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Abstract

Multi-state models are useful tools for modeling disease progression when

survival is the main outcome but several intermediate events of interest are

observed during the follow-up time. The illness-death model is a special

multi-state model with important applications in the biomedical literature. It

provides a suitable representation of the individual’s history when an unique

intermediate event can be experienced before the main event of interest.

Nonparametric estimation of transition probabilities in this and other multi-state

models is usually performed through the Aalen-Johansen estimator under a

Markov assumption . The Markov assumption claims that given the present state,

the future evolution of the illness is independent of the states previously visited

and the transition times among them. However, this assumption fails in some

applications, leading to inconsistent estimates. In this paper we provide a new

approach for testing markovianity in the illness-death model. The new method is

based on measuring the future-past association along time. This results in a deep

inspection of the process which often reveals a non-markovian behaviour with
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different trends in the association measure. A test of significance for zero

future-past association at each time point is introduced, and a significance trace

is proposed accordingly. Besides, we propose a global test for markovianity

based on a supremum-type test statistic. The finite sample performance of the

test is investigated through simulations. We illustrate the new method through

the analysis of two biomedical data analysis.

Keywords Multi-state models; Illness-death model, Markov condition; Kendall’s

Tau.

1 Introduction

Multi-state models [1, 2, 3] are typically used for modeling disease progression

when several intermediate events of interest are observed during the follow-up

time. These models are an extension of the traditional survival analysis and make

it possible to account for complex individuals’ history with a possible influence on

the prognosis. In particular, the traditional survival analysis refers to the simplest

multi-state model, the mortality model, where only two states are considered, an

initial (‘alive’) state and a final absorbing state (‘dead’).

Mathematically, a multi-state model refers to a stochastic process varying in

continuous time{X(t), t ≥ 0}, whereX(t) is the state of the individual at time

t and allowing individuals to move along a finite number of states. Furthermore,

we assume that the trajectories of individuals can be right censored by a potential

censoring time that is independent of the process. In biomedical applications, the

states might be based on clinical symptoms (e.g. bleeding episodes), biological

markers (e.g. CD4 T-lymphocyte cell counts), some scale of the disease (e.g.

stages of cancer or HIV infection), or a non-fatal complication in the course of the

illness (e.g. cancer recurrence).

In this work, we focus on the illness-death model, which involves three differ-

ent states by splitting the ‘alive’ state in two different states (1=‘healthy’, 2=‘dis-
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eased’) and considering a last absorbing state (3=‘dead’) and three possible tran-

sitions among them1→2, 2→3 and1→3 (see Figure 1). Many applications of

the illness-death model can be found in the biomedical literature [4, 5, 6, 7, 8].

In section 4, we reanalyze two biomedical datasets in a new scope. Firstly, we

propose to consider an illness-death model for analyzing the influence of the time

to chronic graft-versus-disease in evolution after a bone marrow transplant in pa-

tients with leukemia [9]. Secondly, we consider the relationship between the time

to the first wound excision and time to Straphylocous Aureaus infection in burn

patients [10]. It is noteworthy that the illness-death model contains other simpler

schemes, such as the mortality model and the three-state progressive model where

direct transitions between state 1 and state 3 are not possible.
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Figure 1: Illness-death model

Denoting byZ the sojourn time in state 1 and byT the total survival time, the

illness-death model is characterized by the joint distribution of (Z, T ). Note that

individuals who transit directly from state 1 to state 3 are those withZ = T , while

Z < T indicates that the individual has passed through the intermediate state 2.

The Markov assumption claims that given the present state, the future evolution of

the illness is independent of the states previously visited and the transition times

among them. This condition is sometimes violated. For example, [6] provide evi-

dence on non-Markovianity in a study on mortality in liver cirrhosis; in this case,

the Markov condition fails because the mortality is markedly increased shortly

after undergoing a bleeding episode, which is taken as an intermediate event. One

of the main arguments for checking the Markov condition is that the usual estima-
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tors (e.g. Aalen-Johansen transition probabilities) may besystematically biased in

non-Markovian situations [11]. Despite non-Markovian estimators for transition

probabilities and related curves are available [11, 12, 13], it has been quoted that

including the Markov information in the construction of the estimators allows for

variance reduction [11]. So, in practice, one will be interested in testing marko-

vianity.

Letλs(.) denote the hazard function ofT for those individuals going from state

1 to 2 exactly at times (that is, for the subpopulation{Z = s, Z < T}). Note that

for t ≥ s, the hazardλs(t) is the instantaneous probability of ‘death’ for those

individuals being in state 2 at time t, which may be influenced by the specific

transition times. The Markov assumption states thatλs(t) does not depend on

the particular value ofs, t ≥ s. Traditionally, the Markov assumption is checked

by testingH0 : β = 0 under the proportional hazard model [4]λs(t) = λ0(t)e
βs,

t ≥ s. However, the proportional hazard specification may not properly represent

the dependence structure between the survival prognosis and the sojourn time in

state 1 since both the linearity and proportional hazards may fail in practice. As a

consequence, this approach may be unable to detect the lack of markovianity. See

also sections 3 and 4. Therefore, alternative, more flexible methods are required.

Alternatively, the Markov condition can be formulated as the independence

between variablesZ andT conditionally on the eventAt = {Z ≤ t < T} (‘being

in state 2 at time t’), for each givent > 0. If we denote byH0t : T ⊥ Z

givenAt, t > 0, where⊥ stands for the independence relationship, thenH0 =
⋂

t H0t represents the Markov condition in the illness-death model framework.

The general idea of the new methods is based on determining -without assuming

any predefined structure- the grade of dependency between past (Z) and the future

(T ) given the present. For this, the Kendall’s tau will be used in a local way.

The rest of the paper is organized as follows. In Section 2 we introduce the

new goodness-of-fit method for testing markovianity in the illness-death model

based on measuring future-past association. We introduce a bootstrap resampling
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plan to approximate the null distribution of the test statistic. In section 3 a sim-

ulation study shows the performance of the new methods. Also, in section 4 the

new methods are applied to two real biomedical datasets and compared to the tra-

ditional Cox proportional hazards approach. Main conclusions and a final discus-

sion follow in section 5, while the technical details are deferred to the Appendix.

2 Main results

2.1 Goodness-of-fit tests based on Kendall’s tau

Focusing on the illness-death model discussed in the Introduction, letZ andT be

the sojourn time in state 1 and the time to reach state 3, respectively. As indicated,

the Markov condition can be formulated as the conditional independence between

T (future) andZ (past) givenAt = {Z ≤ t < T} (being in state 2 at the ‘present

time’ t for eacht > 0).

We use as measure of association the Kendall’s Tau:

τt = pc,t − pd,t, t > 0,

wherepc,t andpd,t are the probability of concordance and discordance, respec-

tively, for two pairs(Z, T ) falling onAt; more explicitly,

pc,t = 2

∫ ∫
Ft(x

−, y−)Ft(dx, dy), pd,t = 2

∫ ∫
Ut(x, y)Ft(dx, dy),

whereFt(x, y) = P (Z ≤ x, T ≤ y|At) stands for the joint distribution function

(df) of (Z, T ) conditionally onAt, and whereUt(x, y) = P (Z > x, T < y|At) =

Ft(t, y
−)− Ft(x, y

−).

We firstly propose a method to test the null hypothesisH0t : τt = 0 for each

fixed time point. The basic idea is to rejectH0t for large values of an estima-

tor of |τt|. Since the Markov condition is represented by the intersection null

H0 =
⋂

t>0 H0t, evidence against any specificH0t can be interpreted as a lack of
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markovianity of the process. On the other hand, since many local tests are per-

formed at the same time, one may ask about the increase of type I error rates due

to the multiplicity of local tests . As a solution, we propose a global test taking

supt |τt| as a summary measure.

In most practical cases, the sample will be subject to right-censoring because

follow-up time limitations, withdrawals, and so on. LetC be the censoring time,

which we assume to be independent of(Z, T ). Furthermore, let̃Z = min(Z,C)

and T̃ = min(T, C) be the censored versions ofZ andT respectively, and let

∆1 = I (Z ≤ C) and∆ = I (T ≤ C) be their corresponding censoring indica-

tors. The sample information is represented by
{(

Z̃i, T̃i,∆1i,∆i

)
, i = 1, ..., n

}
,

iid copies of
(
Z̃, T̃ ,∆1,∆

)
. In practice, only situations(∆1,∆) = (0, 0), (1, 0),

and(1, 1) may happen, corresponding to individuals censored in state 1, in state

2, or uncensored, respectively. Besides, we assume that the individuals observed

to pass through state 2 coincide to those withZ̃ < T̃ (in words: we exclude the

possibility of a zero transition time from state 2 to state 3).

Therefore, for censored samples, we can introduce an alternative association

measure,̃τt, which is defined as the Kendall’s tau between the censored versions

of T (T̃ ) andZ (Z̃) given Ãt =
{
Z̃ ≤ t < T̃

}
for eacht > 0; τ̃t = p̃c,t − p̃d,t

where

p̃c,t = 2

∫ ∫
F̃t(x

−, y−)F̃t(dx, dy), p̃d,t = 2

∫ ∫
Ũt(x, y)F̃t(dx, dy),

where F̃t(x, y) = P (Z̃ ≤ x, T̃ ≤ y|Ãt) stands for the joint df of
(
Z̃, T̃

)

conditionally onÃt, and whereŨt(x, y) = F̃t(t, y
−) − F̃t(x, y

−). Note that

Ãt = At ∩ {C > t} refers to the subpopulation being in state 2 at timet, which

has not been censored by that time. As long asC is independent of the process,

this subpopulation is representative of the subpopulationAt. Put H̃0t : τ̃t = 0.

Interestingly, whenT andZ are independent conditionally onAt we have that

Z̃ and T̃ are independent giveñAt =
{
Z̃ ≤ t < T̃

}
. The converse is also true
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provided that the support ofC contains that ofT . This is stated as a Theorem.

Theorem 1 If T and Z are independent conditionally on At, then T̃ and Z̃ are

independent conditionally on Ãt. Conversely, if T̃ and Z̃ are independent condi-

tionally on Ãt, and if the support of T is contained in that of C, then T and Z are

independent conditionally on At.

Proof. See the Appendix.

Theorem 1 is useful, because it ensures that ifτ̃t 6= 0 for somet we may

conclude that the process is not Markovian. Since variablesT̃ and Z̃ in which

τ̃t is based are completely observable, one may use ordinary estimators. This

avoids the use of Kaplan-Meier-based estimators, which typically exhibits a large

variance under heavy censoring, and hence they lead to tests with a small statistical

power. See [14] for more on this in the scope of the three-state progressive model.

However, one should not take the valueτ̃t as the (local) future-past association

between the original variables of the process, sinceτ̃t andτt will be different in

non Markovian situations (except for the uncensored case, in whichτ̃t = τt). In

order to illustrate this, in Figure 2 we report the traces ofτ̃t andτt for the non-

Markovian Model 1 in section 3, for several censoring degrees; we can appreciate

how both traces become more and more distinct as the censoring grows. Indeed,

this Figure indicates that much less power should be expected under heavy cen-

soring, because the trace of the Kendall’s tau is closer to zero. For the Markovian

Model 0 in section 3, however, both traces coincide (and they collapse to zero).

We definễτ t in the obvious way:̂̃τ t = ̂̃pc,t − ̂̃pd,t where

̂̃pc,t = 2

∫ ∫
̂̃
F t(x

−, y−)
̂̃
F t(dx, dy), ̂̃pd,t = 2

∫ ∫
̂̃
U t(x, y)

̂̃
F t(dx, dy),

where ̂̃U t(x, y) =
̂̃
F t(t, y

−)− ̂̃
F t(x, y

−), and wherêF̃ t is the ordinary empirical

distribution function of thent pairs
(
Z̃i, T̃i

)
satisfyingZ̃i ≤ t < T̃i. Since, this is

just the ordinary Kendall’s tau computed from a subsample, results on consistency,

finite sample distribution, and asymptotic normality are well-known. We refer the
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interested reader to [15] and [16]. Hence, critical points for the local test under

the null can be computed as usual.

Problems arise when considering the statistic for the global test, namelyDn =

supt

∣∣∣̂̃τ t
∣∣∣. The asymptotic normality of the finite-dimensional distributions of the

process(̂̃τ t)t>0 follows from the standard results on the Kendall’s tau and the

multivariate Central Limit Theorem. Therefore, the weak convergence of
(
̂̃τ t
)
t

to a Gaussian process -and hence the existence of a limiting distribution forDn

-follows provided that the process is tight. This is stated by Theorem 2 below.

However, the computation of the critical points from the asymptotic distribution

of Dn is difficult, and therefore we propose in the following subsection a bootstrap

resampling plan.

Theorem 2.Let I be an interval such thatP (Ãt) ≥ c > 0 for all t ∈ I. Then,

the process
{√

n(̂̃τ t − τ̃t) : t ∈ I
}

weakly converges to a zero-mean Gaussian

process.

Proof: See the Appendix.

2.2 Approximation of null distribution. Bootstrap approaches

In this subsection we propose a bootstrap approximation to the null distribution

of both ̂̃τ t andDn = supt

∣∣∣̂̃τ t
∣∣∣. Although this is not needed for the local test

(due to the availability of tables with critical points and asymptotic theory), for

completeness we give a bootstrap proposal (termed as Local Bootstrap, LB) also

for this case. The LB draws independently theZ̃ and theT̃ at eachÃt. Therefore,

it is specific for each particulart value. On the other hand, to deal with the global

test a Global Bootstrap (GB) resampling plan is needed. This is also given below.

Note that the GB may also be applied to the local test, in order to incorporate the

full Markov information in the (local) testing procedure.

Local Bootstrap (LB):

The local bootstrap resample plan proceeds in two steps:
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Step 1: Draw Z̃∗
i from the marginal distribution̂̃F t(.,∞).

Step 2: Draw independentlỹT ∗
i from the marginal distribution̂̃F t(∞, .).

In Step 1, each̃Zi corresponding to a pair(Z̃i, T̃i) falling on Ãt is sampled

(with replacement) with probability1/nt, wherent =
∑n

j=1 I(Z̃j ≤ t < T̃j).

In Step 2, the valuẽTi is sampled in a similar way. Note that, in this man-

ner, new combinations of type(Z̃i, T̃j) may appear in the bootstrap resample.

For each fixed value oft, steps 1 and 2 are repeated until a bootstrap resample

{(Z̃∗
i , T̃

∗
i )}nt

i=1 of sizent is generated. This bootstrap approach has the advantage

of its simplicity and computational efficiency but it presents the drawback that it

does not permit to manage the process in a global way and hence it cannot be used

for the global test.

Global Bootstrap (GB):

The global bootstrap algorithm is based in the global relationship betweenZ̃ and

T̃ underH̃0 =
⋂

t>0 H̃0t Note that, under the null hypothesis, the process is

Markov, and hence a markovian estimator ofFT̃ /Z̃(t/x) = P (T̃ ≤ t|Z̃ = x, Z̃ <

T̃ ) should be used to resample the total survival time given the observed transition

time from 1 to 2 (̃Z = x).

Explicitly, we used the following resampling algorithm:

Step 1: Draw Z̃∗
i from F̂ 1

Z̃
.

Step 2: GivenZ̃∗
i , drawT̃ ∗

i from F̂T̃ /Z̃(.|Z̃∗
i )

In Step 1F̂ 1
Z̃

stands for the ordinary empirical df of̃Z givenZ̃ < T̃ .

In Step 2, we takêFT̃ /Z̃(t|x) = 1− p̂22(x, t) where

p̂22(x, t) =
∏

x<T̃i≤t,Z̃i<T̃i

[
1− 1

∑n
j=1 I(Z̃j < T̃i ≤ T̃j)

]

is the Aalen-Johansen estimator of the transition probabilityp22(x, t), which is an

efficient estimator under the Markov condition.
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The procedure is repeated until a bootstrap resample{(Z̃∗
i , T̃

∗
i )}n1

i=1 of size

n1 =
∑n

j=1 I(Z̃j < T̃j) is obtained.

3 Simulation study

We carried out a small simulation study to investigate the performance of the local

test̂̃τ t for a fixed grid oft-points and for the global testDn = sup
∣∣∣̂̃τ t

∣∣∣. Specif-

ically, we have simulated 500 Monte Carlo trials of two different models. Both

models were based in the accelerated failure time specificationlog(T − Z) =

f(Z) + ε for the individuals passing through state 2, where the errorε is indepen-

dent of the ‘covariate’Z, whilef(.) is the predictor. An alternative representation

is given byλs (t) = λ0

(
(t− s) e−f(s)

)
e−f(s) where (recall)λs (t) is the condi-

tional hazard ofT givenZ = s, Z < T andλ0 stands for the hazard ofW = eε.

This formulation belongs to the proportional hazards family whenε follows a

extreme-value distribution (i.e.λ0 is constant). On the other hand, the Markov

condition holds if and only ifλs (t) is free ofs. TheZ was distributed as aU [0, 2]

random variable and the models were as follows:

Model 0 (Markovian).λ0 constant andf(.) ≡ 0

Model 1 (Non-Markovian, proportional hazards).λ0 constant andf(s) =

(s− 1)2

The traces of̃τt for Model 1 along the intervalt ∈ [0.5, 3] for several censoring

degrees are displayed in Figure 2. From this Figure 2 we can see that Model 1

presents first a negative and then a positive future-past association, and thatτ̃t

vanish fort ≈ 1.8. This is a consequence of the increasing-decreasing shape of

the conditional hazardλs (t) = exp [−(s− 1)2] on the interval[0, 2] (note that

larger hazard values correspond to smallerT ’s). Of course, we omit the trace

corresponding to Model 0 because in this caseτ̃t = 0 for eacht-value.
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Figure 2: Model 1. Comparison betweenτt and τ̃t for several censoring rates in the

non-markovian simulated model. Monte Carlo approximation based on 100,000

observations.

The performance of̃̂τ t was evaluated along a grid oft-values in the interval

[0.5,3]. Specifically, we tookt = 0.7, 1.1, 1.5, 1.9, 2.3, 2.7. The performance

of Dn = sup |̂̃τ t| was calculated over the same interval [0.5,3]. Two different

situations in terms of direct transitions between state 1 and state 3 (Z = T ) were

considered. Firstly, we assumed a situation with no direct transitions (the partic-

ular 3-state progressive model) and a more general situation where50% of the

individuals were assumed to transit directly from state 1 to state 3. Furthermore,

different sample sizes and censoring percentages were considered. As sample

sizes we tookn = 100, 250, and500. For the censoring distributionG, we took a

Uniform with support[0, bG], wherebG was chosen to obtain the desired censoring

level. We considered four situations from the uncensored case to a maximum of

50% of censored observations.

In Tables 1 to 4 we report the rejection proportion of the local test (when

based on the LB and the GB) along a grid oft-values, and for the correspond-

ing global test (based on the GB) for Models 0 and 1. A significance level of

5% was assumed, and we tookB = 200 bootstrap resamples. For comparison

purposes, the rejection proportion corresponding to the simple method based on
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a proportional hazard specification with linear predictor,λs (t) = λ0(t)e
βs, was

also included. It is interesting to see how the power of this test may not increase

with the sample size, as it happens in Tables 3 and 4 (Model 1). In this case, the

reason is found in the miss-specification of the predictor, which can not detect the

parabolic influencef(s) = (s − 1)2. A bit surprisingly, more power is reached

with larger censoring proportions; this is due to the shortening in the observable

support of theZ variable, which transforms the decreasing-increasing shape of

the predictor into a fairly monotone decreasing curve.

Note that Model 0 is Markovian, so we expect rejection proportions about

0.05 in this case. Results in Tables 1 (no direct transitions between state 1 and

state 3) and 2 (50% of direct transitions between state 1 and state 3) are quite

satisfactory to this regard. The nominal level is well approximated for both boot-

strap approaches in the local test. However, we observe that the the GB reports

more conservative results when increasing the censoring level. The global test

also presents satisfactory results, reporting rejection proportions of about5%.

For Model 1 we expect a rejection proportion increasing with the sample size

and also with the proportion of uncensoring. These features are appreciated in

Tables 3 (no direct transitions between state 1 and state 3) and 4 (50% of direct

transitions between state 1 and state 3). Interestingly, we see that the maximum

power of the local test based oñ̂τ t is achieved at some central point in the grid

(t = 1.1 in Model 1). This is a consequence of two facts. First, the amount

of information onτ̃t grows at central points; second, we have that the largest

absolute value of̃τt (see the black lines in Figure 2), and hence the alternative

most separated from the null, is obtained precisely fort = 1.1 (Model 1). It is

also remarkable the loss of power of the Kendall’s tau in Model 1 fort = 1.9; this

is because the level of association is zero at this point. So in practice the value of

t may have a big impact in the power of the test.

As for the global test , it is seen from tables 3 and 4 that its power may be

much larger than that of the proportional hazards approach, particularly for low to
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moderate censoring degrees. For example, withn = 500 and 30 % of censoring,

the power of the nonparametric global test was more than four times (Table 3) or

three times (Table 4) that of the proportional hazards method. However, we must

indicate the loss of power observed when censoring level reaches the 50%.

Interestingly, if we compare Tables 3 and 4, we can observe a loss of power of

the new methods when the number of individuals passing through the intermediate

state declines. This is due to the reduction in the effective sample size to compute

τ̃t as long as we enlarge the number of direct transitions1→3. While in the three-

state progressive model, where the direct transitions to state 3 without passing

through state 2 are not allowed, all the observations are used to compute the test

(Table 3), if we assume a 50% of direct transitions1→3 (Table 4) the effective

sample size is reduced to about half of the original sample size. So in practice,

the proportion of observed transitions through state 2 will dramatically affect the

performing of the new methods.
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Table 1: Model 0 (Markovian). No transitions1→3. Rejection proportions of

tests based on̂̃τ t for several values oft andDn = sup |(ˆ̃τ t|) along 500 trials,

censoring rates and sample sizes (n). Results corresponding to the proportional

hazard specification are also provided (PH method)
% of censoring n Bootstrap method 0.7 1.1 1.5 1.9 2.3 2.7 Dn PH method

100 LB 0.042 0.050 0.028 0.062 0.040 0.062

GB 0.050 0.054 0.036 0.064 0.038 0.054 0.016 0.053

0 250 LB 0.040 0.049 0.045 0.046 0.043 0.051

GB 0.056 0.060 0.044 0.060 0.042 0.062 0.040 0.048

500 LB 0.045 0.050 0.042 0.068 0.046 0.040

GB 0.046 0.064 0.058 0.076 0.044 0.042 0.044 0.060

100 LB 0.048 0.052 0.036 0.046 0.050 0.044

GB 0.052 0.042 0.030 0.052 0.042 0.024 0.028 0.053

10 (bG = 20) 250 LB 0.049 0.056 0.048 0.053 0.045 0.044

GB 0.044 0.052 0.042 0.050 0.036 0.046 0.058 0.045

500 LB 0.041 0.042 0.049 0.063 0.053 0.042

GB 0.034 0.044 0.044 0.070 0.040 0.028 0.042 0.056

100 LB 0.044 0.046 0.044 0.064 0.068 0.062

GB 0.020 0.026 0.028 0.042 0.052 0.020 0.032 0.053

30 (bG = 6.6) 250 LB 0.045 0.046 0.049 0.058 0.049 0.053

GB 0.026 0.028 0.030 0.052 0.034 0.056 0.066 0.058

500 LB 0.053 0.055 0.045 0.060 0.042 0.045

GB 0.030 0.032 0.040 0.038 0.030 0.024 0.050 0.058

100 LB 0.020 0.022 0.016 0.030 0.014 0.076

GB 0.016 0.016 0.018 0.022 0.018 0.002 0.030 0.050

50 (bG = 3.9) 250 LB 0.043 0.042 0.041 0.055 0.049 0.043

GB 0.014 0.020 0.020 0.020 0.022 0.026 0.080 0.048

500 LB 0.061 0.045 0.060 0.052 0.043 0.049

GB 0.016 0.020 0.022 0.030 0.016 0.030 0.064 0.047

14



Table 2: Model 0 (Markovian). 50% transitions1→3. Rejection proportions of

tests based on̂̃τ t for several values oft andDn = sup |(ˆ̃τ t|) along 500 trials,

censoring rates and sample sizes (n). Results corresponding to the proportional

hazard specification are also provided (PH method)
% of censoring n Bootstrap method 0.7 1.1 1.5 1.9 2.3 2.7 Dn PH method

100 LB 0.064 0.064 0.054 0.062 0.066 0.084

GB 0.054 0.062 0.060 0.060 0.066 0.046 0.078 0.053

0 250 LB 0.046 0.046 0.034 0.048 0.055 0.042

GB 0.048 0.036 0.048 0.076 0.054 0.066 0.052 0.059

500 LB 0.043 0.043 0.051 0.062 0.054 0.070

GB 0.038 0.062 0.036 0.068 0.040 0.012 0.046 0.057

100 LB 0.048 0.058 0.042 0.054 0.066 0.074

GB 0.036 0.062 0.046 0.062 0.046 0.030 0.092 0.053

8 (bG = 20) 250 LB 0.051 0.048 0.049 0.049 0.044 0.049

GB 0.038 0.064 0.046 0.060 0.040 0.040 0.048 0.062

500 LB 0.063 0.047 0.050 0.049 0.051 0.068

GB 0.056 0.056 0.040 0.060 0.052 0.078 0.042 0.063

100 LB 0.052 0.064 0.058 0.064 0.082 -

GB 0.056 0.058 0.044 0.060 0.054 0.022 0.064 0.053

23 (bG = 6.6) 250 LB 0.051 0.066 0.053 0.058 0.052 0.057

GB 0.052 0.068 0.050 0.054 0.056 0.052 0.026 0.067

500 LB 0.050 0.049 0.060 0.061 0.046 0.069

GB 0.042 0.046 0.068 0.066 0.046 0.058 0.046 0.049

100 LB 0.036 0.038 0.034 0.022 0.070 -

GB 0.052 0.070 0.058 0.048 0.034 0.040 0.126 0.050

36 (bG = 3.9) 250 LB 0.050 0.057 0.046 0.049 0.050 -

GB 0.044 0.064 0.034 0.044 0.042 0.026 0.066 0.060

500 LB 0.052 0.055 0.053 0.045 0.055 -

GB 0.040 0.056 0.052 0.056 0.032 0.036 0.042 0.054
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Table 3: Model 1 (Non-Markovian). No transitions1→3. Rejection proportions

of tests based oñ̂τ t for several values oft andDn = sup |(ˆ̃τ t|) along 500 trials,

censoring rates and sample sizes (n). Results corresponding to the proportional

hazard specification are also provided (PH method)
% of censoring n Bootstrap method 0.7 1.1 1.5 1.9 2.3 2.7 Dn PH method

100 LB 0.142 0.165 0.120 0.062 0.074 0.090

GB 0.252 0.280 0.158 0.084 0.088 0.084 0.230 0.082

0 250 LB 0.448 0.610 0.369 0.082 0.177 0.144

GB 0.460 0.610 0.390 0.088 0.164 0.140 0.600 0.088

500 LB 0.733 0.886 0.622 0.096 0.294 0.245

GB 0.736 0.884 0.616 0.116 0.292 0.258 0.882 0.087

100 LB 0.136 0.136 0.112 0.042 0.066 0.070

GB 0.178 0.224 0.138 0.058 0.088 0.066 0.190 0.072

10 (bG = 25) 250 LB 0.393 0.541 0.338 0.079 0.149 0.124

GB 0.384 0.536 0.324 0.076 0.132 0.106 0.518 0.060

500 LB 0.665 0.845 0.526 0.092 0.238 0.189

GB 0.652 0.808 0.506 0.104 0.248 0.202 0.834 0.098

100 LB 0.114 0.098 0.072 0.048 0.060 0.076

GB 0.086 0.162 0.082 0.042 0.056 0.044 0.104 0.072

30 (bG = 8.1) 250 LB 0.277 0.403 0.222 0.068 0.099 0.086

GB 0.228 0.322 0.178 0.056 0.074 0.060 0.298 0.073

500 LB 0.505 0.680 0.380 0.079 0.165 0.117

GB 0.442 0.618 0.368 0.068 0.146 0.100 0.482 0.118

100 LB 0.096 0.084 0.072 0.062 0.088 -

GB 0.062 0.088 0.056 0.046 0.030 0.016 0.048 0.070

50 (bG = 4.6) 250 LB 0.200 0.264 0.144 0.058 0.067 0.068

GB 0.088 0.170 0.078 0.050 0.028 0.038 0.068 0.108

500 LB 0.371 0.462 0.239 0.069 0.102 0.076

GB 0.264 0.356 0.180 0.052 0.058 0.046 0.176 0.172
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Table 4: Model 1 (Non-Markovian). 50% transitions1→3. Rejection proportions

of tests based oñ̂τ t for several values oft andDn = sup |(ˆ̃τ t|) along 500 trials,

censoring rates and sample sizes (n). Results corresponding to the proportional

hazard specification are also provided (PH method)
% of censoring n Bootstrap method 0.7 1.1 1.5 1.9 2.3 2.7 Dn PH method

100 LB 0.142 0.160 0.120 0.062 0.074 0.090

GB 0.140 0.184 0.116 0.052 0.078 0.082 0.102 0.082

0 250 LB 0.218 0.324 0.210 0.083 0.146 0.128

GB 0.222 0.326 0.200 0.096 0.150 0.134 0.275 0.089

500 LB 0.454 0.585 0.380 0.088 0.177 0.146

GB 0.470 0.600 0.398 0.090 0.174 0.162 0.624 0.091

100 LB 0.136 0.136 0.112 0.042 0.066 0.070

GB 0.120 0.130 0.116 0.046 0.064 0.062 0.094 0.072

8 (bG = 25) 250 LB 0.202 0.284 0.164 0.081 0.123 0.110

GB 0.192 0.290 0.158 0.074 0.128 0.106 0.230 0.091

500 LB 0.400 0.525 0.339 0.089 0.155 0.124

GB 0.406 0.534 0.366 0.092 0.168 0.136 0.522 0.093

100 LB 0.114 0.098 0.072 0.048 0.060 0.076

GB 0.114 0.104 0.086 0.054 0.052 0.060 0.064 0.072

23 (bG = 8.1) 250 LB 0.154 0.192 0.127 0.063 0.101 0.089

GB 0.156 0.178 0.108 0.070 0.108 0.076 0.142 0.067

500 LB 0.290 0.385 0.219 0.081 0.116 0.090

GB 0.280 0.392 0.218 0.086 0.096 0.096 0.296 0.086

100 LB 0.096 0.084 0.072 0.062 0.055 -

GB 0.088 0.086 0.072 0.056 0.050 0.034 0.256 0.070

36 (bG = 4.6) 250 LB 0.094 0.143 0.080 0.046 0.071 0.068

GB 0.096 0.130 0.082 0.048 0.060 0.054 0.054 0.076

500 LB 0.197 0.259 0.124 0.067 0.080 0.076

GB 0.206 0.292 0.132 0.078 0.076 0.060 0.090 0.098

4 Real data illustration

Two datasets were analyzed in order to illustrate the new methods. Because of the

presence of ties in the real data, the discrete version of̂̃τ t, τ t, was used:

τ t =
̂̃τ t

̂̃pc,t + ̂̃pd,t
=
̂̃pc,t − ̂̃pd,t
̂̃pc,t + ̂̃pd,t
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4.1 Bone marrow transplantation for leukemia

We analyzed survival data from a multicenter trial of patients with acute myeloctic

leukemia after a bone marrow transplantation. The details of this dataset can be

found in [9]. The recovering from a bone marrow transplant is a complex process

in patients with leukemia and their prognosis may be affected by intermediate

events, such as the development of chronic graft-versus-host disease (cGVHD).

Therefore, we considered an illness-model to analyze the prognostic of the pa-

tients after the bone marrow transplant, considering the development of cGVHD

as intermediate event of interest.

Specifically, we studied the recovery process of 136 patients. 60 of them de-

veloped cGHVD after the transplant (18% of censoring in state 1) and among

them, 28 died (24% of censoring in state 2). Furthermore, 52 patients (38%) were

observed to die without developing cGHVD. We studied the markovianity in the

range of observed values from 150 to 500 days of follow-up time, so that we guar-

antee a minimum of 35 observations to perform eachτ t. In Figure 3 we report

two graphics to summarize the application of the local markovianity test to this

dataset. In the left panel we give the trace of values ofτ t, with its corresponding

95% and 90% pointwise confidence bands based on the simple bootstrap. This

Figure suggests a significant positive future-past association in the whole range

of time, that should be interpreted as an increased risk of death for those patients

suffering cGVHD shortly after the bone marrow transplant. In the right panel,

we report the significance trace of the local goodness-of-fit based onτ t. Results

for both local and global bootstrap methods introduced in section 2.1 are shown,

and they basically report the same trace. We observe that the significance trace

is able to detect non-markovianity along all the range of t-values. Accordingly,

when we apply the summary test based on the supremum over the observations

falling in the interval of interest, a p-value=0.014 was obtained. Interestingly, this

agrees with the analysis of markovianity based on the proportional hazards model

λs(t) = λ0(t)e
βs under whichβ̂ = −0.005 (s.e. = 0.00203) with a logrank test’s
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p-value of 0.011.
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Figure 3: Left: Future-past association trace for the leukemia data and pointwise

confidence limits. Solid line: 95%. Dashed line: 90%. Right: Significance trace.

B=2000 bootstrap resamples. Solid line: GB. Dashed line: LB

4.2 Infection for burn patients

The second dataset refers to the study of time from admission until either infec-

tion with Staphylococcus aureus or discharge in patients from the burn unit at a

large university hospital ([10]). The infection of a burn wound is a common com-

plication for these patients that might be affected for other factors, such as days

until first wound excision during the evolution process. Both, the time to Straphy-

locous Aureaus (T ) infection and time to excision (Z) are considered in this case,

and hence an illness-death model applies. From a total of 154 patients studied,

the patient’s wound had been excised for 84 (23% of censoring in state 1). From

them, 14 patients experienced infection (83% of censoring in state 2). Besides, 34

patients experienced the infection without having passed through the intermediate

event.

In this case, the Cox method accepts the global markovianity at 5% signifi-
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cance level, providing a large p-value (p-value=0.448). However, when applying

our methods, the results does not show that clear markovian performance. We

studied the local markovianity along the interval [7,31] days from the beginning

of the follow-up time to guarantee, as in the previous case, 35 observations in each

corresponding̃At. In Figure 4 (left panel), we can observe the estimated future-

past association for the burn data. It suggests a negative association between the

time to excision and the total time at the t-interval [14,20] days of follow-up time,

meaning that the risk of Straphylocous Aureaus is increased after the excision.

This is confirmed by the significance trace of the local test (Figure 4 right). The

local method rejects the local markovianity at a 5% of significance level at similar

part of the grid of t-points. As for the global test, we obtain p-value=0.144. Even

if the global test does not reach the significance level, the p-value associated is

quite lower than the one provided by the classical proportional hazard method.
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Figure 4: Left: Future-past association trace for the burn data and pointwise con-

fidence limits. Solid line: 95%. Dashed line: 90%. Right: Significance trace.

B=2000 bootstrap resamples. Solid line: GB. Dashed line: LB

5 Conclusions

In this paper, a flexible nonparametric method to test the Markov condition in the

scope of the illness-death model has been proposed. The nonparametric test is

based on the measured association between the past and the future of the process

of interest given its present state at time t. By considering several values oft, one

may construct a significance trace which reports information on the markovianity

of the process in a local way. Besides, we have proposed a supremum-type test

statistic by considering the maximum observed absolute future-past association

over a given time interval. The weak convergence of the underlying test statistic

has been established, and several bootstrap approximations have been proposed.

The obtained simulation results suggest that the new test may be much more

powerful than existing, less flexible methods, for special alternatives. This has

been illustrated through real medical data analysis too. Specifically, we have ana-

lyzed the impact of chronic graft-versus-disease in evolution after a bone marrow
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transplant in patients with leukemia, and also the relationship between the time to

wound excision and time to Straphylocous Aureaus infection in burn patients. In

both cases, the Markov condition for the corresponding illness-death model was

tested, and the new method gave new interesting insights into the problem.

The relevance of the proposed test comes from the fact that no special depen-

dence structure between the future and the past of the process is a priori assumed.

Interestingly, a characterization of the Markov condition in terms of the marko-

vianity of the censored, observable process has been given, in such a way that

no Kaplan-Meier weights are needed for the computation of the proposed testing

algorithms. Although a Kaplan-Meier-based formula for the association measure

is possible, it is expected that it would lead to a less powerful test due to the large

variance which would be typically obtained in heavily censored scenarios.

It would be interesting to extend the given methods to other more involved

multi-state models. The extension to other multi-state models can become com-

plicated as the number of states and possible transition grow. However, the method

could be applied as it is to investigate markovianity in specific parts of a general

multi-state model, under the assumption that the only source of possible non-

markovianity is the sojourn time in the previously visited state.

All the proposed methods were implemented in R. The code is available from

the authors upon request.
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Appendix: Technical proofs

Proof to Theorem 1.We begin stating two useful Lemmas. LetbH = inf {t : H(t) = 1},

whereH is the df ofT̃ . PutF1t(x) = Ft(x,∞) andF2t(y) = Ft(∞, y) = Ft(t, y)

for the marginal distributions ofZ andT respectively givenAt. When needed, we

also use the notations̃F1t(x) = F̃t(x,∞) = F̃t(x, bH) andF̃2t(y) = F̃t(∞, y) =

F̃t(t, y) for the marginal distributions of̃Z andT̃ respectively giveñAt.

Lemma A. We have for allx ≤ t < y ≤ bH

F̃t(x, y) = F1t(x)− P (C > y|C > t) [F1t(x)− Ft(x, y)] .

Proof. Write for x ≤ t < y ≤ bH

F̃t(x, y) = P (Z̃ ≤ x, T̃ ≤ y|Ãt) = P (Z ≤ x, T ∧ C ≤ y|Z ≤ t < T, C > t)

= P (Z ≤ x|Z ≤ t < T, C > t)− P (Z ≤ x, T ∧ C > y|Z ≤ t < T, C > t)

= F1t(x)− P (Z ≤ x, T > y|Z ≤ t < T )P (C > y|C > t)

= F1t(x)− P (C > y|C > t) [F1t(x)− Ft(x, y)] .�

Corollary. We haveF̃1t(x) = F1t(x) for all x ≤ t, and

F̃2t(y) = 1− P (C > y|C > t) [1− F2t(y)] for all y ≤ bH .

Proof. For the first assertion note that, by Lemma A,

F̃1t(x) = F̃t(x, bH) = F1t(x)−P (C > bH |C > t) [F1t(x)− Ft(x, bH)] = F1t(x),

where the last equality follows becauseP (C > bH |C > t) = 0 whenever

Ft(x, bH) < F1t(x). The second assertion follows directly from Lemma A.�

Lemma B. The two following conditions are equivalent:

(i) F̃t(x, y) = F̃1t(x)F̃2t(y) for all x ≤ t < y ≤ bH (i.e. Z̃ and T̃ are

independent giveñAt)
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(ii) Ft(x, y) = F1t(x)F2t(y) for all x ≤ t < y ≤ bH

Proof. Assume that (i) holds. Then, by Lemma A and its Corollary, we have

F1t(x)− P (C > y|C > t) [F1t(x)− Ft(x, y)] =

= F1t(x)− F1t(x)P (C > y|C > t) [1− F2t(y)] ,

which holds only if

P (C > y|C > t)Ft(x, y) = P (C > y|C > t)F1t(x)F2t(y).

But this is just (ii), after noting thatP (C > y|C > t) > 0 for y < bH . Conversely,

if (ii) holds, then (i) inmediately follows from Lemma A and its Corollary.�

Lemma B implies the two assertions of Theorem 2. Note that, when the sup-

port ofT is contained in that ofC, we have that (ii) holds if and only ifZ andT

are conditionally independent givenAt.�

Proof to Theorem 2:

We want to prove that the process
{√

n(̂̃τ t − τ̃t) : t ∈ I
}

is tight, wereI
stands for an interval such thatP (Ãt) ≥ c > 0 for all t ∈ I. Recall that

̂̃τ t = ̂̃pc,t − ̂̃pd,t

where

̂̃pc,t = 2

∫ ∫
̂̃
F t(x

−, y−)
̂̃
F t(dx, dy) and ̂̃pd,t = 2

∫ ∫
̂̃
U t(x

−, y−)
̂̃
F t(dx, dy)

and wherêF̃ t is the ordinary empirical df of the
(
Z̃i, T̃i

)
’s such thatZ̃i ≤ t < T̃i

and ̂̃U t(x, y) =
̂̃
F t(t, y

−) − ̂̃
F t(x

−, y−). We first obtain an asymptotic represen-

tation of
{√

n(̂̃τ t − τ̃t) : t ∈ I
}

as a suitable process plus a remainder.

It is easily seen that

̂̃pc,t =
2

nt(nt − 1)

∑

i<j

I((Z̃i − Z̃j)(T̃i − T̃j) > 0)I(Z̃i ≤ t < T̃i)I(Z̃j ≤ t < T̃j)
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wherent =
∑n

i=1 I(Z̃i ≤ t < T̃i). Sincent/n → P (Ãt) asn → ∞, we obtain

̂̃pc,t =
2

n(n− 1)P (Ãt)2

∑

i<j

I((Z̃i−Z̃j)(T̃i−T̃j) > 0)I(Z̃i ≤ t < T̃i)I(Z̃j ≤ t < T̃j)+oP (1)

uniformly ont ∈ I. A similar result holds for̂̃pd,t and thus we have

̂̃τ t =
2

n(n− 1)P (Ãt)2

∑

i6=j

ϕt(Z̃i, Z̃j, T̃i, T̃j)− 1 + oP (1)

where

ϕt(Z̃i, Z̃j, T̃i, T̃j) = I((Z̃i − Z̃j)(T̃i − T̃j) > 0)I(Z̃i ≤ t < T̃i)I(Z̃j ≤ t < T̃j).

Now, straightforward calculations show that the Hájek projection of theU-statistic

Ut =
1

n(n− 1)

∑

i6=j

ϕt(Z̃i, Z̃j, T̃i, T̃j)

is given by (cfr. [17], Section 5.3)

Ût =
2P (Ãt)

n

n∑

i=1

[
S̃t(Z̃i, T̃i) + F̃t(Z̃i, T̃i)

]
I(Z̃i ≤ t < T̃i)− P (Ãt)

2p̃c,t

whereS̃t(x, y) = P (Z̃ > x, T̃ > y|Ãt). SinceUt − Ût = oP (n
−1/2) we have

√
n(̂̃τ t − τ̃t) =

√
n

[
2

P (Ãt)2
Ut − 1− (2p̃c,t − 1)

]
+ oP (1)

=
√
n

[
2

P (Ãt)2
(Ût − P (Ãt)

2p̃c,t)

]
+ oP (1)

= n−1/2 4

P (Ãt)

n∑

i=1

{[
S̃t(Z̃i, T̃i) + F̃t(Z̃i, T̃i)

]
I(Z̃i ≤ t < T̃i)− P (Ãt)p̃c,t

}
+ oP (1)

uniformly on t ∈ I. Hence, tightness of
√
n(̂̃τ t − τ̃t) follows provided that the

process

Rn(t) = n−1/2
n∑

i=1

{[
S̃t(Z̃i, T̃i) + F̃t(Z̃i, T̃i)

]
I(Z̃i ≤ t < T̃i)− P (Ãt)p̃c,t

}
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is tight. This is stated as a Lemma, which completes the proof.�

Lemma. The process{Rn(t) : t ∈ I} is tight.

Proof to Lemma. For t1 ≤ t ≤ t2 write

E
{
|Rn(t)− Rn(t1)|2 |Rn(t2)− Rn(t)|2

}
= E





(
n−1/2

n∑

i=1

αi

)2(
n−1/2

n∑

i=1

βi

)2




where

αi =
[
S̃t(Z̃i, T̃i) + F̃t(Z̃i, T̃i)

]
I(Z̃i ≤ t < T̃i)− P (Ãt)p̃c,t

−
[
S̃t1(Z̃i, T̃i) + F̃t1(Z̃i, T̃i)

]
I(Z̃i ≤ t1 < T̃i) + P (Ãt1)p̃c,t1

and

βi =
[
S̃t2(Z̃i, T̃i) + F̃t2(Z̃i, T̃i)

]
I(Z̃i ≤ t2 < T̃i)− P (Ãt2)p̃c,t2

−
[
S̃t(Z̃i, T̃i) + F̃t(Z̃i, T̃i)

]
I(Z̃i ≤ t < T̃i) + P (Ãt)p̃c,t,

1 ≤ i ≤ n. Note thatE(αi) = E(βi) = 0. Use a symmetry argument to write

E





(
n−1/2

n∑

i=1

αi

)2(
n−1/2

n∑

i=1

βi

)2




= n−2
{
nE(α2

1β
2
1) + n(n− 1)E(α2

1)E(β2
1) + 2n(n− 1)E2(α1β1)

}

≤ n−2
{
nE(α2

1β
2
1) + 3n(n− 1)E(α2

1)E(β2
1)
}
,

the inequality following from Cauchy-Schwarz. Now, usingZ̃i ≤ T̃i andt1 ≤ t

we get

I(Z̃i ≤ t1 < T̃i) = I(T̃i > t1)− I(Z̃i > t1) (1)

= I(T̃i > t) + I(t1 < T̃i ≤ t)− I(Z̃i > t)− I(t1 < Z̃i ≤ t)

= I(Z̃i ≤ t < T̃i) + I(t1 < T̃i ≤ t)− I(t1 < Z̃i ≤ t).

Hence,

αi =
[
S̃t(Z̃i, T̃i)− S̃t1(Z̃i, T̃i)

]
I(Z̃i ≤ t < T̃i)
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+
[
F̃t(Z̃i, T̃i)− F̃t1(Z̃i, T̃i)

]
I(Z̃i ≤ t < T̃i)

−
[
S̃t1(Z̃i, T̃i) + F̃t1(Z̃i, T̃i)

]
I(t1 < T̃i ≤ t)+

[
S̃t1(Z̃i, T̃i) + F̃t1(Z̃i, T̃i)

]
I(t1 < Z̃i ≤ t)

−P (Ãt)p̃c,t + P (Ãt1)p̃c,t1,

while for the last term, using again (1), we obtain

−P (Ãt)p̃c,t+P (Ãt1)p̃c,t1 = P (Ãt) [p̃c,t1 − p̃c,t]+p̃c,t1P (t1 < T̃ ≤ t)−p̃c,tI(t1 < Z̃ ≤ t).

Now, noting that̃pc,t = 1
2
E
[
F̃t(Z̃, T̃ )I(Z̃ ≤ t < T̃ )

]
/P (Ãt), we have

2(p̃c,t1 − p̃c,t) =
1

P (Ãt1)
E
[
F̃t1(Z̃, T̃ )(I(Z̃ ≤ t < T̃ ) + I(t1 < T̃ ≤ t)− I(t1 < Z̃ ≤ t))

]

− 1

P (Ãt1)
E
[
F̃t(Z̃, T̃ )I(Z̃ ≤ t < T̃ )

]

−(
1

P (Ãt)
− 1

P (Ãt1)
)E
[
F̃t(Z̃, T̃ )I(Z̃ ≤ t < T̃ )

]

=
1

P (Ãt1)
E
[
(F̃t1(Z̃, T̃ )− F̃t(Z̃, T̃ ))I(Z̃ ≤ t < T̃ )

]

+
1

P (Ãt1)
E
[
F̃t1(Z̃, T̃ )(I(t1 < T̃ ≤ t)− I(t1 < Z̃ ≤ t))

]

−P (Ãt1)− P (Ãt)

P (Ãt)P (Ãt1)
E
[
F̃t(Z̃, T̃ )I(Z̃ ≤ t < T̃ )

]
.

Since (1) implies for some constantk > 0

∣∣∣S̃t(Z̃i, T̃i)− S̃t1(Z̃i, T̃i)
∣∣∣ ≤ k

[
P (t1 < T̃ ≤ t) + P (t1 < Z̃ ≤ t)

]
= k [Γ(t)− Γ(t1)]

and ∣∣∣F̃t(Z̃i, T̃i)− F̃t1(Z̃i, T̃i)
∣∣∣ ≤ k [Γ(t)− Γ(t1)]

whereΓ(t) = P (T̃ ≤ t) + P (Z̃ ≤ t1) is a continuous, nondecreasing function,

and sinceF̃t, S̃t ∈ [0, 1], from (a + b)2 ≤ 2(a2 + b2) we have for some constant

k′ > 0

E(α2
i ) ≤ k′

{
[Γ(t)− Γ(t1)]

2 + Γ(t)− Γ(t1)
}
.
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An analogous result can be proved forβi and hence

E(α2
1)E(β2

1) ≤ k′′
{
[Γ(t2)− Γ(t1)]

4 + [Γ(t2)− Γ(t1)]
2} .

Similarly, one may obtainE(α2
1β

2
1) ≤ k′′′ [Γ(t2)− Γ(t1)]

2 and the result follows

from Theorem 15.6 in [18].�
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