and δ denoting the distance between two neighboring
knots. The binning approximations f̂0 (x) in the first step of the estimation
algorithm are obtained by minimizing

∑N

i=1

{
Y •
i −

∑R

r=0
αr (X•

i −X)r ·K

(
X•

i −X

h

)
W •

i

}

Similarly, the approximations f̂l (x) in the second step of the algorithm are
obtained by minimizing

∑N

i=1

{
Y •l
i −

∑R

r=0
αr
l (X

•
i −X)r

}2

·K

(
X•

i −X

h

)
W •l

i

where Y •l
i = Y •

i − f̂0 (X
•
i ) and W •l

i = W •
i I{Fi=l}.
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As in the estimation with the binning technique, the cross-validation er-
rors CV in 5 and 6 can be respectively approximated by

CV0 ≈
∑N

i=1
W •

i

(
Y

•(−i)
i

W •
i

− f̂
(−i)
0 (X•

i )

)2

and

CVl ≈
∑N

i=1
W •l

i

(
Y •
i − f̂

(−i)
0 (X•

i )

W •l
i

− f̂
(−i)
l (X•

i )

)2

where the estimates f̂
(−i)
0 and f̂

(−i)
l (l = 1, . . . ,M) are obtained by leaving

out the ith grid point.
These approximations substantially reduce computing time because the

calculation of CVl is only necessary to evaluate kernel K at a maximum of
N different points for each choice of bandwidth. Needless to say, the finer
the grid of points selected, the better the approximation. The choice of the
number of grid points is a compromise between approximation error and
computational speed. In practice, depending on the sample size n and on
the distribution of the covariates, a larger amount of grid points might be
more appropriate.

A detailed study of the compromise between the computational time and
the error of the binning approximations can be seen in De Uña Álvarez and
Roca Pardiñas (2009). The conclusion to be drawn from this study is that,
as N increases, the errors of the estimates decrease, but waiting time may
increase substantially.

5. Simulation Study

This section reports the results of two simulation studies to assess the
validity of both (a) global derivative factor-by-curve interaction tests and
(b) critical points tests. In both cases we consider a factor-by-curve unidi-
mensional regression problem where the explanatory covariate X was drawn
from a uniform U [−2, 2] distribution, the factor F was chosen in accordance
with F ∼ Bernoulli (0.5)+1, and the outcome variable Y was generated
according to

Y =

{
m1(X) +N(0, σ1(x)) if F = 1
m2(X) +N(0, σ2(x)) if F = 2

(7)
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with σj(x) = 0.2 + |0.25mj(x)| for j = 1, 2. One thousand independent
samples {Xi, Fi, Yi}

n
i=1 were generated from the model (7).

In the first study we assessed the validity of the global first derivative
factor-by-curve interaction test. In particular, we considered the null hy-
pothesis H0 : m

1
1(·) = m1

2(·) under the model in (7) with m1(x) = (2 − 3x2)
andm2(x) = 1−(1−a)3x2 being a a constant. Consequently, the first deriva-
tive regression curves are given by m1

1(x) = −6x and m1
2(x) = −6(1 − a)x.

Note that the regression curves m1 and m2 are always different, yet the con-
stant, a, governs the first degree factor-by-curve interaction of the model.
The value a = 0 corresponds to the hypothesis H0 and as the value of a rises,
so does the degree of interaction of the model.

To determine the critical values of the global test statistic, we applied
the bootstrap method as described above in Subsection 3.1. Specifically, this
entailed 400 bootstrap samples for calculating type 1 errors and 200 bootstrap
samples for calculating the power under the alternative. Both type 1 errors
and power were calculated on the basis of 1000 simulation runs.

Table 1 displays the estimated type 1 errors for the method at different
significance levels and for different sample sizes. As can be seen from this
table, all tests performed reasonably well, with almost all holding the level
and several coming quite close to the nominal level.

Level n=100 n=200 n=500

1 0.9 0.6 0.9
5 5.1 4.4 5.4
10 11.2 8.6 11.1
15 16.7 14.3 15.4
20 21.0 19.8 20.8

Table 1: Estimated type 1 error (in percent) for the global test.

We then studied power performance for the alternatives as a function of
a. Power results are shown in Figure 1. The test produces satisfactory power
curves, with the probability of rejection rising in response to any increase in
the value of the constant a.
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Figure 1: Percentage rejection for global test on increasing a for nominal levels of 1, 5, 10,
and 20 percent and sample sizes of n = 100, n = 200 and n = 500.

In the second simulation study, we considered the local hypothesis H0 :
x01 = x02 being x0j = argmax

x
m1

j(x). In this study we consider again the
model (7) with m1(x) = 2+x−x3 and m2(x) = 1+2x−(x−a)3, being again
a a constant. In this case, the first derivatives are given by m1

1(x) = 1− 3x2

and m1
2(x) = 2 − 3(x − a)2 and they are always different. However, it is

important to highlight that if a = 0 then the null hypothesis will be true.
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Graphical average results are displayed in Figure 2. The left panel plots
the data generating function and their mean estimates with their 100 simu-
lation replicates for estimate m2 with a = 0. The good performance of the
resulting estimates is evident, recovering the functional forms of the corre-
sponding true curve very successfully. In the right panel we can observe the
estimate of their first derivative, and their simulation replicates. Note that
this estimate opens at the limits of the curve resulting from the intrinsic fea-
tures of the kernel estimator. Ticks on the horizontal axis of this right panel
represent the estimated a value for each simulation run, which corresponds
with the maximizers of the first derivative. It is important to highlight that
the estimation of this point should be close to zero because in the data gen-
erating function the true a value was forced to be zero. The Box-Plots for
â, according to the sample size n, can be seen in Figure 3. As expected, the
interquartile range decreased as the sample size n increased.
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Figure 2: True estimation and first derivative (solid broad lines) with their 100 simulation
runs (grey lines) with a = 0 and n = 500. Ticks on the horizontal axis represent the
estimated a value for each simulation trial.
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To determine the confidence interval for the statistic D, we applied the
bootstrap method as described in subsection 3.2 with a total of 1000 boot-
strap samples. Type 1 errors and power were calculated as the proportions
of rejections of H0 in 1000 runs. Test size and power were determined for
different levels (1, 5, 10, and 20 percent) and for different sample sizes n

(n=100, 200, 500).
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Figure 3: Box-Plot for the estimated a with different sample sizes (n = 100, 200 and 500).

Table 2 shows the results obtained according to type 1 errors. As we
can see, this test performed well in general, with type 1 errors proving to be
relatively close to nominal errors. Moreover, the differences between nominal
levels and type 1 errors decreased as the sample size increased.

14



0.0 0.2 0.4 0.6 0.8

0
20

40
60

80
10

0

a

po
w

er
(%

)
n=100
n=200
n=500

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80
10

0

a
po

w
er

(%
)

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80
10

0

a

po
w

er
(%

)

0.0 0.2 0.4 0.6 0.8

0
20

40
60

80
10

0

a

po
w

er
(%

)

Figure 4: Percentage rejection for local test on increasing a for nominal levels of 1, 5, 10,
and 20 percent and sample sizes of n = 100, n = 200 and n = 500.

The power curves shown in Figure 4 display the expected behavior pat-
tern. For a = 0, the probability of rejection was approximately at the nominal
level, reaching a value of 1 when the sample size grew. Moreover, the test
showed an improvement in power as the sample size grew.
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Level n=100 n=200 n=500

1 0.8 1.6 1.2
5 5.1 5.4 5.5
10 9.9 10.4 9.6
15 15.7 15.8 14.6
20 20.7 20.4 19.6

Table 2: Estimated type 1 errors (in percent) for local test.

The bandwidth used in this simulation study were obtained using the CV
mechanism explained in Section 3.1. While this choice of bandwidths may be
far from optimal, as stated before, the complete testing procedures seemed
to perform reasonably well in this simulation study.

6. Application to real data

Our methodology was used to determine the ideal size of capture of the
stalked barnacle (Sestelo and Roca-Pardiñas, 2011) . This species, Pollicipes
pollicipes (Gmelin, 1789), is a strictly littoral and essentially intertidal pedun-
culate cirripede which form dense aggregates or clumps on the exposed rocky
shores of Algeria, France, Spain, Morocco, Portugal and Senegal (Barnes,
1996; Cruz, 2000; Darwin, 1851). The commercial interest of this species
resides in their muscular peduncle, the edible stalk of the barnacle, which
commands high prices on the market (Goldberg, 1984). In Spain and Por-
tugal, where harvesting of P. pollicipes is highest, the phenomenon of over-
fishing has affected this species to differing degrees (Bernard, 1988; Cardoso
and Yule, 1995; Cruz, 2000; Molares and Freire, 2003).

Accordingly, we sought to determine a sustainable, harvestable specimen
size, i.e., a size that would ensure high commercial yield while simultaneously
guaranteeing the regeneration and conservation of the population.

To this end, specimens were collected from five sites along an intertidal
zone that are representative of the region’s Atlantic coastline and correspond
to the stretches of coast where this species is harvested (Figure 5, first row).
The study was conducted over two years, from January 2006 to December
2007, during which we sought to maintain a monthly sampling periodicity.
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The following biometric variables of each specimen were measured: rostro-
carinal length (RC; maximum distance across the capitulum between the ends
of the rostral and carinal plates; the variable that best represents the growth
of the species (Cruz, 1993, 2000)) (Figure 5, second row); and dry weight
(DW), obtained on the basis of drying individuals in a forced air oven for 24
hours at 100 oC (Montero-Torreiro and Mart́ınez, 2003). All measurements
were made using a digital caliper with a precision of 0.1 mm, and a 0.01 g
precision balance. A total of 16562 specimens were measured.

Figure 5: First row: Sampling sites. Second row: Picture of P. pollicipes on the rock and
sketch depicting longitudinal variable measured.
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In order to ascertain individual weight gain versus size, and be able to
relate this evolution with the optimal size of capture for the species, the
following regression model was used

DW = m(RC) + ε (8)

where m is a smooth function and ε is the error that is assumed to have
mean zero and variance as a function of the covariate RC.

Figure 6 shows the estimated regression curve of the previous model and
its first derivative. As we can see, the regression curve m is a monotone
increasing function, and the value of DW thus increases with the values of
RC. Yet the increase in weight per unit of RC (given by the first derivative
of m) registers a maximum at a given size, that we named rc0, beyond which
this weight gain declines (or at least remains constant). Consequently, this
study proposes that the minimum size of capture should never be less than
rc0. In this overall study, this rc0 corresponded to an RC of 21.5 mm (broken
vertical line).
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Figure 6: Regression curve and first derivative (solid lines) with bootstrap-based 95%
confidence intervals (broken lines) for dry weight and rostro-carinal length (overall study).
Solid vertical line: estimated rc0. Grey area: confidence interval constructed for r̂c0.
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In biological studies, and specifically in population dynamics and stock
assessment, it is relevant to ascertain whether this size remained constant
across time and was not altered by any possible annual variability in the
growth of this species. Therefore, the study was repeated including the
factor-by-curve interaction. The first and second rows of Figure 7 thus refer
to 2006 and 2007, respectively. As with the overall study, in all cases the
initial regression curves show the way in which smaller-sized individuals in-
creased in weight exponentially whereas larger-sized individuals increased in
weight proportionally. To summarize, Table 3 shows the values estimated for
rc0 by each of the studies conducted.

Study r̂c0 95% IC

Global 21.50 (19.96,23.42)
2006 21.18 (19.75,23.56)
2007 21.10 (19.60,22.89)

Table 3: Size, r̂c0, which maximizes the first derivative of the regression curves, with 95%
confidence interval, for each of the studies conducted.

Once obtained the regression curves m2006 and m2007, the following step
is to determine whether the year factor produces an effect on the response
and we are really dealing with a true interaction or, by contrast, the pre-
vious regression curves are equal. For this, we have applied the global test
explained above. The p-value obtained, both initial regression curves and
first derivatives, is less than 0.01 and therefore both the null hypothesis of
equality of curves and equality of first derivatives are rejected.
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Figure 7: Regression curve and first derivative (solid lines) with bootstrap-based 95%
confidence intervals (broken lines) for dry weight and rostro-carinal length. First row: year
2006; second row: year 2007. Solid vertical line: estimated rc0. Grey area: confidence
interval constructed for r̂c0.

As we mentioned before, in this application it will be useful to prove
whether the size sought (rc0), which maximizes the first derivative of both
years, is equal for the two levels. Therefore, the local test was applied result-
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ing a D value of 0.0812 (-3.2264, 3.1562). This confidence interval indicates
that, although the effects of RC on the response depends on the factor and
consequently the curves and their derivatives are different for each level, the
size where this barnacle reaches its maximum yield is significantly equal.

In this application we are also interested in testing if the optimal size
varies depending on the geographic distribution of the species. Therefore,
we have selected two sites where we collected the sample and we have fitted
a model with factor-by curve interaction but, in this case, the site has been
considered as the factor. The estimated rc0 was 20.93 (19.97, 22.37) and 17.35
(16.82, 18.13) for site 1 and site 2, respectively. The p-value obtained with the
global test is less than 0.01 and the local test applied to this context results
in a D value of -3.573 (-5.025,-2.531). This confidence interval indicates
significant differences in size between sites, suggesting the existence of a
possible geographical differentiation of growth of P. pollicipes.

7. Discussion

In this paper, local polynomial kernel smoothers were used to obtain
nonparametric estimates of regression curves and their derivatives, based on
regression models with factor-by-curve interactions. The main goals of this
paper were to provide a global test to detect significant features of the regres-
sion curves and their derivatives, and to draw inferences about critical points
linked to the derivative curves. We have also shown here the application of
this methodology in a real study, in order to obtain and compare the size of
capture of a biological species.

In the application to real data, to draw inferences about the critical point
rc0 it is essential to know the confidence interval of the maximizer of the first
derivative. To this end, we have used bootstrap techniques. To construct
this punctual confidence interval and to determine the critical values of the
T statistic (global test), we have used the wild bootstrap. This resampling
method is valid for heteroscedastic models where variance of ε is a function of
the covariate X . By contrast, according to the local test, where we must not
generate bootstrap samples under H0, the chosen bootstrap was a “simple
bootstrap” where replicates have been generated by randomly sampling the
n items from the original data set with replacements (that is, each individual
value has a probability n−1 of occurring).

It is well known that the use of bootstrap resampling techniques may
entail a high computational burden. In our particular database, this bur-
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den increased even further, since the sample size was large (n = 16600).
The computational cost that is involved can be considerably reduced by us-
ing binning-type acceleration techniques. With the use of these types of
techniques, we can considerably reduce computation time and render our
procedures operational in practical situations.

Finally, the behavior of the proposed statistical methodology was verified
with biological data obtained from a crustacean. In terms of weight gain, in
the case of the overall study, individuals were estimated to grow exponentially
and thus ensure a high commercial yield until they reached an RC of 21.50
mm. This cutoff point ensures that any barnacle under this size has not yet
attained its maximum yield in weight and, in accordance with FAO guide-
lines (Sparre and Venema, 1997), should therefore not be captured. From
this threshold onwards, the accumulated weight of individual specimens will
continue to rise with size but the increase in weight from one size to the next
will be progressively less, so that the yield obtained ceases to be profitable
when seen against the time that the barnacle remains in place without being
harvested.

According to this, our testing methods reveal that: (a) Stalked barnacles
reach a maximum commercial yield with a size of 21.50 mm; (b) this point
or size (rc0) is the same in both years of the study; and (c) this point or size
(rc0) is different between sites.

Software implementing the nonparametric model estimation (with bin-
ning), and the bootstrap-based tests proposed in this paper can be obtained
by contacting the first author at sestelo@uvigo.es.
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