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Jacobo de Uña-Álvarez (U. Vigo), Noël Veraverbeke (U. Hasselt)

February 2012

Abstract

In this paper a copula-graphic estimator is proposed for censored survival data.

It is assumed that there is some dependent censoring acting on the variable of

interest, which may come from an existing competing risk. Furthermore, the

full process is independently censored by some administrative censoring time.

The dependent censoring is modeled through an Archimedean copula function,

which is supposed to be known. An asymptotic representation of the estimator

as a sum of independent and identically distributed random variables is

obtained and, consequently, a central limit theorem is established. We

investigate the finite sample performance of the estimator through simulations.

A real data illustration is included.

1 Introduction

Consider a bivariate competing risks model with variables Y and C representing

the time up to event 1 and event 2 respectively on the same subject. In this

situation, only one of the two events is observed, and the recorded event time

is given by the minimum Z = min(Y,C). The event indicator δ = I(Y ≤ C)
which takes the value 1 when event 1 occurs (δ = 0 otherwise) is also observed.

It is known (Tsiatis, 1975) that the marginal distribution functions F (t) =

P (Y ≤ t) and G(t) = P (C ≤ t) cannot be identified without knowledge of the
dependence structure between Y and C. For example, the consistency of the

Kaplan-Meier estimator of F (Kaplan and Meier (1958)) is not ensured since

Y and C will be in general dependent. Due to this problem, attention in this

setting has been mainly focused on the estimation of the so-called cause-specific

hazard rate and subdistribution functions (Kalbfleisch and Prentice (1980)).

However, estimation of F (and G) is possible when some information on the

joint behaviour of Y and C is available.

Assume that there exists a known Archimedean copula C(u1, u2) which re-
lates the joint survival function of (Y,C) to the marginal survival functions

F (t) = 1− F (t) and G(t) = 1−G(t):
P (Y > t1, C > t2) = φ−1(φ(F (t1)) + φ(G(t2))).

The function φ : ]0, 1] → [0,∞[ is called the generator of the copula C. It is
a known continuous, convex, strictly decreasing function with φ(1) = 0. The

particular case φ(t) = − ln t leads to the product copula C(u1, u2) = u1u2 and
corresponds to independence between Y and C. A broad family of generators

have been used to model dependent random variables. See Nelsen (2006). Un-

der this assumption, Zheng and Klein (1995), see also Rivest and Wells (2001),
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introduced a nonparametric estimator for F (t), termed copula-graphic estima-

tor, generalizing the product-limit Kaplan-Meier estimator to the dependent

scenario. Their estimator, however, requires the direct observation of the pair

(Z, δ), which is not always possible. This may be due to limitations in the follow-

up period for the subjects, losses unrelated to the competing risks of interest,

and so on.

Therefore we introduce a potential censoring time D which is independent

of (Z, δ). Rather than (Z, δ) we observe (U, ρ, ρδ) where U = min(Z,D) and

ρ = I(Z ≤ D); note that the value of δ (i.e. the event type) is observed only
when Z is uncensored (ρ = 1). We put eG for the distribution function of D.

Denote H(t) = P (Z ≤ t), H(t) = 1 − H(t), and H1(t) = P (Z ≤ t, δ = 1).

Then, if φ0 exists and if H1 is differentiable, we have from Tsiatis (1975)

F (t) = φ−1
µ
−
Z t

0

φ0(H(s))dH1(s)

¶
. (1)

In Section 2, an estimator of F (t) will be obtained after plugging in proper

estimators for H and H1, based on the observed values (Ui,ρi, ρiδi), i = 1, ..., n,

of (U, ρ, ρδ).

The rest of the paper is organized as follows. In Section 2 we introduce

the estimator and we establish an almost sure asymptotic representation. In

Section 3 we investigate the finite-sample performance of the estimator through

simulations. Section 4 gives an illustration of the method through the analysis

of a real medical data set. Main conclusions are reported in Section 5. Some

needed lemmas and their proofs are given in the Appendix.

2 The estimator. Main results

It becomes clear from equation (1) that, for the construction of an estimator of

F (t), one needs suitable estimators of the distribution function of Z (H) and the

subdistribution function of Z under restriction δ = 1 (H1). Since the censoring

by D on Z is independent, one can estimate H by the Kaplan-Meier estimator

Hn based on the (Ui,ρi), i = 1, ..., n. This estimator is defined through

1−Hn(t) =
nY
i=1

∙
n− i

n− i+ 1
¸ρ(i)I(U(i)≤t)

where U(1) ≤ ... ≤ U(n) are the ordered Ui and ρ(1), ..., ρ(n) are the corresponding
indicators. It can also be expressed as

Hn(t) =

nX
i=1

WinI(U(i) ≤ t)
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where Win is the Kaplan-Meier weight attached to U(i), which is given by

Win =
ρ(i)

n− i+ 1
i−1Y
j=1

∙
n− j

n− j + 1
¸ρ(j)

.

To estimateH1 we consider δ(i) as a covariable for the possibly censored lifetime

U(i); following Stute (1993), we have that

H1
n(t) =

nX
i=1

WinI(U(i) ≤ t, δ(i) = 1)

is an estimator for H1(t) = P (Z ≤ t, δ = 1). Since Win = 0 whenever ρ(i) = 0,

we may write

H1
n(t) =

nX
i=1

WinI(U(i) ≤ t, ρ(i)δ(i) = 1)

which demonstrates that H1
n(t) can be constructed from the observed values

(Ui, ρi, ρiδi), i = 1, ..., n. We also mention that H
1
n(t) is just the usual estimator

for a cumulative incidence function in a censored competing risks model, cfr.

Kalbfleisch and Prentice (1980), p. 169, eq. (7.10).

Strong consistency and asymptotic normality ofH1
n(t) and of the correspond-

ing Kaplan-Meier integrals
Pn
i=1Winϕ(U(i), ρ(i)) for some general real-valued

function ϕ can be found in Stute (1993) and Stute (1996). The needed condi-

tions on the underlying variables are: (i) Z and D are independent and H andeG have no jumps in common; and (ii) P (ρ = 1|Z, δ) = P (ρ = 1|Z). Assuming
continuity, both conditions (i) and (ii) hold if D and (Z, δ) are independent,

which is true in particular when D is independent of (Y,C).

In view of the above we propose the following generalized copula-graphic

estimator for F (t):

Fn(t) = φ−1
µ
−
Z t

0

φ0(Hn(s))dH
1
n(s)

¶
(2)

where Hn = 1 −Hn. In the special case of no additional censoring (D = ∞)
we have U = Z, ρ = 1, Win = 1/n, and Fn(t) becomes the classical copula-

graphic estimator. If moreover Y and C are independent (φ(t) = − log t), Fn(t)
becomes the Kaplan-Meier estimator based on observations of (Z, δ). Equation

(2) also leads to a standard Kaplan-Meier estimator in absence of dependent

censoring (Z = Y , δ = 1), based on observations of (U, ρ).

We prove an almost sure asymptotic representation for (2) with a uniform

rate for the remainder on each compact interval [0, T ] with T < min(TF , TG, T eG).
3



Here we use the notation TF for the right endpoint of the support of any distri-

bution F . Put Fn = 1− Fn. We will refer to the following conditions.

(C1) F , G, and eG are continuous
(C2) D is independent of (Y,C)

(C3) H and H1 have continuous first and second derivatives in [0, T ]

(C4) The copula generator φ has three continuous derivatives in ]0, 1] and

φ000(t) ≤ 0 for t ∈ ]0, 1]

Theorem 1. Under (C1)-(C4) we have for t ≤ T

Fn(t)− F (t) = − 1

φ0(F (t))n

(
nX
i=1

Z t

0

φ00(H(s))ψi(s)dH
1(s) +

nX
i=1

eψi(t)
)
+Rn(t)

where the ψi and
eψi (i = 1, ..., n) are i.i.d zero mean variables and

sup
0≤t≤T

|Rn(t)| = O(n−3/4(logn)3/4) a.s. as n→∞.

Remark. (a) The ψi are defined as

ψi(s) = H(s)

(Z s

0

I(Ui ≤ y)− eH(y)
(1− eH(y))2 d eH1(y) +

I(Ui ≤ s, ρi = 1)− eH1(s)

1− eH(s)
−
Z s

0

I(Ui ≤ y,ρi = 1)− eH1(y)

(1− eH(y))2 d eH(y))

where eH(t) = P (U ≤ t) and eH1(t) = P (U ≤ t,ρ = 1).
(b) The eψi are defined aseψi(t) = eϕ(Ui)γ0(Ui)ρi −E {eϕ(U)γ0(U)ρ}

+γ1(Ui)(1− ρi)− γ2(Ui)

where eϕ(u) = I(u ≤ t)φ0(H(u)). The functions γ0, γ1, γ2 are defined in Stute
(1996). In our case they become:

γ0(u) =
1

1− eG(u) ,
γ1(u) =

1

1− eH(u)
Z
I(u < w)eϕ(w)γ0(w)d eH11(w)

=
1

1− eH(u)
Z ∞
u

eϕ(w) 1

1− eG(w)d eH11(w)

=
1

1− eH(u)
Z ∞
u

eϕ(w)dH1(w),
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γ2(u) =

Z Z
I(v < u, v < w)eϕ(w)γ0(w)

(1− eH(w))2 d eH0(v)d eH11(w)

=

Z eC(u ∧w)eϕ(w) 1

1− eG(w)d eH11(w)

=

Z eC(u ∧w)eϕ(w)dH1(w),

where eH0(t) = P (U ≤ t,ρ = 0), eH11(t) = P (U ≤ t,ρ = 1, δ = 1), and

eC(t) = Z t

0

d eG(v)
(1− eH(v))(1− eG(v)) .

Also note that we have used that d eH11(t) = (1− eG(t))dH1(t).

(c) The asymptotic representation in Theorem 1 leads to the asymptotic

normality result for the estimator:
√
n (Fn(t)− F (t))→d N(0,σ(t))

where

σ2(t) =
1

φ0(F (t))2
V ar

µZ t

0

φ00(H(s))ψi(s)dH
1(s) + eψi(t)¶ .

In practice, the estimator’s variance (≈ σ2(t)/n) may be approximated by re-

sampling methods.

Proof to Theorem 1. From (1) and (2) we have

Fn(t)− F (t) = −
½
φ−1

µ
−
Z t

0

φ0(Hn(s))dH
1
n(s)

¶
− φ−1

µ
−
Z t

0

φ0(H(s))dH1(s)

¶¾
=

1

φ0(F (t))

½Z t

0

φ0(Hn(s))dH
1
n(s)−

Z t

0

φ0(H(s))dH1(s)

¾
+Rn1(t)

where

Rn1(t) =
1

2

φ00(φ−1(ε1))£
φ0(φ−1(ε1))

¤3 ½Z t

0

φ0(Hn(s))dH
1
n(s)−

Z t

0

φ0(H(s))dH1(s)

¾2

with ε1 between −
R t
0 φ

0(Hn(s))dH
1
n(s) and −

R t
0 φ

0(H(s))dH1(s). Hence,

Fn(t)− F (t) =
1

φ0(F (t))

½Z t

0

£
φ0(Hn(s))− φ0(H(s))

¤
dH1(s)

+

Z t

0

φ0(H(s))d
£
H1
n(s)−H1(s)

¤
+

Z t

0

£
φ0(Hn(s))− φ0(H(s))

¤
d
£
H1
n(s)−H1(s)

¤¾
+Rn1(t)
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=
1

φ0(F (t))

½
−
Z t

0

φ00(H(s))
£
Hn(s)−H(s)

¤
dH1(s) (3)

+

Z t

0

φ0(H(s))d
£
H1
n(s)−H1(s)

¤¾

+Rn1(t) +Rn2(t) +Rn3(t)

where

Rn2(t) = −1
2

Z t

0

φ000(ε2)
£
Hn(s)−H(s)

¤2
dH1(s)

with ε2 between Hn(s) and H(s), and where

Rn3(t) =

Z t

0

£
φ0(Hn(s))− φ0(H(s))

¤
d
£
H1
n(s)−H1(s)

¤
.

Lemmas 1 to 3 in the Appendix guarantee that the remainders Rni(t) satisfy

the uniform rate given for Rn(t). Now, in the first term of (3) we plug in the

asymptotic representation for the Kaplan-Meier estimator due to Lo and Singh

(1986) and Major and Rejtő (1988). Note that, since H and eG are continuous,
we have for t < T eH

Hn(t)−H(t) = 1

n

nX
i=1

ψi(t) + rn1(t)

with sup0≤t≤T |rn1(t)| = O(n−1 logn) a.s. For the second term in (3), we use

the asymptotic representation for Kaplan-Meier integrals as in Stute (1996), but

with an almost sure remainder term as in Sánchez-Sellero et al. (2005), to getZ t

0

φ0(H(s))d
£
H1
n(s)−H1(s)

¤
=
1

n

nX
i=1

eψi(t) + rn2(t)
with sup0≤t≤T |rn2(t)| = O(n−1(logn)3) a.s. The integrability conditions in
Stute (1996) and Sánchez-Sellero et al. (2005) are satisfied since t ≤ T , and the
proof is complete.¤

3 Simulation study

In this section we investigate the finite sample performance of the proposed

estimator through simulations. We consider a situation with two dependent,

exponential survival times Y ∼ Exp(λY ) and C ∼ Exp(λC), where λY = 1 and
λC = 1 or λC = 3/4. The variables Y and C follow a Clayton copula with

generator ϕθ(t) = t
−θ − 1, θ > 0, i.e. their joint survival function is given by
P (Y > x1, C > x2) = C(e

−λ1x1 , e−λ2x2)

6



where

C(u1, u2) =
£
u−θ1 + u−θ2 − 1

¤−1/θ
.

This copula implies a Kendall’s Tau τθ = θ/(θ+ 2). We consider the cases θ =

0.5, 2, 10, corresponding to association levels of 0.2, 0.5 and 0.83 respectively.

Specifically, the simulation algorithm is as follows (cfr. Exercise 4.17 in Nelsen

(2006)):

Step 1. Generate independent random variables V1, V2 ∼ Exp(1)
Step 2. Independently generate Z0 ∼ Γ(1/θ, 1), and compute Ui = (1 +

Vi/Z0)
−1/θ, i = 1, 2

Step 3. Finally, compute Y = − ln(U1)/λY , C = − ln(U2)/λC

Then, we compute Z = min(Y,C) and δ = I(Y ≤ C). The variable of inter-
est is Y . The proportion of dependent censoring on Y when λC = 3/4 is smaller

than when λC = 1. Besides, we introduce independent censoring through a

potential censoring time D ∼ Exp(λD) independent of (Y,C), so the available
information is U = min(Z,D), ρ = I(Z ≤ D), and ρδ. Cases λD = 1 and

2 are considered (the latter introducing a heavier censoring pattern). Sample

sizes n = 250 and n = 500 are taken. In Table 1 we report the approximate

proportion of independent and dependent censoring on Y for each combination

of the parameters in the simulation.

θ = 0.5 2 10

λD = 1

λC = 1 36.4 (50.0) 41.4 (50.0) 47.1 (50.0)

λC = 3/4 39.4 (41.7) 44.1 (38.1) 48.8 (24.1)

λD = 2

λC = 1 52.6 (50.0) 57.1 (50.0) 63.1 (50.0)

λC = 3/4 55.7 (42.1) 59.7 (39.6) 64.9 (28.7)

Table 1. Independent and dependent (in brackets) censoring rates (%) for the

simulated models. Approximated values of P (ρ = 0) and P (δ = 0|ρ = 1) (in
brackets) are reported

In Tables 2-4 we report the bias, standard deviation, and mean squared error

(MSE) of the proposed estimator in the case λD = 1, computed along 10,000

Monte Carlo trials, at the three quartiles ti, i = 1, 2, 3, of the distribution of

Y (Exp(1)). Together with the generalized copula-graphic estimator, we report

the results corresponding to the naive Kaplan-Meier estimator of the survival

function of Y which ignores the problem of dependent censoring. Results of

the naive Kaplan-Meier estimator are expected to get better as the dependent

censoring rate decreases (numbers in brackets in Table 1). It is also expected

that the copula-graphic estimator will outperform the naive Kaplan-Meier more

7



clearly as the dependence degree grows (larger θ) and for larger quantiles. All

these features are appreciated from these Tables 2-4. Besides, it is seen that the

naive Kaplan-Meier has a bias which does not decrease when the sample size

changes from n = 250 to n = 500. This systematic bias is a consequence of its

misspecified product copula, being the main responsible for the large values of

the MSE. The bias of the generalized copula-graphic estimator decreases for a

larger n. Standard deviations of the proposed method are of the same order as

for the Kaplan-Meier, although they are somehow smaller at the right tail.

θ = 0.5 2 10

NKM GCG NKM GCG NKM GCG

n = 250

t1 .0138 -.0008 .0406 -.0018 .0875 -.0013

λC = 1 t2 .0465 -.0029 .1145 -.0024 .1829 -.0013

t3 .0823 -.0070 .1733 -.0029 .2336 .0008

t1 .0103 -.0009 .0310 -.0013 .0609 -.0019

λC = 3/4 t2 .0357 -.0020 .0844 -.0023 .0919 -.0033

t3 .0613 -.0060 .1150 -.0036 .0616 -.0070

n = 500

t1 .0137 -.0005 .0406 -.0010 .0878 -.0007

λC = 1 t2 .0472 -.0010 .1144 -.0015 .1830 -.0008

t3 .0839 -.0027 .1734 -.0018 .2331 -.0011

t1 .0100 -.0008 .0310 -.0008 .0609 -.0011

λC = 3/4 t2 .0352 -.0014 .0840 -.0017 .0919 -.0019

t3 .0613 -.0033 .1142 -.0022 .0616 -.0039

Table 2. Bias of the naive Kaplan-Meier estimator (NKM) and of the

generalized copula-graphic estimator (GCG) along 10,000 Monte Carlo trials.

Case λD = 1.

8



θ = 0.5 2 10

NKM GCG NKM GCG NKM GCG

n = 250

t1 .0314 .0333 .0294 .0350 .0260 .0352

λ2 = 1 t2 .0464 .0508 .0430 .0511 .0396 .0439

t3 .0695 .0722 .0642 .0618 .0625 .0509

t1 .0304 .0318 .0299 .0339 .0277 .0329

λ2 = 3/4 t2 .0447 .0477 .0418 .0464 .0411 .0404

t3 .0623 .0635 .0587 .0536 .0521 .0440

n = 500

t1 .0222 .0236 .0213 .0252 .0187 .0250

λ2 = 1 t2 .0331 .0362 .0306 .0360 .0279 .0307

t3 .0487 .0501 .0448 .0426 .0435 .0343

t1 .0215 .0225 .0209 .0236 .0194 .0230

λ2 = 3/4 t2 .0310 .0329 .0301 .0331 .0292 .0284

t3 .0426 .0430 .0408 .0369 .0367 .0308

Table 3. Standard deviation of the naive Kaplan-Meier estimator (NKM) and

of the generalized copula-graphic estimator (GCG) along 10,000 Monte Carlo

trials. Case λD = 1.

θ = 0.5 2 10

NKM GCG NKM GCG NKM GCG

n = 250

t1 .0012 .0011 .0025 .0012 .0083 .0012

λ2 = 1 t2 .0043 .0026 .0150 .0026 .0350 .0019

t3 .0116 .0053 .0342 .0038 .0585 .0026

t1 .0010 .0010 .0019 .0011 .0045 .0011

λ2 = 3/4 t2 .0033 .0023 .0089 .0022 .0101 .0016

t3 .0076 .0041 .0167 .0029 .0065 .0020

n = 500

t1 .0007 .0006 .0021 .0006 .0081 .0006

λ2 = 1 t2 .0033 .0013 .0140 .0013 .0343 .0009

t3 .0094 .0025 .0321 .0018 .0562 .0012

t1 .0006 .0005 .0014 .0006 .0041 .0005

λ2 = 3/4 t2 .0022 .0011 .0080 .0011 .0093 .0008

t3 .0056 .0019 .0147 .0014 .0051 .0010

Table 4. MSE of the naive Kaplan-Meier estimator (NKM) and of the

generalized copula-graphic estimator (GCG) along 10,000 Monte Carlo trials.

Case λD = 1.
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In Tables 5-7 we report the results for the case λD = 2. In this case, the

proportion of independent censoring grows, while the dependent censoring rate

remains similar to the case λD = 1 (see Table 1). Main features are similar to

those in Tables 2-4. As expected, the error of both estimators increases with

respect to the former case, particularly at the right tail of Y ; however, the

efficiency of the generalized copula-graphic estimator relative to the Kaplan-

Meier does not increase since the proportion of informative censoring with λD =

2 is roughly the same as for λD = 1.

θ = 0.5 2 10

NKM GCG NKM GCG NKM GCG

n = 250

t1 .0136 -.0008 .0406 -.0013 .0877 -.0008

λC = 1 t2 .0472 -.0017 .1144 -.0017 .1826 -.0002

t3 .0869 .0012 .1741 .0076 .2346 .0181

t1 .0105 -.0005 .0312 -.0008 .0612 -.0009

λC = 3/4 t2 .0359 -.0016 .0838 -.0025 .0921 -.0034

t3 .0636 -.0047 .1140 -.0050 .0622 -.0137

n = 500

t1 .0139 -.0002 .0407 -.0008 .0876 -.0004

λC = 1 t2 .0470 -.0009 .1145 -.0010 .1834 .0002

t3 .0841 -.0031 .1736 .0004 .2344 .0061

t1 .0107 .0001 .0308 -.0008 .0609 -.0007

λC = 3/4 t2 .0355 -.0010 .0837 -.0017 .0921 -.0018

t3 .0629 -.0044 .1117 -.0068 .0620 -.0095

Table 5. Bias of the naive Kaplan-Meier estimator (NKM) and of the

generalized copula-graphic estimator (GCG) along 10,000 Monte Carlo trials.

Case λD = 2.
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θ = 0.5 2 10

NKM GCG NKM GCG NKM GCG

n = 250

t1 .0341 .0363 .0319 .0381 .0284 .0383

λC = 1 t2 .0582 .0642 .0532 .0647 .0493 .0560

t3 .1200 .1227 .1142 .1108 .1091 .0925

t1 .0334 .0349 .0321 .0364 .0299 .0354

λC = 3/4 t2 .0556 .0510 .0522 .0586 .0506 .0494

t3 .1114 .1131 .1030 .0965 .0903 .0756

n = 500

t1 .0238 .0253 .0226 .0269 .0110 .0267

λC = 1 t2 .0413 .0455 .0380 .0457 .0345 .0392

t3 .0863 .0909 .0774 .0774 .0750 .0632

t1 .0235 .0246 .0229 .0260 .0210 .0250

λC = 3/4 t2 .0392 .0420 .0375 .0422 .0359 .0349

t3 .0759 .0796 .0713 .0668 .0632 .0532

Table 6. Standard deviation of the naive Kaplan-Meier estimator (NKM) and

of the generalized copula-graphic estimator (GCG) along 10,000 Monte Carlo

trials. Case λD = 2.

θ = 0.5 2 10

NKM GCG NKM GCG NKM GCG

n = 250

t1 .0013 .0013 .0027 .0015 .0085 .0015

λC = 1 t2 .0056 .0041 .0159 .0042 .0358 .0031

t3 .0220 .0151 .0433 .0123 .0670 .0089

t1 .0012 .0012 .0020 .0013 .0046 .0013

λC = 3/4 t2 .0044 .0036 .0097 .0034 .0111 .0025

t3 .0164 .0128 .0236 .0093 .0120 .0059

n = 500

t1 .0008 .0006 .0022 .0007 .0081 .0007

λC = 1 t2 .0039 .0021 .0146 .0021 .0348 .0015

t3 .0145 .0083 .0361 .0060 .0605 .0040

t1 .0007 .0006 .0015 .0007 .0042 .0006

λC = 3/4 t2 .0028 .0018 .0084 .0018 .0098 .0012

t3 .0097 .0064 .0176 .0045 .0078 .0029

Table 7. MSE of the naive Kaplan-Meier estimator (NKM) and of the

generalized copula-graphic estimator (GCG) along 10,000 Monte Carlo trials.

Case λD = 2.

In order to investigate the robustness of the proposed procedure, we repeat

the simulation of 10,000 Monte Carlo trials of sample size n = 250 of the model

11



with λY = λC = 1 and θ = 0.5, but applying the GCG estimator with a wrong

specification of the value of θ. Badly specified values of θ are 0.083, 0.125,

0.25, 0.75, 1, and 1.5. We also consider the naive Kaplan-Meier which can

be seen as arising from a Clayton copula with θ = 0. In Figure 1 we display

the MSE’s of the GCG estimator for the three quartiles of Y . These MSE’s

grow as the used value for θ departs from 0.5. Interestingly, we see that the

Kaplan-Meier estimator provides the worst results for the third quartile. For

the second quartile, a large overestimation of θ results in a MSE larger than that

of Kaplan-Meier; this changes as the misspecification degree decreases. For the

first quartile, the MSE remains roughly constant along θ; this is a consequence

of the low proportion of dependent censoring at the left tail of the distribution.
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Figure 1. MSE of the GCG estimator with misspecified Clayton copula

parameter (true theta is 0.5): first (solid), second (short dashed) and third

(large dashed) quartiles.

In Figure 2 the bias and the standard deviation of the misspecified GCG es-

timator are reported. It is seen that the influence of the misspecification degree

in the estimator’s variance is small, while the influence on the bias is remark-

able, specially for the second and the third quartiles. Indeed, this ’bias term’

arising from the misspecification of the Clayton copula parameter is the main

responsible for the variations in the MSE depicted in Figure 1. As expected, the

absolute bias increases with |θ − 0.5|, this being much more evident at the right
tail of the distribution (second and third quartiles), according to the heavier

effects of the dependent censoring.
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Figure 2. Bias (thick lines) and standard deviation (thin lines) of the GCG

estimator with misspecified Clayton copula parameter (true theta is 0.5): first

(solid), second (short dashed) and third (large dashed) quartiles.

4 Real data illustration

For illustration purposes, we consider the PBC data set reported and widely

explained in Fleming and Harrington (1991), with n = 312 individuals. In this

example, the Y variable denotes survival time (in years) for primary biliary

cirrhosis (PBC) patients. Censoring from the right is provoked by the end of

following-up or by liver transplantation (187 censored times, or about 60% of

censoring). The number of transplants is 19, while 168 individuals were alive

at the end of the study. In this setting, estimation of the survival function

of Y (F (t)) through the Kaplan-Meier estimator may be biased, due to the

violation of the independent censoring assumption for the patients who receive

a new liver (cfr. Fleming and Harrington, 1991, p. 103). Since the number of

patients with a transplant is relatively small, this bias is likely to be small (same

reference). However, it seems more realistic to estimate F (t) by incorporating

a copula function which models the positive correlation between survival and

transplantation times.

Therefore we consider our model in which C stands for time to transplant

(the dependent censoring time) and D represents time to end of follow-up (in-

dependent censoring). As copula generator function we take the Clayton copula

for which ϕθ(t) = t
−θ−1, θ > 0. As mentioned in Section 3, this copula implies

a Kendall’s Tau τθ = θ/(θ+2). We consider the cases θ = 4 and θ = 48, leading

to association levels of 0.67 and 0.96 respectively. In Figure 3 we display the

naive Kaplan-Meier estimator (which assumes independence between Y and C)

together with the proposed estimator for the two mentioned association degrees.

13



It is seen that the generalized copula-graphic estimator separates more from the

Kaplan-Meier as the dependence grows. Indeed, the Kaplan-Meier curve overes-

timates the survival probability, because it ignores that transplant is associated

with high risk of death. Crosses in Figure 3 indicate the transplantation times.

As expected, the three estimators agree until the appearance of the first trans-

plants, while they become more distinct with time, as more transplants occur.

In our application, the difference between the Kaplan-Meier survival rate and

that of the proposed estimator with θ = 48 was above 4% from 2000 days on,

reaching a maximum of 6.2% around time 3200.
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Figure 3. Kaplan-Meier estimator (solid line) and generalized copula-graphic

estimators (dashed lines) for the PBC data: moderate association (thin

dashed) and strong association (thick dashed line) between survival and

transplant times (indicated with crosses).
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5 Main conclusions

In this paper a generalized copula-graphic estimator for dependent censoring

has been introduced. The estimator is suitable in situations in which, besides

the dependent censoring, some independent mechanism censors the process of

interest. This is the case of, e.g., the censored competing risks model. The pro-

posed estimator reduces to the usual copula-graphic estimator when removing

the independent censoring, while it equals the standard Kaplan-Meier estimator

when the probability of having dependent censoring goes to zero. An asymp-

totic representation of the estimator as a sum of iid random variables has been

obtained and, accordingly, a central limit theorem has been derived. As a by-

product, an almost sure rate of convergence and the almost sure behavior of the

modulus of an empirical cumulative incidence function have been established.

Simulations have shown that the proposed method performs well with finite

sample sizes. As expected, the extent at which the new method may outperform

the naive Kaplan-Meier (which ignores the dependent censoring) varies with the

proportion of dependent censoring, as well as of the dependence degree. More

benefits will be obtained from the new method under strongly dependent cen-

soring and/or a large percentage of dependently censored data. It has been also

shown that the relative efficiency of the generalized copula-graphic estimator

increases at the right tail of the distribution, where the censoring effects con-

centrate. Robustness with respect to a misspecified copula has been explored;

small departures from the true copula result in an estimator with mean squared

error below that of the Kaplan-Meier. The practical performance of the estima-

tor has been illustrated through real medical data analysis too.

A practical issue regarding the application of the estimator is that of choos-

ing the copula function. The dependence sructure between the times to two

competing risks which censor each other cannot be identified from the available

data. The time-honoured Kaplan-Meier estimator is based on a specific copula

(the product copula) which is not suitable for dependent competing risks. In

practice, information on the association degree should be obtained from other

sources such as e.g. expert knowledge or past studies. Human intervention

provoking dependent or informative censoring (as in the PBC data illustration)

is an example in which the expert may inform about reasonable candidates for

the copula.
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7 Appendix: technical lemmas

In this Section we give the technical lemmas needed in the proof to Theorem 1.

Lemma 1. Under the conditions in Theorem 1 we have

sup
0≤t≤T

|Rn1(t)| = O(n−1 log logn) a.s.
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Proof. It is easy to see that, with probability 1,

sup
0≤t≤T

¯̄̄̄Z t

0

φ0(Hn(s))dH
1
n(s)−

Z t

0

φ0(H(s))dH1(s)

¯̄̄̄
= O( sup

0≤t≤T
|Hn(t)−H(t)|)

+O( sup
0≤t≤T

¯̄
H1
n(t)−H1(t)

¯̄
).

The first term is O(n−1/2(log logn)1/2) a.s., cfr. Földes and Rejtő (1981). The
same order bound is proved to hold for the second term in Lemma 4 below, and

the proof is complete.¤

Lemma 2. Under the conditions in Theorem 1 we have

sup
0≤t≤T

|Rn2(t)| = O(n−1 log logn) a.s.

Proof. With probability 1 we have

sup
0≤t≤T

|Rn2(t)| ≤ 1
2
sup
0≤t≤T

|Hn(t)−H(t)|2max( sup
0≤t≤T

¯̄
φ000(Hn(t))

¯̄
, sup
0≤t≤T

¯̄
φ000(H(t))

¯̄
).

Then, the assertion of the Lemma follows from a result of Földes and Rejtő

(1981).¤

Lemma 2. Under the conditions in Theorem 1 we have

sup
0≤t≤T

|Rn3(t)| = O(n−3/4(logn)3/4) a.s.

Proof. Divide [0, T ] into kn = O(n
1/2(logn)1/2) subintervals [ti, ti+1] of length

O(n−1/2(logn)1/2). Then, as in the proof of Lo and Singh (1986) we have

sup
0≤t≤T

|Rn3(t)| ≤ 2 max
1≤i≤kn

sup
ti≤y≤ti+1

¯̄
φ0(Hn(y))− φ0(Hn(ti))− φ0(H(y)) + φ0(H(ti))

¯̄

+kn sup
0≤t≤T

¯̄
φ0(Hn(t))− φ0(H(t))

¯̄
max

¯̄
H1
n(ti+1)−H1

n(ti)−H1(ti+1) +H
1(ti)

¯̄

= I + II.

For I we have by Taylor expansion and the fact that sup0≤t≤T
¯̄
Hn(t)−H(t)

¯̄
=

O(n−1/2(log logn)1/2) a.s. (Földes and Rejtő, 1981):

I ≤ 2 max
1≤i≤kn

sup
ti≤y≤ti+1

¯̄
φ00(H(ti+1))

¯̄ |Hn(y)−H(y)−Hn(ti) +H(ti)|+O(n−1 log logn).
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Now further subdivide each interval [ti, ti+1] into an = O(n
1/4(logn)−1/4) subin-

tervals of length O(n−3/4(logn)3/4). By using Bernstein’s inequality we can
show that this term is bounded a.s. by

c max
1≤i≤kn

max
0≤j≤an−1

|Hn(ti,j+1)−H(ti,j+1)−Hn(ti) +H(ti)|+O(n−3/4(logn)3/4)

for some constant c > 0. By the modulus of continuity result for the Kaplan-

Meier estimator (see Schäfer, 1986) we obtain that I = O(n−3/4(logn)3/4) a.s.
The II term is treated similarly and leads to the same order. It requires the

almost sure behaviour of the modulus of continuity of the H1
n estimator and

this follows from Lemma 5 below. In that Lemma take an = n
−1/2(logn)1/2.¤

Lemma 4 and Lemma 5 below are needed for the proofs of Lemma 1 and

Lemma 3 respectively. They have some independent interest, since they provide

the almost sure rate of convergence and the almost sure behavior of the modulus

of continuity for the estimator of the cumulative indicence function of Z subject

to δ = 1 (H1
n).

Lemma 4. For T < min(TF , TG, T eG) we have
sup
0≤t≤T

¯̄
H1
n(t)−H1(t)

¯̄
= O(n−1/2(log logn)1/2) a.s.

Proof. Define the following empirical estimators for the distribution functioneH(t) = P (U ≤ t) and for the subdistribution functions eH0(t) = P (U ≤ t, ρ = 0)
and eH11(t) = P (U ≤ t, ρ = 1, δ = 1):

eHn(t) = 1

n

nX
i=1

I(Ui ≤ t), eH0
n(t) =

1

n

nX
i=1

I(Ui ≤ t, ρi = 0),

eH11
n (t) =

1

n

nX
i=1

I(Ui ≤ t, ρi = 1, δi = 1).

Then, H1(t) can be expressed in terms of eH, eH0 and eH11 and H1
n(t) can be

expressed in terms of the corresponding empiricals. Similar as in Stute (1995)

we obtain

H1
n(t) =

Z t

0

exp

(
n

Z u

0

log(1 +
1

n(1− eHn(z)))d eH0
n(z)

)
d eH11

n (u)

and

H1(t) =

Z t

0

exp

(Z u

0

d eH0(z)

1− eH(z)
)
d eH11(u).
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It follows that sup0≤t≤T
¯̄
H1
n(t)−H1(t)

¯̄
is smaller than

sup
0≤u≤T

¯̄̄̄
¯exp

(
n

Z u

0

log(1 +
1

n(1− eHn(z)) )d eH0
n(z)

)
− exp

(Z u

0

d eH0(z)

1− eH(z)
)¯̄̄̄
¯

+2
1

1− eG(T ) sup
0≤t≤T

¯̄̄ eH11
n (t)− eH11(t)

¯̄̄
(4)

The second term in (4) is O(n−1/2(log logn)1/2) a.s. For the first term in (4)

we use (with obvious abreviations) that

exp(a)− exp(b) = exp(b) {exp(a− b)− 1}
= exp(b)

½
(a− b) + 1

2
eθ(a− b)2

¾
with θ between 0 and a − b. Note that exp(b) is uniformly bounded in [0, T ].
Looking at (a− b) we have

sup
0≤u≤T

¯̄̄̄
¯n
Z u

0

log(1 +
1

n(1− eHn(z)) )d eH0
n(z)−

Z u

0

d eH0(z)

1− eH(z)
¯̄̄̄
¯

≤ sup
0≤z≤T

¯̄̄̄
¯n log(1 + 1

n(1− eHn(z)) )− 1

1− eH(z)
¯̄̄̄
¯+ 2

1− eH(T ) sup
0≤z≤T

¯̄̄ eH0
n(z)− eH0(z)

¯̄̄
.

(5)

The second term in (5) is O(n−1/2(log logn)1/2) a.s. For the first term in (5)

we use that for x ≥ 0

x− 1
2
x2 ≤ log(1 + x) ≤ x.

It follows that the first term in (5) is bounded above by

sup
0≤z≤T

¯̄̄̄
¯ 1

1− eHn(z) − 1

1− eH(z)
¯̄̄̄
¯+ 1

2n
sup

0≤z≤T
1

(1− eHn(z))2 .
This is O(n−1/2(log logn)1/2) a.s. since sup0≤z≤T

¯̄̄ eHn(z)− eH(z)¯̄̄ has the same
order and since eH(T ) < 1.¤
Lemma 5. Suppose T < min(TF , TG, T eG). Suppose H(t) = P (Z ≤ t) and

H1(t) = P (Z ≤ t, δ = 1) have bounded first derivative in [0, T ]. Let {an} be a
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sequence of positive constants tending to zero with ann(logn)
−5 > ∆ > 0 for

all n sufficiently large. Then

sup
0≤t,s≤T,|t−s|≤an

¯̄
H1
n(t)−H1

n(s)−H1(t) +H1(s)
¯̄
= O(a1/2n n−1/2(logn)1/2) a.s.

Proof. We make the same partition of the interval [0, T ] as in Lemma A.5 of

Van Keilegom and Veraverbeke (1997). Exploiting the monotonicity of H1(t)

and H1
n(t) and also the Lipschitz continuity of H

1(t), we obtain that it suffices

to prove that

max
1≤i≤m−1

max
−bn<j,k<bn

¯̄
H1
n(tik)−H1

n(tij)−H1(tik) +H
1(tij)

¯̄
= O(a1/2n n−1/2(logn)1/2) a.s.,

where {tij}, i = 1, ...,m, j = −bn, ..., bn is a grid of points with m =
h
T
an

i
([.]

denoting the integer part) and bn ∼ a1/2n n1/2(logn)−1/2. At this point we use
the almost sure asymptotic representation for H1

n(t) as it can be derived as a

special case of the more general result of Sánchez-Sellero et al. (2005):

H1
n(t)−H1(t) =

1

n

nX
i=1

eeψi(t) +Rn(t)
where eeψi(t) = I(Ui ≤ t)γ0(Ui)ρi −E {I(U ≤ t)γ0(U)ρ}

+γ1t(Ui)(1− ρi)− γ2t(Ui)

with

γ0(u) =
1

1− eG(u) , γ1t(u) =
H1(t)−H1(u)

1− eH(u) , γ2t(u) =

Z t

0

eC(u ∧w)dH1(w),

the function eC(t) being that in the Remark of Section 2; and sup0≤t≤T |Rn(t)| =
O(n−1(log n)3) a.s. It follows that it suffices to show that

max
1≤i≤m−1

max
−bn<j,k<bn

¯̄̄̄
¯ 1n

nX
r=1

(
eeψr(tik)− eeψr(tij))

¯̄̄̄
¯ = O(a1/2n n−1/2(logn)1/2).

To achieve this we use Bernstein’s inequality as in Van Keilegom and Ver-

averbeke (1997). The random variables
eeψr(tik) − eeψr(tij) are bounded and

V ar(
eeψr(tik) − eeψr(tij)) is bounded by a constant times an. The latter fact

is shown by checking six appropriate groups of terms in

V ar(
eeψi(t)− eeψi(s)) = V ar(I(Ui ≤ t)γ0(Ui)ρi + γ1t(Ui)(1− ρi)− γ2t(Ui))
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+V ar(I(Ui ≤ s)γ0(Ui)ρi + γ1s(Ui)(1− ρi)− γ2s(Ui))

−2Cov(eeψi(t), eeψi(s)).
For example, by direct calculation,

V ar(I(Ui ≤ t)γ0(Ui)ρi) + V ar(I(Ui ≤ s)γ0(Ui)ρi)

−2Cov(I(Ui ≤ t)γ0(Ui)ρi, I(Ui ≤ s)γ0(Ui)ρi) =

Z t∨s

t∧s

dH(u)

1− eG(u) − (H(t)−H(s))2 ≤ c |t− s|
for some constant c > 0 by the Lipschitz continuity of H. The other groups of

terms are treated similarly.¤
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