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Estimation of a monotone percentile residual life

function under random censorship
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Abstract

In this paper we introduce a new estimator of a percentile residual life function with censored
data under a monotonicity constraint. Specifically, it is assumed that the percentile residual life
is a decreasing function. We establish a law of the iterated logarithm for the proposed estimator,
and its

√
n-equivalence to the unrestricted estimator (Chung, 1989). We investigate the finite

sample performance of the monotone estimator in an extensive simulation study. Finally, a real
data illustration is provided.

Key words and phrases: Aging notions, Censored data, Nonparametric estimation, Reliabil-
ity, Survival Analysis

1 Introduction

The mean residual life is of interest in many areas of statistics and applied probability including
biometry, actuarial science, and reliability. If the lifelength of a population is described by a random
variable X, the mean residual life function at time t is defined to be the expected remaining life
given survival up to time t.

In many applications it is reasonable to assume that the system life is monotonically degen-
erating or improving with age and Kochar et al. (2000) have studied the estimation of the mean
residual life function under decreasing or increasing restrictions. Their estimator is a projection
type estimator that proved to have nice properties in several restricted estimation problems; see,
e.g. Rojo and Samaniego (1991, 1993), Mukerjee (1996), Rojo and Ma (1996), and Rojo (1995).

The mean residual life function is a useful tool for analyzing important properties of X when it
exists because it characterizes the distribution. However, it has some weaknesses that may prevent
its use. For example, it may not exist. Even when it exists it may have some practical shortcomings,
especially in situations where the data are censored, or when the underlying distribution is skewed
or heavy-tailed. In such cases, either the empirical mean residual life function cannot be calculated,
or a single long-term survivor can have a marked effect upon it which will tend to be unstable due
to its strong dependence on very long durations. Also, in an experiment it is often impossible or
impractical to wait until all items have failed. In such cases, the median — or other percentiles —
of the residual life of the random variable are useful alternatives to its mean residual life function.
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Let X be a random variable, and let u be the right endpoint of its support. Let α ∈ (0, 1).
For any t < u, the α-percentile residual life function at t, qα(t), is defined as the α-percentile or
quantile of the remaining life given survival up to time t. For t ≥ u we define qα(t) to be zero. If
F denotes the distribution function of X, then it holds

qα(t) = F−1(α+ (1− α)F (t)) − t, t < u,

where F−1(p) = inf {x : F (x) ≥ p} is the so-called quantile function. Such a function describes, for
example, the value that will be survived, by (1−α)% of items (in reliability theory) or of individuals
(in biology), among those that survived up to time t.

The α-percentile residual life functions were studied in some detail by Schmittlein and Morrison
(1981), Arnold and Brockett (1983), Gupta and Langford (1984), Joe (1985), and more recently
in Lin (2009). Families of distributions for which simple expressions for the α-percentile residual
life functions can be obtained, are identified in Raja Rao, Alhumoud, and Damaraju (2006). A
particular α-percentile residual life function of interest is the median residual life function given by
q0.5 that was studied in detail by Lillo (2005). In this paper the reader can find further references
to papers that studied the α-percentile and the median residual life functions, and that used them
in practical applications.

The estimation of qα in the uncensored situation has been discussed by Csörgő and Csörgő
(1987), Barabás et al. (1986), and Csörgő and Viharos (1992). In the estimation procedures
considered by these authors, the empirical distribution function based on a random sample is used in
place of the distribution function. When the data are randomly censored, the classical Kaplan-Meier
product-limit estimator is used to obtain an estimator of qα. See Csörgő (1987), and Chung (1989).
More recently, Aly (1992) relaxed some conditions of the previous works for the construction of the
confidence bands and introduced an alternative method based on bootstrap techniques. Kernel-
type estimators were considered by Alam and Kulasekera (1993) in the uncensored situation. See
also Feng and Kulasekera (1991) for the censored case.

Haines and Singpurwalla (1974), Joe and Proschan (1984a), and Franco-Pereira et al. (2011)
studied some aspects of the classes of distribution functions with decreasing α-percentile residual
life, 0 < α < 1. Besides, Franco-Pereira et al. (2011) initiated a study of the estimation of a
percentile residual life function under monotone restrictions procedures following an approach that
is similar to the approach of Kochar et al. (2000) in the uncensored situation. In this paper we
extend their idea to the censored scenario and investigated the finite-sample behaviour of the new
restricted estimator via simulations.

The rest of the paper is organized as follows. In Section 2 we introduce the restricted estimator
and we give the main asymptotic results. In Section 3 we report a simulation study in which both
the unrestricted and the restricted estimators are compared. A real data illustration is given in
Section 4. Finally, main conclusions are reported in Section 5.

2 The estimator. Asymptotic results

Due to censoring, instead of the lifetime variable X one observes an i.i.d. sample (Z1, δ1), . . . ,
(Zn, δn) of the pair (Z, δ), where Z = min(X,C) is the observed time, δ = I(X ≤ C) is the
censoring indicator, and C is the potential censoring time. As usual, we assume that X and C are
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independent. In this setup, the nonparametric maximum-likelihood estimator of F is given by the
Kaplan-Meier product-limit estimator

Fn(t) = 1−
∏

Z(i)≤t

[
1−

δ[i]

n− i+ 1

]
,

where Z(1) ≤ ... ≤ Z(n) are the ordered Z-values, where ties within lifetimes or within censoring
times are ordered arbitrarily, and ties among lifetimes and censoring times are treated as if the
former precedes the later. Here, δ[i] is the concomitant of the i-th ordered statistics, that is δ[i] = δj
if Z(i) = Zj. Then, a natural nonparametric estimator of qα(t) is defined as

q̂α(t) = F−1
n (α+ (1− α)Fn(t))− t, t ≤ Z(n),

where F−1
n (p) = inf {x : Fn(x) ≥ p} stands for the empirical quantile associated to Fn. When Z(n)

is uncensored, we have Fn(Z(n)) = 1 and

q̂α(Z(n)) = F−1
n (1)− Z(n) = 0.

In this case, the percentile residual life function qα(t) is well-defined for all t. However, when the
maximum observed time is censored, we have Fn(Z(n)) < 1 and the value q̂α(t) may not be well
defined. More explicitly, the function q̂α(t) is well defined for t ≤ τn where

τn = sup

{
x : Fn(x) ≤

Fn(Z(n))− α

1− α

}
.

Certainly, for t ≤ τn we have Fn(t) ≤
(
Fn(Z(n))− α

)
/(1−α) and hence α+(1−α)Fn(t) ≤ Fn(Z(n)),

from which we have that the set Θt = {x : Fn(x) ≥ α+ (1 − α)Fn(t)} is non-empty (Z(n) belongs to
Θt). Therefore, q̂α(t) exists for t ≤ τn. As n grows, we have τn → τ ≡ F−1((1−α)−1(F (bH )−α)),
where bH is the upper bound of the support of Z. In words: it is not possible to estimate consistently
the percentile residual life function beyond time τ . This skips a portion of interest when bH is smaller
than the upper bound of the support of X. An analogous problem is found when recovering the
cumulative distribution function F (t) from the censored sample; in this case, consistency can not
be obtained for t > bH . In this sense, the almost sure and in-probability uniform rates in Theorems
1 and 2 below, which hold on an interval [0, T ] where T < bH ∧ τ , are almost the most one can
expect in this scenario.

Throughout the paper we assume that qα(t) is monotone decreasing. Then, we have qα(t) =
infy≤t qα(y) and a natural estimator of the percentile residual life function is introduced through

q̂∗α(t) = inf
y≤t

q̂α(y).

Some asymptotic properties of q̂∗α(t) are stated in the following results. Specifically, we establish
a law of the iterated logarithm (LIL) and the

√
n-equivalence with respect to the unrestricted

estimator.

Put H for the distribution function of Z and bH = inf {t : H(t) = 1} for the upper limit of the
support of Z. Let T < bH ∧ τ , i.e. T < bH and F−1(α + (1 − α)F (T )) < bH . We refer to the
following regularity conditions:

(C1) F is twice differentiable

3



(C2) f = F ′ is bounded away from zero on
[
F−1(α), F−1(α+ (1− α)F (T ))

]

Theorem 1 (LIL) Under (C1) and (C2) we have w. p. 1

sup
0≤t≤T

|q̂∗α(t)− qα(t)| = O

((
log log n

n

)1/2
)
.

Proof. The triangle inequality of the sup-norm (see Lemmas 1 and 2, Rojo and Samaniego,
1993)̇, gives

|q̂∗α(t)− qα(t)| =

∣∣∣∣infy≤t
q̂α(y)− inf

y≤t
qα(y)

∣∣∣∣
≤ sup

y≤t
|q̂α(y)− qα(y)| .

Now, under the stated conditions, Theorem 8.1 in Chung (1989), see also Remark 8.1 in that paper,
gives w. p. 1

sup
0≤t≤T

|q̂α(t)− qα(t)| = O

((
log log n

n

)1/2
)
,

and the proof is complete.�

Now we establish the
√
n-equivalence between the restricted and the unrestricted estimators of

qα(t). From this second result, other asymptotic properties of the restricted estimator q̂∗α(t) (e.g.
weak convergence) may be automatically obtained from those of q̂α(t).

Theorem 2. Assume that, with T as in Theorem 1,

(A1) q′α(t) exists and q′α(t) ≤ −c1, 0 ≤ t ≤ T , for some c1 > 0

(A2) q
′′

α(t) exists and sup0≤t≤T

∣∣∣q′′

α(t)
∣∣∣ ≤ c2 < ∞

(A3) Conditions (C1) and (C2) above hold

Then we have √
n sup

0≤t≤T
|q̂∗α(t)− q̂α(t)| → 0 in probability.

Proof. The idea of the proof is that in Kochar et al. (2000). We first construct a continuous
piecewise linear version of q̂α(t), Lnq̂α(t), on the interval [0, T ], and we show that it is eventually
decresing with probability 1 (Lemma 1 below). For this, conditions (A1) and (A3) are needed; note
that (A3) is just condition in Theorem 8.1 in Chung (1989) which, among other things, guarantees
a LIL for q̂α(t) (Remark 8.1, same paper). Then, we prove that q̂α(t) and q̂∗α(t) are close to Lnq̂α(t)
in an appropriate sense (Lemmas 2, 3, and 4 below).�

In order to introduce the piecewise linear version of q̂α(t), for each n let kn be an integer,
kn ↑ ∞, and let ∆n = T/kn. Let

anj = jT/kn = j∆n, j = 0, 1, ..., kn .
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Define the linear interpolation of any function ϕ on [0, T ] by

Lnϕ
(
anj
)
= ϕ(anj ), j = 0, 1, ..., kn,

and, for anj < x < anj+1,

Lnϕ(x) = ϕ(anj ) +
[
ϕ(anj+1)− ϕ(anj )

]
(x− anj )/∆n, j = 0, 1, ..., kn − 1.

Lemma 1. Under (A1) and (A3) we have P [limAn] = 1 where

An = {Lnq̂α(t) is strictly decreasing on [0, bH ]} .

Proof. Same lines as Proposition 4.1 in Kochar et al. (2000).�

Lemma 2. Under (A1) and (A3) we have P [limBn] = 1 where

Bn =

{
sup

0≤t≤T
|q̂∗α(t)− Lnq̂α(t)| ≤ sup

0≤t≤T
|q̂α(t)− Lnq̂α(t)|

}
.

Proof. Same lines as Proposition 4.2 in Kochar et al. (2000). Note that by Lemma 1 we have
a.s. for large n

Lnq̂α(t) = inf
y≤t

Lnq̂α(y),

and hence

|q̂∗α(t)− Lnq̂α(t)| =
∣∣∣∣infy≤t

q̂α(y)− inf
y≤t

Lnq̂α(y)

∣∣∣∣ ≤ sup
y≤t

|q̂α(y)− Lnq̂α(y)| .�

Lemma 3. Under (A2) we have

sup
0≤t≤T

|qα(t)− Lnqα(t)| ≤ c2∆
2
n.

Proof. Same lines as Proposition 4.3 in Kochar et al. (2000).�

Lemma 4. Under (A1), (A2), and (A3), if n1/4 = o(kn), we have

√
n sup

0≤t≤T
|q̂α(t)− Lnq̂α(t)| → 0 in probability.

Proof. Same lines as Proposition 4.4 in Kochar et al. (2000). The convergence of the percentile
residual time process to a Gaussian process follows by Theorem 8.1 in Chung (1989). This is
essential for bounding the term

√
n sup |q̂α(t)− Vnqα(t)| in that proof. The order on kn is needed

to bound
√
n sup |qα(t)− Lnqα(t)| .�
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3 Simulation study

In this Section we investigate the finite sample relative performance of the restricted and the
unrestricted estimators q̂∗α(t) and q̂α(t) through simulations. For this, biases, variances, and mean
squared errors (MSEs) of the estimators along the simulations are computed. The X variable is
generated according to a Weibull distribution with shape and scale parameters 2 and 1 respectively,
this is F (t) = 1− exp(−t2), t ≥ 0. Note that the Weibull distribution has a decreasing α-percentile
residual life function for all α ∈ (0, 1), when the shape parameter is larger than 1. The censoring
variable is generated from a Weibull distribution with shape parameter 2 and scale parameter
λ = 0.188, 0.479, 1.481, to get censoring percentages onX of about 15, 33 and 67%. The uncensored
situation is also considered for comparison purposes. 10,000 Monte Carlo trials with sample sizes
n = 100, 250 are generated. We consider the cases α = 0.25, 0.5, 0.75, which correspond to the
three quartile residual lifetime functions. We evaluate the estimators q̂∗α(t) and q̂α(t) at the values
of t corresponding to the nine deciles of X.

In Figure 1 we depict the bias of both estimators along the nine deciles and the several censoring
degrees, for the case n = 100 and α = 0.5 (other cases report similar results). We see that the
bias of the monotone estimator is negative, and that its absolute value is much larger than that of
the unrestricted estimator; similar features are appreciated when e.g. estimating a monotone mean
residual life function (Kochar et al., 2000). On the other hand, the unrestricted estimator shows a
positive bias for most of the deciles. The absolute bias of both estimators increases when we move
towards the right tail of X, something that is much more evident in the heavily censored case (67%
of censoring). Besides, the huge bias of the monotone estimator (getting worse for larger deciles)
is appreciated.
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Figure 1: Bias of q̂0.5 and q̂∗0.5 (crosses) along the nine deciles, for different censoring degrees
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In Table 1 we report the bias and the MSE of both estimators, n = 100 and α = 0.5, for
the several censoring levels and deciles 1, 2, 5, 8, and 9. Results corresponding to n = 250 are
given in Table 2. From these Tables we can appreciate that the bias and the MSE go down when
increasing the sample size; greater MSEs are obtained when working under heavier censoring levels.
Besides, the MSEs of the unrestricted and the restricted estimators are closer to each other in the
case n = 250, in agreement with the asymptotic equivalence stated in Section 2. The variance of
the unrestricted estimator is much larger than that of the restricted one, and this compensates
the excess in bias of the later. Indeed, the MSEs reported by the monotone estimator (which are
greatly influenced by the bias term at the right tail of X) are less than the MSEs of the unrestricted
estimator (mainly determined by the variance) in most of the cases. An exception to this is the
uncensored situation, for which the variance of the unrestricted estimator is moderate and, as a
consequence, it gives a better performance than the monotone estimator for some of the deciles.
The other values of n and α report similar results (not shown).

Table 1: Bias and MSE of q̂0.5 and q̂∗0.5 for n = 100, and for different levels of censoring and deciles
BIAS MSE

q̂ q̂∗ q̂ q̂∗

D1 -0.00197 -0.00720 0.00347 0.00345
D2 -0.00180 -0.01065 0.00341 0.00334

CP = 0% D5 -0.00115 -0.02358 0.00358 0.00342
D8 -0.00225 -0.05357 0.00550 0.00557
D9 -0.00315 -0.07820 0.00862 0.00888

D1 0.00104 -0.00503 0.00388 0.00382
D2 0.00090 -0.00930 0.00393 0.00378

CP = 15% D5 0.00339 -0.02301 0.00444 0.00396
D8 0.00397 -0.05750 0.00775 0.00672
D9 0.00559 -0.08573 0.01393 0.01083

D1 0.00338 -0.00408 0.00491 0.00469
D2 0.00460 -0.00824 0.00502 0.00464

CP = 33% D5 0.00593 -0.02703 0.00627 0.00511
D8 0.00844 -0.06984 0.01301 0.00932
D9 0.00683 -0.10421 0.02331 0.01545

D1 0.00960 -0.00657 0.01138 0.00948
D2 0.01049 -0.01608 0.01299 0.00972

CP = 67% D5 0.02074 -0.05134 0.02344 0.01224
D8 -0.02303 -0.12900 0.03781 0.02692
D9 -0.11489 -0.20303 0.06173 0.05711

Figure 2 shows the MSEs of both estimators with respect to the censoring level, for three
different deciles, and the case n = 100 and α = 0.5. We see that the error gets worse when increasing
the censoring degree. It is also seen that the MSE of the monotone estimator is lower that that of the
unrestricted one (as discussed). Finally, in Figure 3 we give the quotients MSE(q̂α(t))/MSE(q̂∗α(t))
for the case n = 100 along the nine deciles, for α = 0.25, 0.5, 0.75 and three different censoring
levels: 0%, 33%, and 67% (from left to right panel). In this Figure 3 we see that the relative
benefits associated to the monotone estimator are greater in the heavily censored situation; indeed,
the relative deficiency of the unrestricted estimator may be above 300% when the percentage of
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Table 2: Bias and MSE of q̂0.5 and q̂∗0.5 for n = 250, and for different levels of censoring and deciles

BIAS MSE

q̂ q̂∗ q̂ q̂∗

D1 -0.00107 -0.00330 0.00134 0.00134
D2 -0.00088 -0.00486 0.00134 0.00133

CP = 0% D5 -0.00082 -0.01130 0.00146 0.00143
D8 -0.00118 -0.02866 0.00214 0.00215
D9 -0.00069 -0.04504 0.00338 0.00352

D1 0.00055 -0.00211 0.00159 0.00157
D2 0.00072 -0.00380 0.00157 0.00154

CP = 15% D5 0.00181 -0.01073 0.00174 0.00161
D8 0.00323 -0.03070 0.00295 0.00259
D9 0.00281 -0.05037 0.00495 0.00439

D1 0.00087 -0.00228 0.00194 0.00190
D2 0.00122 -0.00448 0.00200 0.00194

CP = 33% D5 0.00156 -0.01457 0.00236 0.00215
D8 0.00563 -0.03941 0.00455 0.00372
D9 0.01079 -0.06364 0.00983 0.00664

D1 0.00358 -0.00357 0.00409 0.00379
D2 0.00397 -0.00827 0.00450 0.00401

CP = 67% D5 0.01011 -0.02763 0.00816 0.00539
D8 0.01699 -0.07901 0.02426 0.01217
D9 -0.02322 -0.12661 0.03162 0.02314

censoring is about 67%. This agrees with the variance reduction which is achieved by using the
restricted estimator. Finally, we can not deduce any systematic influence of the α parameter nor
the decile in the relative performance of both estimators. However, Figure 3 suggests that for small
α the relative efficiency of the monotone estimator increases at large deciles when there is some
censoring, while for moderate or large values of α the maximum relative efficiency may be reached
at intermediate deciles depending on the censoring degree. This trade-off among α, the censoring
level, and the deciles of X is also evident from the asymptotic variance of q̂α(t), see e.g. Theorem
6.1 in Chung (1989).

4 Real data illustration

For illustration purposes, we consider the PBC data set reported and widely explained in Fleming
and Harrington (1991), with n = 312 individuals. In this example, the variable X denotes survival
time (in days) for primary biliary cirrhosis (PBC) patients. Censoring from the right is provoked by
the end of following-up or by liver transplantation (187 censored times or about 60% of censoring).
It is known that the survival prognosis is grealty influenced by the level of edema, so we consider
three different groups of patients according to this variable. The first group (edema=0) corresponds
to patients with no edema; patients in second group (edema=0.5) had an untreated or a successfully
treated edema; while the third group (edema=1) corresponds to patients with an unsuccessfully
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Table 3: Number of cases and deaths in each group, and median survival (in days)

Level of Edema Number of cases Deaths Median Survival

0 263 89 3584
0.5 29 17 1576
1 20 19 299

treated edema. In Table 3 we report the number of cases and deaths in each group, together with
the median survival. From this Table we see that an increasing value of edema is associated to a
poorer survival prognosis.

In Figure 4 we give the 25%-percentile residual life function for the three groups of edema, when
estimated by using the restricted or the unrestricted estimators. For the first group (edema=0),
the unrestricted estimator suggests a decreasing shape; this is not surprising, since the cumulative
hazard plot for this group (see Figure 5) reveals an increasing hazard rate, which is a characteristic
property of the decreasing percentile residual life populations (e.g. Joe and Proschan, 1984b). In
this case, by using the monotone estimator we get some smoothing of the curve which results in a
nicer estimator. The other two groups offer a different situation, since the unrestricted estimator
is not supporting in principle the monotonicity of the percentile residual life function. This could
be explained by the existence of a non-increasing hazard rate for the last two groups; indeed, the
corresponding Nelson-Aalen estimators depict a concave form (Figure 5).
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Figure 4: Illustration of q̂0.25 (dotted) and q̂∗0.25 (solid) for the three groups of edema: 0 (left), 0.5
(center), and 1 (right)
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5 Main conclusions

In this paper a new estimator for the percentile residual life function under random censorship
has been introduced. The new estimator is suitable when the percentile residual life function is
monotone decreasing. A law of the iterated logarithm has been established; besides, it has been
demonstrated that the monotone estimator is

√
(n)-equivalent to the unrestricted one. The finite

sample performance of the new estimator has been investigated through simulations. In particular,
it has been illustrated that much efficiency may be gained through the using of the monotone
estimator when the sample size is low and the censoring level is high. A real data illustration has
been provided.

A key question in practice is whether one should assume beforehand that the percentile residual
life function is monotone. Our real data application has shown that this is not always the case.
It would be very interesting to develop goodness-of-fit tests for the monotonicity assumption. A
possible way of doing that is through a proper distance between the restricted and the unrestricted
estimators. This topic is currently under research. Finally, the application of the ideas in this
paper to estimate monotone increasing residual life functions is possible, and completely analogous
estimators are obtained in such a case.
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