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Abstract

In this paper a correction of SGoF multitesting method for dependent tests is

introduced. The correction is based in the beta-binomial model, and therefore

the new method is called Beta-Binomial SGoF (or BB-SGoF). Main properties

of the new method are established, and its practical implementation is

discussed. BB-SGoF is illustrated through the analysis of two different real

data sets on gene/protein expression levels. The performance of the method is

investigated through simulations too. One of the main conclusions of the

paper is that SGoF strategy may have much power even in the presence of

possible dependences among the tests.

1 Introduction

Multiple-testing problems have received much attention since the advent of the

-omic technologies: genomics, transcriptomics, proteomics, etc. They usually

involve the simultaneous testing of thousands of hypotheses, or nulls, producing

as a result a number of significant p-values or effects (that is, an increase in

gene expression, or RNA/protein levels). In this setup, the family-wise error

rate (FWER) and the false discovery rate (FDR), among other measures, have

been proposed as suitable significance criteria to perform the multiple testing.

See Benjamini and Hochberg (1995), Nichols and Hayasaka (2003) or Dudoit

and Laan (2008) for basic definitions and reviews of existing literature.

As a drawback of the FWER- and FDR-based methods, their power may

be rapidly decreased as the number of tests grows, being unable to detect even

one effect in particular situations (Carvajal-Rodŕiguez et al., 2009). This typ-

ically happens in situations with a large number of tests, when the effect in

the non-true nulls is weak relative to the sample size (same reference). Storey

(2003) suggested as a possible solution a weighted criterion in which both the

FDR and the false non-discovery rate (FNR) are penalized. This issue was also

explored in Cheng et al (2004), who proposed to evaluate the distance between

the empirical and the uniform quantile processes, penalizing for the number of

false discoveries. Further developments of FDR-based methods were given by

Storey and Tibshirani (2003), Storey et al. (2004) and Nguyen (2004), among

others.

Carvajal-Rodŕiguez et al. (2009) introduced a new multitesting strategy,

SGoF (from Sequential Goodness-of-Fit), which focuses on the difference be-

tween the observed proportion of p-values below a given significance threshold

(the γ parameter) and the expected one under the complete null of no effects
(γ). This relates to the notion of second-level significance testing or higher crit-
icism introduced by Tukey in 1976, and further extended in Donoho and Jin
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(2004). SGoF approach provides a reasonable compromise between false dis-

coveries and power (Carvajal-Rodŕiguez et al., 2009), and several enhancements

of the method have been proposed (de Uña-Álvarez and Carvajal-Rodŕiguez,

2010; Carvajal-Rodŕiguez and de Uña-Álvarez, 2011a; de Uña-Álvarez, 2011).

The theoretical statistical properties of SGoF were investigated in detail in de

Uña-Álvarez (2011). It was illustrated that, with a large number of tests, the

critical region provided by SGoF is wider than that of FDR-based methods in

most scenarios. Both SGoF original method and its extensions provide reliable

inference when the multiple tests are independent. In this paper, a correction

of SGoF for possibly dependent tests is introduced.

In practice, dependences among the tests are found in many situations; see

for example Efron (2007, 2010), Romano et al. (2008), or Carvajal-Rodŕiguez

and de Uña-Álvarez (2011b). This dependence may be provoked by the existence

of k blocks of tests which share the same within-block probability πj (j = 1, ..., k)
of reporting a significative p-value: the larger the variance of the πj ’s, the greater
the within-block correlation (see Section 2). In Figure 1 we report the density

of the πj’s estimated for the two real data sets considered in Section 3; in this
Figure, the expected value of πj when all the null hypotheses are true is γ = 0.05.
Hedenfalk data (Figure 1, top) provide a within-block correlation of 0.027, the

mean and variance of the πj ’s being 0.186 and 0.004 respectively. On the other
hand, Diz data (Figure 1, bottom) give a correlation of 0.035, with mean and

variance of the within-block probability of 0.099 and 0.003. The within-block

correlation is significative at level 0.01 for Hedenfalk data (p=4.86e-11), but

not for Diz data (p=0.013), see Sections 2 and 3 for details. In other words, at

level 0.01 it is accepted that the density in Figure 1, bottom, degenerates at the

mean, while a significative variance is present in Figure 1, top. The location

of Hedenfalk data’s density to the right of Diz data’s suggests the presence of

a larger amount of true effects or features along the performed tests; however,

this should be carefully assessed at the light of the possible existing correlation.

While FDR-based strategies are robust in dependence scenarios, the same

is not true for SGoF, which crucially depends on the correct estimation of the

variance associated to the number of discoveries. In most practical situations

with dependent tests, the final number of discoveries reported by SGoF will

be too liberal, because it will be based on an underestimated variance (Owen,

2005). As an example, for the two real data sets of Figure 1, SGoF reports

428 (Hedenfalk data) and 8 (Diz data) discoveries; however, with the correction

of SGoF for dependence introduced in this paper, these numbers translate into

389 (Hedenfalk) and 1-2 (Diz) discoveries respectively. Therefore, taking the

possible dependences into account may have a big impact in the final decision of

the researcher. Still, it will be noted that these corrected amounts of discoveries

are much larger than when willing to control the FDR at level 5%.
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Figure 1. Beta density fitted to the probability of reporting a p-value below

threshold 0.05. Top: Hedenfalk data with 266 blocks. Bottom: Diz data with

4 blocks. The dashed line corresponds to the mean probability.

The rest of the paper is organized as follows. In Section 2 we introduce

the correction of SGoF to deal with dependent tests. This correction is based

on the beta-binomial extension of the binomial model, so some notation and

existing results for this model will be needed. Main properties of the method

and its practical implementation will be discussed. The new method is used to

revisit two real data sets in Section 3, which were previously analyzed under the

assumption of independence (Storey and Tibshirani, 2003; Carvajal-Rodŕiguez
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and de Uña-Álvarez, 2011a; de Uña-Álvarez, 2011). As announced, it will be

seen that allowing for dependences may influence the results. A simulation

study is reported in Section 4. Finally, Section 5 contains the main conclusions

of this work and also discusses some open problems and questions which are left

for future research.

2 The method

2.1 SGoF revisited

Let u1, ..., un be a set of p-values corresponding to n tests which are performed
in a simultaneous way, and let Fn be the empirical distribution function of the
ui’s, that is

Fn(x) =
1

n

nX
i=1

I(ui ≤ x),

where I(A) is the indicator function of the event A. Let γ ∈ (0, 1) be an
initial significance level, usually taken as γ = 0.05. Under the complete (or
intersection) null that all the n null hypotheses are true (i.e., no effects), the
expected amount of p-values below γ is just nγ. On the other hand, when
nFn(γ) is much larger than nγ, one gets evidence about the existence of a
number of non-true nulls, or effects, among the n tests. Let F be the underlying
distribution function of the p-values; SGoF multitest (Carvajal-Rodŕiguez et al.,

2009; de Uña-Álvarez, 2011) starts by performing a standard one-sided binomial

test forH0 : F (γ) = γ versus the alternativeH1 : F (γ) > γ, based on the critical
region

Fn(γ)− γp
V ar(0)(Fn(γ))

> zα,

where V ar(0)(Fn(γ)) = γ(1 − γ)/n and where zα is the 1 − α quantile of the
standard normal. Here, α = γ is usually taken. If H0 is accepted, then there is
no evidence against the complete null, and no effect is declared by SGoF. If H0
is rejected, the number of effects declared by SGoF is given by

N(0)
α (γ) = n [Fn(γ)− γ]− n

q
V ar(0)(Fn(γ))zα + 1,

which is the excess in the number of observed p-values below threshold γ when
compared to the expected amount, beyond the critical point zα. More specifi-

cally, SGoF ends by claiming that the effects correspond to the N
(0)
α (γ) smallest

p-values in the sequence u1, ..., un. In this metatest, the FWER is controlled at
level α in the weak sense (Carvajal-Rodŕiguez et al., 2009), which means that,
under the complete null, the probability of rejecting one or more than one true

nulls is not larger than α.
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A more conservative version of SGoF is obtained when declaring as true

effects the N
(1)
α (γ) smallest p-values, where

N(1)
α (γ) = n [Fn(γ)− γ]− n

q
V ar(1)(Fn(γ))zα + 1,

and where V ar(1)(Fn(γ)) = Fn(γ)(1−Fn(γ))/n. In most practical applications
we will have γ < Fn(γ) < 1/2 and hence V ar(0)(Fn(γ)) < V ar(1)(Fn(γ)). In
other words, typically the variance estimated under the complete null will be

smaller than the variance estimated without any restriction, the latter leading

to a less liberal decision. The value n−1N (1)
α (γ) may be regarded as the lower

limit of a one-sided 100(1 − α)% confidence interval for F (γ)− γ. In its turn,
under a mixture model this quantity F (γ)−γ is a lower bound for the proportion
of true effects (i.e. non-true nulls) with p-value smaller than γ, which gives an
interesting alternative interpretation of SGoF multitest (de Uña-Álvarez, 2011).

Unfortunately, when the tests are dependent, none of the variances in N
(0)
α (γ)

and N
(1)
α (γ) above are correct, and therefore SGoF must be re-defined.

SGoF method is based on the binomial distribution, which serves as a null

model for the test statistic nFn(γ) when the tests are independent. An extension
of the binomial model which allows for correlated Bernoulli outcomes is the beta-

binomial distribution (see e.g. Johnson and Kotz, 1970). The beta-binomial

model is the basis for the correction of SGoF introduced in the next Section.

2.2 The Beta-Binomial SGoF

Before introducing the Beta-Binomial SGoF (BB-SGoF) method, we recall some

basic definitions and expressions related to the beta-binomial model. The beta-

binomial model states that the number of successes S among n trials is condi-
tionally ruled by

P (S = s|π) =
µ
n

s

¶
πs(1− π)n−s, s = 0, ..., n,

where π is a random variable following the Beta(a, b) density (a > 0, b > 0)

g(π) =
πa−1(1− π)b−1

B(a, b)
, 0 < π < 1,

and where B(., .) is the beta function. The resulting unconditional law for S is

P (S = s) =

µ
n

s

¶
B(a+ s, n+ b− s)/B(a, b), s = 0, ..., n.

The beta-binomial model has been used in several applications, including the

analysis of point quadrat data (Kemp and Kemp, 1956), the consumer pur-

chasing behavior (Chatfield and Goodhart, 1970), the household distribution of
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incidence of disease (Griffiths, 1973), toxicological experiments (Williams, 1975)

and, more recently, in proteomics (Pham et al., 2010). See Johnson and Kotz

(1970) for illustrations of the model.

In this model, the expected probability of success p = E(π) and the corre-
lation between the outcomes of two different trials ρ are given respectively by
p = a/(a + b) and ρ = 1/(a + b + 1). This correlation comes from the fact

that two outcomes will share the same random π and, numerically, it equals
the variance of the beta density (V ar(π)) relative to that of the expected bino-
mial (p(1− p)). Certainly, assume that S = Pn

i=1Xi where Xi ∈ {0, 1} is the
outcome of the i-th Bernoulli trial (Xi|π ∼ Ber(π)), and where X1, ...,Xn are
conditionally independent given π. Then, for i 6= j,

E (XiXj) = E [E(XiXj |π)] = E [E(Xi|π)E(Xj |π)] = E
¡
π2
¢

and hence

Cov(Xi,Xj) = E (XiXj)−E (Xi)E(Xj) = E
¡
π2
¢− p2 = V ar(π)

=
ab

(a+ b)2(a+ b+ 1)
.

On the other hand, since E(X2
i |π) = p, we have

V ar(Xi) = E(X
2
i )−E(Xi)2 = E

£
E(X2

i |π)
¤− p2 = p(1− p).

Thus, from p = a/(a+ b) we obtain

ρ = Cor(Xi,Xj) =
V ar(π)

p(1− p) =
1

a+ b+ 1
.

It also happens that the mean and variance of the number of successes are

E(S) = np and V ar(S) = np(1−p)(1+(n−1)ρ). Therefore, the beta-binomial
model allows for a variance larger than binomial whenever ρ > 0, while it reduces
to the standard binomial when ρ = 0. Often, the alternative parametrization

(p, θ) of this model has been suggested, where θ = 1/(α + β), the case θ = 0

corresponding again to no correlation (Pham et al., 2010). Note that ρ =
θ/(θ + 1).

Given the initial significance threshold γ, BB-SGoF starts by transforming
the initial set of p-values u1, ..., un into n realizations of a Bernoulli variable:
Xi = I(ui ≤ γ), i = 1, ..., n. Then, by assuming that there are k independent
blocks of p-values of sizes n1, ..., nk (where n1 + ... + nk = n), the number of
successes sj within each block j, j = 1, ..., k, is computed. Here, Xi = 1 is called
’success’. After that, a set of independent observations {(sj , nj), j = 1, ..., k} is
available, where sj (j = 1, ..., k) is assumed to be a realization of a beta-binomial
variable with parameters (nj , p, ρ), where n1, ..., nk may be distinct. In this
setting, p = E(π) = F (γ) represents the average proportion of p-values falling

6



below γ, which under the complete null is just γ; while ρ is the correlation
between two different indicators Xi and Xj inside the same block (i.e. the

within-block correlation).

Obviously, the expected probability of success p = E(π) may be estimated

by pn =
Pk
j=1 sj/

Pk
j=1 nj . A simple estimator for the correlation ρ is given by

ρn = σ2bpj/(pn(1− pn)), where σ2bpj is the sample variance ofbpj = sj/nj , j = 1, ..., k.

Tarone (1979) introduced a test for the binomial model HT
0 : ρ = 0 against the

beta-binomial alternative HT
1 : ρ > 0, which in the case of equal nj ’s is based

on the Z−statistic

Z =
nρn − k√

2k
,

where (recall) n =
Pk
j=1 nj , rejecting H

T
0 for large values of Z. That is, sig-

nificant positive correlation is found when ρn is large relative to its expected
value under the binomial (k/n). See Tarone (1979) for details on the testing
procedure when the block sizes are unequal.

Model-based estimators for p and ρ may be derived by maximum-likelihood
principles under the beta-binomial assumption. Explicitly, the log-likelihood of

the (sj , nj)’s is given by (cfr. Tarone, 1979)

L(p, ρ) = ak +
kX
j=1

{sj log p+ (nj − sj) log q}+

+

kX
j=1

log

∙
1 +

ρ

2p2q2
©
(sj − njp)2 + sj(2p− 1)− njp2

ª¸
where q = 1 − p and where ak is a constant involving only the observations.
As usual with maximum-likelihood estimates, the maximizer (bp,bρ) of L on the
[0, 1]× [0, 1] rectangle is an efficient, asymptotically normal estimator of (p, ρ).
In practice, these estimators and their standard errors may be computed from

existing free software; to this end, the function vglm of the R package VGAM

has been used in Sections 3 and 4. The main goal of BB-SGoF is to provide

inferences on the value of p = F (γ), while allowing for dependences among
the tests (ρ > 0). More specifically, BB-SGoF aims to construct a one-sided

confidence interval for the excess of significant cases τn(γ) = n(p−γ), similarly
as original SGoF does but considering the possible existing correlation. This

confidence interval may be constructed from the asymptotic normality of bp. We
give now the details.

Consider the reparametrization of the beta-binomial model given by the

logit transformation of p and ρ, that is β1 = log(p/(1−p)), or p = exp(β1)/(1+
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exp(β1)), and β2 = log(ρ/(1 − ρ)), or ρ = exp(β2)/(1 + exp(β2)). With this
reparametrization, an unrestricted maximization of the likelihood can be per-

formed. Let bβi, i = 1, 2, the maximizers of the likelihood. The following

100(1− α)% confidence intervals for β1 and β2 can be computed:

I(βi) =
³bβi ± se(bβi)zα/2´ , i = 1, 2,

where se(bβi) denotes the estimated standard error of bβi, and where zα/2 stands
for the (1− α/2)-quantile of the standard normal distribution. Respectively,
confidence intervals for p and ρ may be obtained by logit-backtransforming the
limits of I(βi),

lowi = bβi − se(bβi)zα/2, uppi = bβi + se(bβi)zα/2,
as follows:

I(p) = (exp(low1)/(1 + exp(low1)), exp(upp1)/(1 + exp(upp1))) ,

I(ρ) = (exp(low2)/(1 + exp(low2)), exp(upp2)/(1 + exp(upp2))) .

As mentioned, of particular interest is the 100(1−α)% one-sided confidence
interval for τn(γ) = n(p − γ), since this parameter represents the excess of
significant features (at level γ) with respect to the expected amount under the
complete (or intersection) null. Therefore, we consider the interval

I(τn(γ)) = (n(exp(low1)/(1 + exp(low1))− γ),∞)
where low1 is as above but with α in the place of α/2. Note that a one-

sided rejection region at level α for the complete null H0 : p = γ against the
alternative H1 : p > γ is given by {0 /∈ I(τn(γ))}. Formally, BB-SGoF acts as
follows. If 0 ∈ I(τn(γ)) the complete null is accepted and no effect is declared.
On the contrary, if 0 /∈ I(τn(γ)) then BB-SGoF declares as effects the smallest
NBB
α (γ;k) p-values, where

NBB
α (γ; k) = n(exp(low1)/(1 + exp(low1))− γ).

By definition, an according to the asymptotic normality of bβ1, BB-SGoF
weakly controls the FWER at level α when the number of tests n is large.
It is also clear that the number of declared effects NBB

α (γ; k) will grow with

the number of tests n. This is because se(bβ1) goes to zero at a √n-rate, and
therefore the lower limit low1 = bβ1 − se(bβ1)zα is shifted-up towards bβ1 as
n → ∞. In practice, this translates into a power of BB-SGoF which increases
with the number of tests, a property which is not shared by other multiple tests

adjustments as e.g. FDR-controlling procedures (Carvajal-Rodŕiguez et al.,

2009). Another consequence of the definition of BB-SGoF method is that the

influence of the FWER-controlling parameter α is small or even negligible when
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the number of tests is large; that is, moving from α = 0.05 to e.g. α = 0.001 will
have almost no impact in NBB

α (γ; k) when n is large since the normal quantile
zα will be divided by

√
n. Finally, it is also interesting that the threshold

p-value reported by BB-SGoF, i.e. F−1n (NBB
α (γ; k)/n), will be approximately

F−1(F (γ)−γ) as n grows; this threshold is below the initial significance level γ
regardless the shape of the cumulative distribution of the p-values F . All these
properties of BB-SGoF were also indicated for the original SGoF formulation

for independent tests (de Uña-Álvarez, 2011).

A crucial practical issue is how to choose the value of k; once k is fixed, the
nj ’s may be computed as nj = n/k, j = 1, ..., k, so every block has the same
size. Few independent blocks (k small) implies a strong correlation structure
in which many pairs (Xi,Xj) will be correlated. In this situation, the value of

NBB
α (γ;k) may be much smaller than N

(0)
α (γ) or N

(1)
α (γ). On the contrary, a

large number of blocks (k large) implicitly states weak dependence, leading to
a value of NBB

α (γ; k) which may be close to the number of effects declared by
original SGoF for independent tests. See Figures 2 and 4, bottom, in which val-

ues of NBB
α (γ; k) for several k’s are reported for two real data sets. A possible

suggestion is to display first a set of results corresponding to different decisions

on k. Values of bp, bρ, NBB
α (γ; k) and p-values of Tarone’s test may be explored

to get information on the correlation structure and the possible number of ex-

isting effects when k varies. On the other hand, if one wills to select k in an
automatic way, several criteria are possible. A reasonable automatic choice for

k is kN = argminkN
BB
α (γ;k), corresponding to the most conservative decision

of declaring the smallest number of effects along k. In this criterion, mini-

mization may be performed along a grid k = kmin, ..., kmax where kmin is the
smallest number of existing blocks (i.e. the strongest allowed correlation), and

kmax = n/nmin where nmin is the smallest allowed amount of tests in each block.
Clearly, this kN ensures the weak control of FWER at the nominal level α as
long as the number of existing blocks falls between kmin and kmax. In the next
Section we have used kmin = 2 and nmin ≈ 6.

3 BB-SGoF in practice

In this Section we provide a detailed application of BB-SGoF to two data sets.

Both data sets contain sequences of p-values corresponding to tests performed

on gene or protein expression levels.

3.1 Hedenfalk data

Our first illustrative example concerns the microarray study of hereditary breast

cancer by Hedenfalk et al. (2001). One of the goals of this study was to find

genes differentially expressed between BRCA1- and BRCA2-mutation positive

tumors. Thus, for each of the 3,226 genes of interest, a p-value was assigned
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based on a suitable statistical test for the comparison. Following previous analy-

sis of these data (Storey and Tibshirani, 2003), 56 genes were eliminated because

they had one or more measurements exceeding 20. This left n = 3, 170 genes.

The 3,170 p-values ui, i = 1, ..., n, were transformed into a 0-1 sequence
according to the value of the indicator Xi = I(ui ≤ γ), where γ = 0.05 was
taken as preliminary significance level. The proportion of significative tests

among the 3,170 was Fn(γ) = 0.1912. Assuming independence among the tests,

the number of effects declared by SGoF at level α = 0.05 was N
(0)
α (γ) = 428.32,

i.e. about 428 discoveries. We obtained N
(1)
α (γ) = 412.08 effects when using

the conservative version of SGoF which estimates the variance without any

restriction.

The independence assumption among the tests was checked through the

runs test for randomness of a dichotomous (binary) sequence (cfr. Siegel and

Castellan, 1988), giving a two-sided p-value of 0.002654. The number of runs was

smaller than expected (Z=-3.0052) indicating a significative positive dependence

among the tests (i.e. significative genes tend to be followed by a significative

gene). Under dependence, inferences provided by SGoF above are not valid and,

therefore, the number of significant genes must be re-evaluated.

In Figure 2, top, we report the p-values of Tarone (1979)’s goodness-of-fit

test for the binomial model against the beta-binomial alternative, when adding

the binary outcomes Xi = I(ui ≤ γ) into k blocks of equal size, k = 2, ...,501.
The choice kmax = 501 gives a minimum block size of nmin = n/kmax ≈ 6.

The number of effects declared by BB-SGoF based on each corresponding beta-

binomial alternative is also reported (Figure 2, bottom), where the cases k =
2, 3, 5, 8 were deleted for easier visualization, since they provided too large values
(k = 2, 8) or negative values (k = 3, 5). Negative values of NBB

α (γ; k) can be
indeed ignored in this case, since they come from an unreliable fit of the beta-

binomial model, identified because the standard error of bβ1 was more than 25
times the median standard error along k. As explained in Section 2-3, BB-SGoF
declares

NBB
α (γ; k) = n(exp(low1)/(1 + exp(low1))− γ)

effects, where low1 = bβ1−se(bβ1)zα; NBB
α (γ; k) is just a 100(1−α)% lower limit

for the excess of significant cases τn(γ) = n(F (γ) − γ) and hence it acts as a

substitute for N
(i)
α (γ), i = 0, 1, under dependence.
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Figure 2. P-values of Tarone (1979)’s test (top) and number of effects declared

by BB-SGoF (bottom) along the number of blocks k. Hedenfalk data,
α = γ = 0.05. The horizontal dashed line at the bottom figure corresponds to

N
(1)
α (γ).

Figure 2, top, shows that there exists significance to reject the binomial

model in favour of the beta-binomial alternative for a large range of k values.
This is in agreement of the previous application of the runs test. In particular,

the minimum value of NBB
α (γ; k) along k is obtained for k = 266, namely

NBB
α (γ;kN) = 389.1544 or about 389 declared effects. This value of k also

corresponds to the minimum p-value of Tarone’s test (p=4.86e-11). This is

smaller than the 412 or the 428 effects declared by the binomial SGoFs for

independent tests. The reason for this is that the variance in the estimation of

p = F (γ) is larger when the tests are dependent; moreover, for the Hedenfalk
data it happens that the value of F (γ) estimated under the beta-binomial model

is smaller than Fn(γ) for most of the values of k (dF (γ) = 0.1857 for k = 266),
so this also provokes a decrease in NBB

α (γ) when compared to N
(i)
α (γ). In order

to illustrate this, in Figure 3 we report the estimated proportion of p-values

below threshold γ (dF (γ)) provided by the beta-binomial model along k, and the
standard errors of their logit transformations, se(bβ1). From this Figure 3 it is

11



seen that the minimum NBB
α (γ; kN) corresponds to a small value of dF (γ) and

to a local pick in the standard error of bβ1.
It is interesting to point out that the most conservative decision provided by

BB-SGoF (389 discoveries) at level α = 0.05 is still much more powerful than
that obtained from standard methods which control the FDR at 5%. Indeed,

Benjamini-Hochberg FDR-based method at that level gives for this data set only

157 discoveries (based on a preliminary estimation of the proportion of effects

of 28.33%, see de Uña-Álvarez, 2011), which are less than half the discoveries

declared by NBB
α (γ; kN). The reason for this is that BB-SGoF only controls for

FWER in the weak sense, being liberal about the proportion of false discoveries

otherwise. Results reported previously have quantified in about 13% the FDR

corresponding to a number of discoveries of around 400 (Tables 4 and 5 in de

Uña-Álvarez, 2011).
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Figure 3. Estimated proportion of significative genes (top) and standard error

of bβ1 (bottom) along the number of blocks k. Hedenfalk data, γ = 0.05. Case
kN = 266 and pn = Fn(γ) are highlighted.
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Figure 1, top, in Section 1, displays the beta density fitted to Hedenfalk

data when taking k = 266. The a and b parameters for the beta model were
estimated by maximum likelihood from the clustered data, by maximizing the

beta-binomial likelihood given in Section 2.2. We obtained ba = 6.66 and bb =
29.21. These values correspond to a beta-binomial with parameters bp = .1857
and bρ = .0271. Therefore, a point estimate for the excess of significant cases
τn(γ) = n(p−γ) is given by 430.05 (the lower limit of a 95% confidence interval
is 389.15 as indicated above).

3.2 Diz data

As a second example, we consider a list of 261 p-values coming from protein

expression experiments in eggs of the marine mussel Mytilus edulis (Diz et al.,
2009). In that study, M. edulis female protein expression profiles of two lines
differing in sex ratio of their progeny were compared. In this case, the number

of p-values falling below threshold γ = 0.05 was nFn(γ) = 26, with an estimated
proportion of significant tests of Fn(γ) = 0.0996. The application of the original

SGoF and its conservative version (both for independent tests) gave N
(0)
α (γ) =

8.16 and N
(1)
α (γ) = 5.99 respectively, where α = 0.05 was used. The runs test

for randomness did not reject the hypothesis of independence among the tests

(p=0.6812). In any case, for illustrative purposes, we performed the BB-SGoF

method to this data set.
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Figure 4. P-values of Tarone (1979)’s test (top) and number of effects declared

by BB-SGoF (bottom) along the number of blocks k. Diz data, α = γ = 0.05.

The horizontal dashed line at the bottom figure corresponds to N
(1)
α (γ).

In Figure 4 we report the p-values of Tarone’s test and the number of effects

declared by BB-SGoF along the grid k = 2, ..., 41 (so again we have a minimum
number of tests per block of about 6). As for Hedenfalk data, the unreliable

situations with standard error of bβ1 greater than 25 times the median standard
error were deleted (this excluded cases k = 25, 26 which are associated to neg-
ative values of NBB

α (γ; k)). In this case, most of the p-values of Tarone’s test
are not significative (they are above 0.05), according to the result of the runs

test for randomness. The most conservative version of BB-SGoF corresponds to

kN = 4 and NBB
α (γ; kN) = 1.65 declared effects. Interestingly, FDR-controlling

strategies are unable to detect a single effect even when rising the FDR to 20%

(Carvajal-Rodŕiguez and de Uña-Álvarez, 2011a). For this choice of k, the bi-
nomial model is accepted at level 0.01 against the beta-binomial alternative

(p-value=0.0127). For the other choices of k the p-value of Tarone’s test was
even greater. Three values of k reported a very large value of NBB

α (γ; k); this

was because the standard error of bβ1 was very small (Figure 5). The estimated
14



values of ρ for these three cases were almost null (smaller than 1.16e-23).
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Figure 5. Estimated proportion of significative genes (top) and standard error

of bβ1 (bottom) along the number of blocks k. Diz data, γ = 0.05. Case kN = 4
and pn = Fn(γ) are highlighted.

Figure 1, bottom, in the Introduction displays the beta density fitted to Diz

data when taking k = 4. The a and b parameters for the beta model were
estimated by maximum likelihood from the clustered data, by maximizing the

beta-binomial likelihood given in Section 2.2. We obtained ba = 2.72 and bb =
24.65. These values correspond to a beta-binomial with parameters bp = .0994
and bρ = .0353. Therefore, a point estimate for the excess of significant cases
τn(γ) = n(p− γ) is given by 12.89 (the lower limit of a 95% confidence interval

is 1.65 as indicated above).

4 Simulation study

In order to further explore the performance of BB-SGoFmethod, we have carried

out the following simulation study. The number of tests was n = 500 or n =
1000. The number of independent blocks of tests k0 was chosen to get n/k0 =
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25, 50 tests per block (i.e. k0 = 20, 40 for n = 500, 1000 respectively in the
case n/k0 = 25, and k0 = 10, 20 for n = 500, 1000 respectively in the case
n/k0 = 50). The beta-binomial model was generated as follows: π1, ...,πk0 ∼
Beta(a, b) and, given πj , the total number of successes in block j was generated
as sj ∼ Bin(nj ,πj), where nj = n/k0, j = 1, ..., k0. Given sj , a random
permutation of sj 1’s and nj − sj 0’s was taken, j = 1, ..., k0. Note that, in this
manner, the sequence of indicators X1 = I(u1 ≤ γ), ...,Xn = I(un ≤ γ) rather
than the sequence of p-values u1, ..., un is generated. We took a = (1 − ρ)p/ρ
and b = (1− ρ)(1− p)/ρ where p = 0.05, 0.1, 0.2 and ρ = 0.1, 0.05. We always
took γ = α = 0.05. Note that γ = 0.05 implies that p = 0.05 corresponds to
the complete null of no effects, while p = 0.1, 0.2 represent situations in which
a smaller (p = 0.1) or larger (p = 0.2) proportion of effects are present. More
specifically, the excess of significant cases τn(γ) = n(p− γ) takes the following
values in our simulations: 0, 25 and 75 for n = 500, and 0, 50 and 150 for

n = 1000.

In Tables 1-4 we report the average number of effects declared by BB-SGoF

when based on different decisions for the number of existing blocks. Specif-

ically, we took k∗ = k0/2, k0, 2k0 (corresponding to an underestimation, cor-
rect estimation, or overestimation of the number of blocks, respectively), and

kN = argminkN
BB
α (γ; k), which is the automatic choice corresponding to the

most conservative decision (the smallest number of effects declared by BB-

SGoF). Minimization was performed on the grid k = 4, ..., 101. For compar-
ison purposes, we also report the average number of effects declared by original

SGoF and its conservative version (N
(0)
α (γ) and N

(1)
α (γ) respectively), both cor-

responding to the independent setting. The averages were computed along 250

Monte Carlo simulations. Standard deviations for the number of rejected nulls

are reported too. Averages and standard deviations of the automatic number of

blocks kN are also displayed in Tables 1-4. Furthermore, we give the familywise
rejection rate (FWRR), defined as the proportion of trials for which one or more

than one effect was declared; note that, in the case p = 0.05 (complete null),
this is just the FWER or the FDR.
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n = 500 n/k0 = 50 ρ = .1 ρ = .05
k0 = 10 Mean SD FWRR Mean SD FWRR

p = .05 N
(0)
α 2.55 6.33 .2480 1.30 3.27 .2000

N
(1)
α 2.02 5.35 .2320 0.95 2.58 .1840

NBB
α,k0

0.38 1.88 .0600 0.20 0.93 .0640

NBB
α,k0/2

0.57 2.56 .0720 0.38 1.54 .1080

NBB
α,2k0

0.73 2.96 .0840 0.43 1.44 .1130

NBB
α,kN

0.24 1.39 .0400 0.03 0.26 .0200

kN 34.88 36.35 - 41.06 35.14 -

p = .10 N
(0)
α 17.19 14.75 .8160 17.98 11.63 .9200

N
(1)
α 14.58 13.15 .8000 15.13 10.38 .9080

NBB
α,k0

6.55 8.69 .5840 9.10 8.28 .7960

NBB
α,k0/2

7.90 10.85 .6000 10.69 9.79 .8200

NBB
α,2k0

9.31 10.37 .6920 11.82 9.24 .8760

NBB
α,kN

4.33 7.07 .4320 4.10 6.50 .4080

kN 27.62 32.26 - 39.22 34.23 -

p = .20 N
(0)
α 68.09 23.02 1.000 67.22 16.13 1.000

N
(1)
α 61.54 21.76 1.000 60.65 15.56 1.000

NBB
α,k0

45.87 18.86 .9960 50.62 15.27 .9800

NBB
α,k0/2

47.54 22.47 .9800 51.91 18.66 .9640

NBB
α,2k0

51.76 19.78 1.000 53.33 17.40 .9680

NBB
α,kN

37.55 23.15 .8600 29.98 25.40 .6520

kN 24.33 30.62 - 34.38 33.98 -

Table 1. Mean and SD of the number of rejected nulls and familywise rejection

rate (FWRR) for SGoF and BB-SGoF multitesting methods along 250

Monte-Carlo trials, n = 500. Mean and SD for the automatic number of blocks
kN is also reported. The average proportion of p-values below γ = 0.05 is p,
the number of blocks is k0 = 10, and the within-block correlation is ρ.

FWER-control parameter is α = 0.05.
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n = 500 n/k0 = 25 ρ = .1 ρ = .05
k0 = 20 Mean SD FWRR Mean SD FWRR

p = .05 N
(0)
α 1.95 4.55 .2600 0.86 2.73 .1440

N
(1)
α 1.47 3.73 .2320 0.61 2.16 .1200

NBB
α,k0

0.28 1.42 .0800 0.22 1.08 .0600

NBB
α,k0/2

0.42 1.89 .0920 0.21 0.94 .0680

NBB
α,2k0

0.83 2.69 .1600 0.55 1.94 .1200

NBB
α,kN

0.16 1.15 .0400 0.02 0.22 .0160

kN 33.52 32.80 - 42.18 34.09 -

p = .10 N
(0)
α 16.88 10.60 .9560 16.99 9.75 .9680

N
(1)
α 14.10 9.49 .9400 14.17 8.74 .9640

NBB
α,k0

8.09 7.36 .7960 10.85 7.92 .8960

NBB
α,k0/2

8.72 7.85 .8000 11.15 8.36 .8720

NBB
α,2k0

11.36 8.64 .8960 13.93 23.97 .9040

NBB
α,kN

5.58 6.54 .6000 4.84 7.27 .4400

kN 26.43 28.41 - 34.95 30.91 -

p = .20 N
(0)
α 67.06 17.01 1.000 67.80 12.80 1.000

N
(1)
α 60.50 17.01 1.000 61.16 12.09 1.000

NBB
α,k0

50.52 14.05 1.000 55.22 13.50 .9920

NBB
α,k0/2

50.90 15.38 .9880 54.28 17.36 .9560

NBB
α,2k0

55.83 15.25 1.000 56.58 16.60 .9640

NBB
α,kN

41.93 19.57 .9000 30.83 25.96 .6200

kN 23.06 27.13 - 35.06 33.83 -

Table 2. Mean and SD of the number of rejected nulls and familywise rejection

rate (FWRR) for SGoF and BB-SGoF multitesting methods along 250

Monte-Carlo trials, n = 500. Mean and SD for the automatic number of blocks
kN is also reported. The average proportion of p-values below γ = 0.05 is p,
the number of blocks is k0 = 20, and the within-block correlation is ρ.

FWER-control parameter is α = 0.05.
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n = 1000 n/k0 = 50 ρ = .1 ρ = .05
k0 = 20 Mean SD FWRR Mean SD FWRR

p = .05 N
(0)
α 3.68 8.78 .2880 1.55 4.17 .1916

N
(1)
α 3.07 7.76 .2640 1.21 3.50 .1822

NBB
α,k0

0.44 3.65 .0440 .15 1.04 .0327

NBB
α,k0/2

0.44 3.24 .0440 .23 1.43 .0467

NBB
α,2k0

0.94 4.75 .1160 .38 1.81 .0794

NBB
α,kN

0.31 2.78 .0280 .08 .59 .0187

kN 17.87 18.19 - 24.07 25.98 -

p = .10 N
(0)
α 39.24 22.04 .9640 41.13 19.22 .9840

N
(1)
α 35.16 20.45 .9600 36.86 17.88 .9840

NBB
α,k0

19.68 15.76 .8680 27.03 15.86 .9600

NBB
α,k0/2

20.24 16.52 .8800 27.74 16.44 .9480

NBB
α,2k0

25.57 17.46 .9400 31.22 16.69 .9720

NBB
α,kN

16.31 15.24 .7880 21.72 16.30 .8520

kN 14.92 14.36 - 20.46 23.33 -

p = .20 N
(0)
α 136.64 30.81 1.000 140.10 23.31 1.000

N
(1)
α 127.38 29.60 1.000 130.67 22.40 1.000

NBB
α,k0

103.48 26.41 1.000 115.61 21.18 1.000

NBB
α,k0/2

104.40 27.73 1.000 115.77 23.93 .9920

NBB
α,2k0

112.84 27.39 1.000 121.51 22.95 .9960

NBB
α,kN

97.17 27.19 .9960 103.67 32.97 .9440

kN 13.20 11.02 - 16.54 18.23 -

Table 3. Mean and SD of the number of rejected nulls and familywise rejection

rate (FWRR) for SGoF and BB-SGoF multitesting methods along 250

Monte-Carlo trials, n = 1000. Mean and SD for the automatic number of
blocks kN is also reported. The average proportion of p-values below γ = 0.05
is p, the number of blocks is k0 = 20, and the within-block correlation is ρ.

FWER-control parameter is α = 0.05.
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n = 1000 n/k0 = 25 ρ = .1 ρ = .05
k0 = 40 Mean SD FWRR Mean SD FWRR

p = .05 N
(0)
α 1.73 4.20 .2200 0.93 3.32 .1189

N
(1)
α 1.35 3.49 .2120 0.73 2.76 .1049

NBB
α,k0

0.17 1.03 .0360 0.27 1.43 .0420

NBB
α,k0/2

0.20 1.27 .0400 0.28 1.50 .0420

NBB
α,2k0

0.55 2.14 .1080 0.57 2.44 .0839

NBB
α,kN

0.10 0.81 .0240 0.13 0.93 .0280

kN 24.33 22.93 - 28.98 26.68 -

p = .10 N
(0)
α 38.54 17.60 .9920 39.41 13.58 1.000

N
(1)
α 34.44 16.35 .9920 35.20 12.64 1.000

NBB
α,k0

24.23 14.08 .9600 29.38 11.61 .9960

NBB
α,k0/2

24.37 14.65 .9560 29.56 12.18 .9840

NBB
α,2k0

29.26 15.69 .9720 32.39 12.45 .9840

NBB
α,kN

18.95 13.99 .8680 21.06 14.11 .8040

kN 22.73 19.99 - 26.62 24.68 -

p = .20 N
(0)
α 143.35 23.23 1.000 140.42 20.68 1.000

N
(1)
α 133.79 22.34 1.000 130.97 19.86 1.000

NBB
α,k0

118.25 20.61 1.000 121.94 19.31 1.000

NBB
α,k0/2

119.18 20.88 1.000 122.27 19.65 1.000

NBB
α,2k0

126.68 22.26 1.000 125.67 21.51 .9960

NBB
α,kN

109.62 25.70 .9800 104.68 39.52 .9000

kN 20.93 17.69 - 26.78 19.47 -

Table 4. Mean and SD of the number of rejected nulls and familywise rejection

rate (FWRR) for SGoF and BB-SGoF multitesting methods along 250

Monte-Carlo trials, n = 1000. Mean and SD for the automatic number of
blocks kN is also reported. The average proportion of p-values below γ = 0.05
is p, the number of blocks is k0 = 40, and the within-block correlation is ρ.

FWER-control parameter is α = 0.05.

From Tables 1-4 the following features are appreciated.

BB-SGoF based on the true number of blocks k0 controls the FWER at the
nominal level α = 0.05 fairly well. However, when the chosen number of blocks
k∗ is different from k0, the control of FWER is lost. This is more clear for

k∗ = 2k0, when the assumed dependence structure is weaker than the true one;
in this case, the FWER may be up to three times the nominal. In practice, the

value of k0 will be unknown, so a realistic version of BB-SGoF is that based on
the automatic choice kN . As expected, the FWER associated to this automatic
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criterion NBB
α (γ; kN) is smaller than 0.05; in all the performed experiments

this FWER ranges between 0.016 and 0.04, indicating the conservativeness of

this approach. On the other hand, the results corresponding to original SGoF

method for independent tests were clearly anticonservative. This issue is more

evident for a larger number of tests, a larger within-block correlation, and a

larger number of tests per block. For original SGoF (N
(0)
α (γ)), FWER is up

to 7 times that of BB-SGoF based on k0; the conservative version of original

SGoF (N
(1)
α (γ)) offers similar results to this regard, being unable to cope with

the existing dependences among the tests (as expected).

The number of effects declared by BB-SGoF method based on k0 clearly
increases with the number of tests, while it only varies slightly for different values

of ρ and k0 with fixed n. This property is shared by the automatic BB-SGoF
based on kN and also for BB-SGoF based on a wrong estimation of the number
of blocks. This ability to increase the number of rejections with the number of

tests is also evident for original SGoF, as previoulsy quoted in the independent

setting (Carvajal-Rodŕiguez et al., 2009; de Uña-Álvarez, 2011). An interesting

question here is the amount of power which is lost by the conservative, automatic

BB-SGoF NBB
α (γ; kN) when compared with the benchmark NBB

α (γ; k0). The
relative number of declared effects ranges between 0.4505 (n = 500, p = 0.1,
ρ = 0.05, k0 = 10) and 0.9390 (n = 1000, p = 0.2, ρ = 0.1, k0 = 40). In general,
it is seen that this relative power is smaller for a smaller number of tests, a

smaller proportion of existing effects, and a smaller within-block correlation,

while the influence of k0 is of a smaller magnitude. Interestingly, the relative
power of automatic BB-SGoF is never below 72% when n = 1000 regardless the
other parameters in the simulation study (Tables 3 and 4).

Finally, we see from Tables 1-4 that the automatic selector kN has a large

variance, and that its average value seems to be independent of k0 for n = 500,
although not for n = 1000, where it grows with k0. However, we should recall
that the goal of kN is not to provide an estimator for k0; rather, it suggests a
conservative decision to prevent any overestimation of the number of effects with

respect to the benchmark NBB
α (γ; k0). More specifically, we see from Tables 1-4

that kN tends to be larger than k0 for n = 500, while the opposite is true for
n = 1000.

5 Discussion

In this paper a correction of SGoF mutitesting procedure for dependent tests has

been introduced. The correction is relevant, since the original SGoF does not

respect the nominal FWER under dependence, because of the underestimated

variance of the number of discoveries it is based on. Since SGoF for independent

tests uses the binomial model, the introduced correction uses an extension of the

binomial distribution (the beta-binomial) which allows for possible correlations
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among the Bernoulli outcomes. The beta-binomial model represents the depen-

dence structure among the indicators of reaching statistical significance at level

γ for each individual test; therefore, it does not imply any rigid assumption on
the joint distribution of the p-values themselves. In that sense, even when alter-

native extensions of the binomial model for dependent trials exist (e.g. Tarone,

1979), the simple beta-binomial approach provides a reasonable adaptation of

SGoF multitesting method under dependence which works well in practice.

We point out that the unique input needed by BB-SGoF is the set of p-values;

the crude data leading to these p-values are not used in the computations. Ob-

viously, the p-values should not be sorted. Indeed, in order to detect possible

dependences, no particular data-driven ordering of the p-values should be ap-

plied. Any initial guess of the researcher on the existing serial dependence should

not be obtained from the p-values themselves. For Hedenfalk data, we followed

the original order considered by Hedenfalk et al. (2001); we do not give any

special interpretation to that. The proposed BB-SGoF method suggests that

a number of blocks of dependent outcomes in the given order probably exist.
Similarly, for Diz data we followed the ordering in which the authors provided

the sequence of p-values. No evidence of correlation was found in this latter

case.

The introduced BB-SGoF method conserves the main properties of original

SGoF. In particular, the number of effects declared by BB-SGoF increases with

the number of tests, a property which typically fails for other approaches (as

those controlling the FDR at a given level). The reason behind this property

is in the fact that BB-SGoF focus on the amount of p-values below threshold γ
which are connected with nontrue null hypotheses; the metatest for this question

is performed at a level α which controls the FWER in the weak sense, while a
strong control of FWER or FDR is not imposed. Therefore, BB-SGoF approach

is recommended in situations with dependent tests in which finding effects is

difficult because of the large number of tests involved or the weakness of the

effects. The practical advantages of BB-SGoF approach have been illustrated

in two real data applications.

A critical point in the performance of BB-SGoF is the preliminary decision

on the number of existing blocks of tests k. Roughly speaking, a small value
of k establishes strong dependence and therefore the power of the method may
be decreased. On the contrary, a large k may result in a too liberal decision.
To overcome this issue, we have proposed the automatic decision kN attached

to the minimum number of discoveries provided by BB-SGoF along a grid k =
kmin, ..., kmax. This ensures the weak control of FWER at the given nominal level
α as long as the true number of blocks falls between kmin and kmax. Interestingly,
simulations have revealed that this very conservative strategy has a reasonable

relative power, mainly when the number of tests is large.

An interesting question is the possibility of following a Bayesian approach

in this context. Note that the excess of significant cases which BB-SGoF con-

22



centrates in, τn(γ) = n(p − γ), is just the mean value of the random variable

n(π − γ). Bayesian confidence sets for this variable based on the posterior dis-
tribution of π could be constructed to evaluate the number of existing effects.
The benefits of this approach relative to those presented in this work are left

for future studies.
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Carvajal-Rodŕiguez, de Uña-Álvarez J (2011a) Assessing Significance in High-

Throughput Experiments by Sequential Goodness-of-Fit and q-Value Estima-

tion. PLoS ONE 6(9), e24700.
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