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Abstract

In some applications with astronomical and survival data, doubly truncated data are sometimes
encountered. In this work we introduce kernel-type density estimation for a random variable
which is sampled under random double truncation. Two different estimators are considered. As
usual, the estimators are defined as a convolution between a kernel function and an estimator
of the cumulative distribution function, which may be the NPMLE (Efron and Petrosian, 11999)
or a semiparametric estimator (Moreira and de Una-Alvared, 2010b). Asymptotic properties of
the introduced estimators are explored. Their finite sample behaviour is investigated through
simulations. Real data illustration is included.

1 Introduction

Truncated data play an important role in the statistical analysis of survival times as well as in
other fields like astronomy or economy. Double truncation of survival data occurs e.g. when only
those individuals whose event time lies within a certain subject-specific observational window are
observed. An individual whose event time is not in this interval is not observed and no infor-
mation on this subject is available to the investigator. Because we are only aware of individuals
with event times in the observational window, the inference with truncated data is based on sam-
pling information from a conditional distribution. Hence, suitable corrections to account for the
observational bias are needed. This problem goes back to [Turnbull (1976).

Among the various existing problems of random truncation, literature has mainly been focused
on the left-truncation model or, more generally, in one-sided truncation setups. [Woodroofe (1985)
investigated the properties of the nonparametric maximum-likelihood estimator (NPMLE) of the
distribution function (df) with left-truncated data, see also [Lynden-Bell (1971). This estimator
was further investigated by IStutd (1993), being also extended to the right-censored scenario (see
Tsai et all (1987), Wang (1991) or [Zhou and Yip (1999), among many others). However, liter-
ature on random double truncation is much scarcer. A possible reason is the absence of closed
form estimators; indeed, the existing methods for doubly truncated data are iterative and com-
putationally intensive, and these issues make difficult both the theoretical developments and the
practical implementations.

Efron and Petrosian (1999) introduced the NPMLE of the df under double truncation, while
Shen (2010a) formally established the uniform strong consistency and the weak convergence of
the NPMLE. Bootstrap methods to approximate the finite sample distribution of the NPMLE
with doubly truncated data were explored in Moreira and de Una-Alvarez (2010a). The semi-
parametric approach, in which the distribution of the truncation times is assumed to belong



to a given parametric family, was investigated in IMoreira and de Una-Alvarez (2010L), see also
Shen (2010H). Interestingly, these authors showed that the semiparametric estimator may out-
perform the NPMLE in the sense of the mean squared error (MSE). An R package to compute the
NPMLE of a doubly truncated df was presented in [Moreira et all (2010). However, for the best
of our knowledge, estimation of a density function observed under random double truncation has
not been considered so far.

The rest of the paper is organized as follows. In Section [2 two new estimators of a doubly
truncated density function are introduced, and their main asymptotic properties are discussed.
As usual in kernel smoothing, these estimators are obtained as a convolution between a ker-
nel function and an appropriate estimator of the cumulative df. The first estimator is purely
nonparametric, since it is based on the [Efron and Petrosian (1999)’s NPMLE; while the second
estimator is semiparametric, being constructed from the semiparametric cumulative df proposed
by Moreira and de Una-Alvarez (2010b). Section [ provides a simulation study in which the
finite-sample properties of the two estimators are investigated. In particular, we explore in much
detail the role of the smoothing parameter or bandwidth. Both estimators are critically com-
pared in the sense of the integrated MSE. In Section [4] we give a real data illustration of the
proposed methods. To this end, we use data on childhood cancer from Northern region of Por-
tugal (Moreira and de Unia-Alvarez, [2010a). Main conclusions and a final discussion is given in
Section

2 The estimators. Asymptotic properties

Let X* be the random variable of ultimate interest, with df F, and assume that it is doubly
truncated by the random pair (U*,V*) with joint df T, where U* and V* (U* < V*) are the left
and right truncation variables respectively. This means that the triplet (U*, X*, V*) is observed
if and only if U* < X* < V*, while no information is available when X* < U* or X* > V*.
Let (U;, X;,V;), @ = 1,...,n, denote the sampling information, these are iid data with the same
distribution of (U*, X*,V*) given U* < X* < V*. Introduce a = P(U* < X* < V*), the
probability of no-truncation. For any df W denote the left and right endpoints of its support by
aw = inf{t: W(t) >0} and bw = inf {t: W(t) = 1}, respectively. Let T1(u) = T(u,c0) and
Ty (v) = T(—o00,v) be the marginal df’s of U* and V*, respectively. When ap, < ap < ar, and
by, <bp < brp,, F and T are both identifiable (see Woodroofe, 1985).

In the following two Subsections we introduce respectively the NPMLE and the semiparametric
estimator of the df of X*. Then, in Subsection 23] we consider the problem of estimating the
density function on the basis of these two cumulative estimators.

2.1 The NPMLE of the cumulative df

Here, we assume without loss of generality, that the NPMLE is a discrete distribution supported
by the set of observed data (Turnbull, 1976). Let ¢ = (¢q,...,p, ) be a distribution putting
probability ¢, on X;,i = 1,...,n. Similarly, let v = (¢4,...,%,) be a distribution putting
joint probability ¢, on (U;,V;),i = 1,...,n. Under the assumption of independence between X*
and (U*,V*), the full likelihood, L(¢, ), can be decomposed as a product of the conditional
likelihood of the X;’s given the (U;, V;)’s, say L1(p), and the marginal likelihood of the (U;, V;)’s,
sy Lol )

LT
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where ®; is defined through ®; = Y @, Jim, i = 1,...,n with Jim = Iy,<x, <v) = 1 if
m=1

U; < X,, <V, and equal to zero otherwise.

The conditional NPMLE of F' (Efron and Petrosian,[1999) is defined as the maximizer of £; ()
in equation maximizes indeed the full likelihood, which can be also written as the product

- 1/} = Jc'o] * *
= | | I | | =L L
Uy, Sy 1) X L5, »)

where U; = Z YU <X, <Vin] Z Ypdmi, for i = 1...,n. Here, £5 (1) denotes the condi-
tional hkehhood of the (U;, V;)’s given the Xi’s and L5(1, @) refers to the margmal likelihood of the
X,’s. Introduce 9 = (7,/)1, cey 1/)”) as the maximizer of £ (¢); then, T,,( Z Yillu, <u,vi<v) 18

=1

the NPMLE of T' (Shen, [2010a).

The NPMLE of F' also admits the representation

B T Er(dt)

where F¥ is the ordinary empirical df of the X;’s,

Gn(t) = / T, (du, dv)
{u<t<v}

is a nonparametric estimator for the conditional probability of sampling a lifetime X* = ¢, i.e.
Gt) = P(U* <t <V*),and o, = f G, L(t)F*(dt))~! is an estimator for . [Shen (2010a)
established the uniform strong con51stency and the weak convergence of Fi,.

2.2 The semiparametric estimator of the cumulative df

In the semiparametric approach it is assumed that T belongs to a parametric family of df’s
{To}yco, where 0 is a vector of parameters and © stands for the parametric space. As a conse-
quence, G(t) is parametrized as

Golt) = / Ty (du, dv).
fust<v)

The parameter  is estimated by the maximizer 6 of the conditional likelihood of the (U;, Vi)’s
given the X;’s, that is,

ciw)=£i0) =] %

i=1

where gg(u,v) = é,2—;JP(U* < u,V* < v) = Kp(du, dv) stands for the joint density of (U*, V*)
(assumed to exist).

Once 0 is estimated, a semiparametric estimator for F' is introduced through

T Fx(dt)
G@(t) ’ (2)

Fy(z) = oy

ar



where ag = (. Gy Y(t)F*(dt))~". Moreira and de Ufa-Alvare (2010H) established the asymp-

totic normality of both 0 and F;. They also showed by simulations that F; may perform much
more efficiently than the NPMLE. As a drawback, the semiparametric estimator requires prelimi-
nary specification of a parametric family, which may eventually introduce a bias component when
it is far away from reality (Moreira and de Una-Alvarez (2010H)).

2.3 The density estimators

Introduce

/Khz—t (dt) ZKhz— Gn (X))t (3)

where K, (t) = K(t/h)/h is the re-scaled kernel function and h = h,, is a deterministic bandwidth
sequence with h, — 0. Note that (@) is a purely nonparametric estimator of f, the density of
X*(assumed to exist). Introduce also the semiparametric kernel density estimator

fon(@ /Kh r —t)Fy(dt) = 0@% ZKh(x - X)G(X:) 7 (4)

Note that both estimators (3) and (4) correct the double truncation by downweighting the X;’s
according to an estimation of the sampling probability G(X;). This is very intuitive, since the
values with less probability of being observed are receiving more mass. The case G(.) = 1 is
possible; for example, this happens whenever the left-truncation time U* is uniformly distributed
in a suitable interval and V* — U* is degenerated. See our real data illustration. In such a case,
the correction for truncation vanishes and we obtain the usual kernel density estimators.

Both G, and Gy are \/n-consistent estimators of G. For Gy this follows from the /n-

consistency of 5, provided that Gy is a smooth function of § (Moreira and de Ufia-Alvarez (20101)).
For G,,, the result may be obtained by noting that

71// _ Ty(du,dv) // T (du, dv)
{u<z<v} f{u<t<v} (dt) f{u<t<v} ),

where T)* is the ordinary empirical df of the truncation times. Hence, /n-consistency of G,, is
a consequence of that of F;, (Shen, 2010a) and T};. Since both G, and Gy approach to G at a

v/n-rate, which is faster than the nonparametric rate V/nh, the asymptotic properties of f, and
fe , Will be the same, and will coincide with those of the estimator based on the true G'. However,
for the finite sample case, some error improvements are expected when using fe , due to the
smaller variance associated to G. This issue is illustrated in our simulations section.

Introduce the asymptotically equivalent version of fj, and f5, through

/Khx—t (dt) = o= ZKN— )G(X;) ! (5)

where

In the next result we establish the strong consistency and the asymptotic normality of f; (z).
We implicitly assume G(x) > 0 throughout this Section.



Theorem 1. (i) If K is bounded on a compact support, h is such that >~ ; exp(—nhn) < oo
for each > 0, G is continuous at x, and = is a Lebesgue point of f, then f,(x) — f(x) with
probability 1.

(ii) If, in addition to the conditions in (i), K is an even function, h = o(n~'/%), G='f has a
second derivative which is bounded in a neighbourhood of z, and f(x) > 0, then

(nh)l/2 (fu(@) = f(@)) = N(0,aG(2) ™" f(2)R(K))

in distribution, where R(K) = [ K (t)*dt.
Proof. For (i) mtroduce fn(@) = aG(z) ™ fon(x) where

fo,h(l') = % Z Kh(.%' — Xi).

By Devroye and Wagner (1979) we have fo n(z) — fo(z) almost surely, where fo(z) = o 1G(z) f(z).
Now, if the support of K is contained in [—a, a],

i) = ful@)| < afor(e) s |G - G@)7.

rz—ah<y<z+ah

and the supremum goes to zero by the continuity of G at z. This ends with the proof to (i).
Statement (ii) is proved similarly to Section 2 of [Parzen (1962); by following such lines we obtain

(nh)'"? (Fy(x) = ETy(x) = N(0,aG(x) ™" f(2)R(K)).

Now, a two-term Taylor expansion (and the fact that K is even) gives Ef,(z) = f(x) + O(h?).
Since nh® — 0, this implies the claimed result.l

The asymptotic mean and variance of ({) are given in the following result. We refer to the
following standard regularity assumptions.

(A1) The kernel function K is a density function with [tK (t)dt =0, py(K) = [?K (t)dt <
o0, and R(K) = [ K(t)?dt < oo.

(A2) The sequence of bandwidths h = h,, satisfies h — 0 and nh — oo as n — oco.

(A3) The functions f and G~!f are twice continuously differentiable around x.

Theorem 2. Under (A1)-(A3) we have, as n — oo,

Efu(@)] = f@) + 3 h2f”( Jua (K) + o(h?),

Var [Th(z)] = (nh)taG(x) " f(x)R(K) + o((nh) ™).

Proof. The proof follows standard steps. A second-order Taylor expansion of f around x
is used, and the assumptions on the kernel and the bandwidth are enough to conclude. See e.g.
Wand and Jones (1995).1

Theorem 2 shows that the double truncation influences the variance of f,, (), the bias being
unaffected otherwise. More specifically, the variance of the estimator is large at points x for which
the relative probability of getting X, values around z (i.e. G(z)) is small. Usually one will be
interested in the global error of f,, as an estimator of the entire curve f. This can be measured
through the integrated MSE, namely

MHMM=/MM@MWw
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where

MSE(F,(2)) = [ET4(x) - f(@)]” + Var (F,(x)) .

Under regularity, we have from the previous results the following asymptotic expression for the
MISE(f}):

AMISE(F,) = $h*R(f") pa(K)? + (nh) aR(K) / Gy

where R(f") = f(f”)2. Because of the v/nh-equivalence between G,,G; and G, the same
asymptotic expression will hold for f; and f5, under proper conditions.

Interestingly, Holder’s inequality gives a [ G~'f > 1, which indicates that the global error
when estimating the density in the doubly truncated scenario is at least as large as that pertaining
to the no truncated situation. This does not mean that for a particular 2 the MSE of f, (z) may
not be smaller than in the i.i.d. situation, since aG(x)~! f(x) < 1 may happen. Minimization of
AMISE(f,) w.r.t. hleads to the asymptotically optimal bandwidth

aR(K)fGlf_]“ Y
R(f") po(K)? '

Of course, this expression depends on unknown quantities that must be estimated in practice.
There exist several criteria to select the bandwidth from the data at hand. Although in this
paper we do not propose any particular automatic bandwidth selector, in Section Bl we investi-
gate through simulations the impact of the smoothing parameter in the performance of the two
introduced density estimators f; and f@ﬁ B

hamrise = {

3 Simulation study

In this section we illustrate the finite sample behavior of both estimators, the purely nonparametric
estimator and the semiparametric estimator, through simulation studies. We analyze the influence
of the bandwidth in the estimators’ mean integrated squared errors (MISEs), and we measure the
amount of efficiency which is gained through the using of the semiparametric information.

We consider two different situations of double truncation, Case 1 and Case 2. In Case 1, U*,
V* and X* are mutually independent. In Case 2, we simulate U* and then we take V* =U* + 1
for some fixed constant 7 > 0. Case 2 follows the spirit of the childhood cancer data discussed in
Section [ when the recruited observations are those with terminating events (cancer diagnosis)
falling between two specific dates. Two different models are simulated for each of the Cases 1
and 2. For Case 1, we take U* ~ U(0,1), V* ~ U(0,1), X* ~ U(0.25,1) (Model 1.1) and
U* ~U(0,1), V¥ ~ U(0,1), X* ~ 0.75N(0.5,0.15) + 0.25 (Model 1.2). For Case 2, we take
7 = 0.25 and U* ~ U(0,1), X* ~ 0.75Beta(3/4,1) + 0.25 (Model 2.1) and U* ~ U(0,1),
X* ~ 0.75N(0.5,0.15) + 0.25 (Model 2.2). Note that when we move from Model 1.1 (resp. 2.1)
to Model 1.2 (resp. 2.2) we are changing the lifetime distribution while fixing the distribution of
the truncation variables; while when we move from Model 1.2 to Model 2.2 we are maintaining
the same lifetime distribution but we change the truncation distribution. This will be interesting
when interpreting the simulation results. We also point out that, due to the random truncation,
in Models 1.1 and 1.2 relatively small and moderate values of the lifetime are more probably
observed, while in Models 2.1 and 2.2 there is no observational bias on X* (i.e. G(.) = 1; see
Remark 2.1 in Moreira and de Ufia-Alvarez (20101)). We will recall this issue below.

For the computation of the semiparametric density estimator, as parametric information on
(U*,V*) we always consider a Beta(f1,1) for U*; besides, a Beta(1,62) is considered for V*



in Case 1. Note that this parametric model includes the several truncation distributions in the
simulations. For each Model, we simulate 1000 Monte Carlo trials with final sample size n = 50,
100, 250 or 500. This means that, for each trial, the number of simulated data is much larger
than n, actually N ~ na~! are needed on average, where recall that « stands for the proportion
of no truncation. For the simulated models, the proportion of truncation ranges between 44%
and 88%. More specifically, the following right and left truncation proportions occur: 37% (right)
and 44% (left) for Model 1.1; 38% and 40% for Model 1.2; 53% and 22% for Model 2.1; and 45%
and 28% for Model 2.2.

In Table[lwe report the optimal bandwidths (in the sense of the MISE) and the corresponding
minimum MISE’s for both the nonparametric and the semiparametric estimators. The theoretical
MISE function is approximated by the average of the ISEs along the M =1000 trials, namely

M M
2
TQIL m 2 T m
ISE(fn) =5 / (5= 1) and TSE(f3,) = 27 D / (5, 1)
m=1 m=1
where f;" and fé"h are the nonparametric and the semiparametric estimators when based on the
m-th Monte Carlo trial.

From Table[I] it is seen that the optimal bandwidths and the MISEs decrease when increasing
the sample size; besides, the semiparametric estimator has an error which is smaller than that
pertaining the the nonparametric estimator. It is also seen that the optimal bandwidths for
the semiparametric estimator are smaller than those of the nonparametric estimator, according
to the extra amount of information. As the sample size grows, the relative efficiency of the
nonparametric estimator approaches to one; this is in agreement to the asymptotic equivalence of
the semiparametric and the nonparametric density estimators discussed in Section 2. Interestingly,
for finite sample sizes we see that such relative efficiency may be as poor as 45% (Model 2.2,
n = 50).

When comparing Models 1.1 and 1.2, one can appreciate that the density corresponding to the
first one is not so well approximated by the two estimators; this is because the strong boundary
effects of the uniform density (Model 1.1), which disappear when considering a Gaussian model
(Model 1.2). Also, the difficulties for estimating the normal density in Case 2 (Model 2.2) are
greater than under Model 1.2; this could be explained from the above mentioned fact that Model
1.2 favors the observation of intermediate lifetimes, so there is more sampling information around
the density mode (the difficult part to estimate). Model 2.1 is the one presenting the largest
MISESs; this Model 2.1 presents difficulties at the left boundary, where the density goes to infinity.

In Figures [ to @l we report for each simulated model: (i) the ratio between the MISE’s of the
semiparametric and the nonparametric estimators along a grid of bandwidths (top row); (ii) the
ratio between the MISE of the semiparametric estimator and the minimum MISE of the nonpara-
metric estimator (middle row); and (iii) the target density together with its semiparametric and
nonparametric estimators averaged along the 1000 Monte Carlo trials (bottom row). From these
Figures [ to M several interesting features are appreciated. First, for each given smoothing degree,
the MISE of the semiparametric estimator is less than that of the nonparametric estimator; the
relative benefits of using the semiparametric information are more clearly seen when working with
relatively smaller bandwidths, when the variance component of the MISE is larger. This illus-
trates how the semiparametric estimator achieves a variance reduction w.r.t. the NPMLE. The
minimum relative efficiency of the nonparametric kernel density estimator varies from about 0.4
to about 0.85, depending on the simulated model and the sample size. Also importantly, we see
that the ratios of the MISE’s approach to one as the sample size increases. This was expected,



Model  n Ropt MISE(hopt)
EP  SP EP SP

50 0.173 0.145 0.1449 0.1229

100 0.130 0.107 0.1174  0.0994

11 200 0.091 0.076 0.0890 0.0749
500  0.051 0.048 0.0537  0.0503

50 0.062 0.059 0.1281 0.1126

100  0.052 0.051 0.0817  0.0709

12 200 0.044 0.043 0.0480 0.0434
500 0.037 0.036  0.0240 0.0219

50 0.216 0.085 0.6940 0.5465

100 0.126  0.049 0.6142  0.4891

21 200 0.039 0.029 0.5181 0.4321
500 0.015 0.014 0.4054 0.3654

50 0.074 0.061 0.3091 0.1381

100 0.056 0.052 0.1587  0.0925

22 200 0.046 0.044 0.0748 0.0532
500  0.037 0.036  0.0385  0.0273

Table 1: Optimal bandwidths (hept) and minimum MISEs of the density estimators: nonpametric
estimator (EP) and semiparametric estimator (SP). Averages along 1000 trials of a sample size n.

since (as discussed in Section 2]) both estimators are asymptotically equivalent. However, even
when n = 500, the relative performance of the nonparametric estimator may be as poor as 70%
(Figure 4, top).

Second, from the middle rows of Figures [l to [4] we see that the semiparametric estimator
behaves more efficiently than the nonparametric estimator even when the former uses a sub-
optimal bandwidth. Indeed, for Models 1.1, 2.1, and 2.2 it becomes clear that there exists a large
interval of suboptimal bandwidths which maintain the superiority of the semiparametric density
estimator with respect to the nonparametric estimator based on its optimal smoothing parameter.
Finally, the averaged estimators depicted in Figures[I} Ml reveal that the semiparametric estimator
fits better the target than its nonparametric competitor when the sample size is moderate.

4 Real data illustration

For illustration purposes, in this section we consider data on the age at diagnosis of childhood
cancer. These data concern all the cases of childhood cancer diagnosed in North Portugal between
1 January 1999 and 31 December 2003. The age at diagnosis (ranging from 0 to 15 years old) is
doubly truncated by (U*,V*), where V* stands for the elapsed time (in years) between birth and
end of the study (31 December 2003), and U* = V* — 5. Information on the 406 diagnosed cases
is entirely reported in Moreira and de Ufia-Alvarez (2010a).

The semiparametric and the nonparametric kernel estimators for the density of X* computed
from the n = 406 cases are given in Figure[fl The scale in the horizontal axis comes from the trans-
formation (¢ + 5)/20, which has been used for the ages at diagnosis and the truncation variables.
With this transformation, the U* is supported on the (0, 1) interval. For the semiparametric esti-
mator, we assume a Beta(01,02) model for U*, and the parameters are estimated by maximizing
the conditional likelihood of the truncation times (see Section 2 for details). In this case the pair
(U*,V*) does not have a density, and the likelihood £ (6) must be properly re-defined by substi-
tuting the density of U* for gy in that expression, see Remark 2.1 in (Moreira and de Una-Alvarez,
2010b) for further details.

Three different bandwidths are used: h = 0.02, h = 0.035, and h = 0.06. As expected, more
bumps appear as the smoothing degree decreases. For large bandwidths, only two bumps remain,
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Figure 1: (i) The ratio between the MISE’s of the semiparametric and the nonparametric estimators
along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semiparametric estimator
and the minimum MISE of the nonparametric estimator (middle row); and (iii) the target density
(solid line) together with its semiparametric (dashed line) and nonparametric (dotted line) estimators
averaged along the 1000 Monte Carlo trials (bottom row) for Model 1.1.

indicating the existence of two subgroups of cases: early cancer detection and late detection (less
frequent). For comparison, the naive kernel density estimator which does not correct for the double
truncation is also reported. We see that the three estimators are close to each other. This is not
surprising, since previous analysis of these data have shown that there is almost no observational
bias on the age at diagnosis because of the uniformity of U* (Moreira and de Una-Alvared, 20104).
This fact is also confirmed in Figure[7] left, in which a fairly flat shape of G,, is seen.

For further illustration, in Figure [0l we provide these three estimators for a subgroup of cases.
Specifically, we consider the n = 38 diagnosed cases of neuroblastoma. For this subgroup the
uniformity of U* is lost, and as a consequence there exists some observational bias (Moreira
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Figure 2: (i) The ratio between the MISE’s of the semiparametric and the nonparametric estimators
along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semiparametric estimator
and the minimum MISE of the nonparametric estimator (middle row); and (iii) the target density
(solid line) together with its semiparametric (dashed line) and nonparametric (dotted line) estimators
averaged along the 1000 Monte Carlo trials (bottom row) for Model 1.2.

(2010), page 78). Certainly, Figure [7] right, suggests that relatively small ages at diagnosis are
more probably observed. This explains the overestimation of the density carried out by the
naive estimator at the left tail. Unlike the naive estimator, both the nonparametric and the
semiparametric estimators which take the double truncation issue into account declare a second
mode at the right tail. These two estimators are similar on the interval [0.25, 0.45] while differences
appear from 0.45 on. In order to explain this, we report in Figure [[] the estimators G, and Gj
for the full data set and for the neuroblastoma cases. Note that the semiparametric estimator
is based on a parametric specification of the truncation df; this introduces a bias term which
influences the shape of the final density estimator while reducing its variance. Indeed, Figure 7,
right, indicates that GE_ !is smaller than G, at intermediate values of X*, while the contrary
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Figure 3: (i) The ratio between the MISE’s of the semiparametric and the nonparametric estimators
along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semiparametric estimator
and the minimum MISE of the nonparametric estimator (middle row); and (iii) the target density
(solid line) together with its semiparametric (dashed line) and nonparametric (dotted line) estimators
averaged along the 1000 Monte Carlo trials (bottom row) for Model 2.1.

occurs at large times. This explains why the semiparametric estimator locates the second mode
more to the right. This biasing effect of the parametric model is not appreciated when analyzing
the full data set because G, and Gy are close to each other in this case (Figure [7 left).

5 Conclusions and final discussion

In this paper we have introduced kernel density estimation for a variable which is observed under
random double truncation. Two estimators have been proposed. The first one is purely nonpara-
metric, and it is defined as a convolution of a kernel function with the NPMLE of the cumulative
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Figure 4: (i) The ratio between the MISE’s of the semiparametric and the nonparametric estimators
along a grid of bandwidths (top row); (ii) the ratio between the MISE of the semiparametric estimator
and the minimum MISE of the nonparametric estimator (middle row); and (iii) the target density
(solid line) together with its semiparametric (dashed line) and nonparametric (dotted line) estimators
averaged along the 1000 Monte Carlo trials (bottom row) for Model 2.2.

df. The second estimator is semiparametric, since it is based on a parametric specification for
the df of the truncation times. Asymptotic properties of the two estimators have been discussed,
including a formula for the asymptotic mean integrated squared error (MISE).

Both estimators are asymptotically equivalent in the sense of having the same asymptotic
MISE. However, for small and moderate sample sizes, we have seen that the semiparametric
estimator may outperform the nonparametric estimator. More explicitly, the relative efficiency of
the nonparametric estimator may be as poor as 45% in special situations with small sample sizes.
Moreover, in special instances, the relative benefits of using the semiparametric approach are
clearly seen even when the sample size is as large as n = 500. Finally, our simulation results have
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Figure 5: Kernel density estimators for the age at diagnosis, childhood cancer data (n = 406).
Nonparametric estimator (solid line), semiparametric estimator (dashed line), and naive estimator
(dotted line).
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Figure 6: Kernel density estimators for the age at diagnosis, childhood cancer data, for the specific
case of neuroblastoma (n = 38). Nonparametric estimator (solid line), semiparametric estimator
(dashed line), and naive estimator (dotted line).

revealed that the semiparametric estimator may be preferable even when based on a sub-optimal
bandwidth. A real data illustration has been provided.

A crucial issue in the construction of the semiparametric estimator is how to choose the para-
metric model for the truncation distribution. Note that, rather than the truncation distribution
itself, the function G influences the shape of the final estimator. Hence, an informal assessment of
the parametric family may be performed by plotting the empirical biasing function G,, together
with the fitted Gy. Formal goodness-of-fit tests for a parametric model could be developed too,
and this problem is currently under research.

Since the bandwidth h plays a very important role in the performance of the estimators, an
interestingly topic for future research is to investigate automatic bandwidth selectors. Also, the
application of kernel smoothing to the estimation of the hazard rate function (another important
curve in Survival Analysis) in a doubly truncated setup is currently under investigation.
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Figure 7: Left: Estimators Gy, (dashed line) and G5 (dotted line) for the childhood cancer data.
Left: full sample. Right: neuroblastoma cases.
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