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Abstract

The receiver operating characteristic (ROC) curve is the most widely used measure for

evaluating the accuracy of diagnostic tests in terms of differentiating between two conditions.

It is well known that, in certain circumstances, the characteristics of the patient or the place

where the diagnostic test is performed can modify the test’s accuracy. This study presents a new

estimator for the conditional ROC curve, based on direct modeling. In this approach, the effect

of the covariates and false positive fraction on the ROC curve is modeled nonparametrically

using generalized additive models (GAM) combined with local polynomial kernel smoothers.

Our method allows for incorporation of more than one covariate in the regression model for the

ROC curve, and the possible interaction between them. The proposed model’s performance

is examined in an in-depth simulation study. Lastly, endocrine data are analyzed with the

aim of assessing the performance of several anthropometric measures in predicting clusters of

cardiovascular risk factors in an adult population in Galicia (NW Spain), with adjustment for

age and gender.
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1 INTRODUCTION

The discriminatory capacity of a continuous marker or diagnostic test Y , is usually measured by

means of the receiver operating characteristic (ROC) curve [1, 2]. Under the conventional as-

sumption that high marker values are indicative of disease, classification on the basis of Y of

an individual as healthy (D) or diseased (D̄) can be made by the choice of a cut-off value c,

such that, if Y ≥ c, the individual is classified as diseased, and if Y < c, the individual is clas-

sified as healthy. Hence, each cut-off value c chosen will give rise to a true positive fraction,

TPF (c) = P [Y ≥ c|D], and a false positive fraction, FPF (c) = P
[
Y ≥ c|D̄

]
. In such a situation,

the ROC curve is defined as the set of all TPF-FPF pairs that can be obtained on the cut-off

value c varying, {(TPF (c) , FPF (c)) , c ∈ (−∞,∞)}, or, equivalently, as the function of the form

ROC (t) = SD
(
S−1
D̄

(t)
)

for t ∈ (0, 1), where SD and SD̄ denotes the survival functions of Y in

diseased and healthy subjects, respectively.

In many practical situations, however, a marker’s discriminatory capacity may be affected by a

set of continuous and/or categorical covariates X. This is the case of our endocrine study, in which

the performance of each anthropometric measure in detecting clusters of cardiovascular risk factors

changes with individuals’ age and gender (see Section 4 for details). The ROC curve may thus be

of little value if important covariates are omitted. Moreover, in such situations, interest must be

focused on assessing marker Y’s discriminatory capacity by reference to the values assumed by X.

Hence, if the conditional survival functions of YD and YD̄, given X, are denoted SDX and SD̄X

respectively, the conditional or covariate-specific ROC curve is defined as

ROCX (t) = SDX

(
S−1
D̄X

(t)
)
, t ∈ (0, 1) . (1)

To study the effect of covariates on the accuracy of a diagnostic test, various ROC regression

methodologies have been proposed in the statistical literature, e.g., (1) ‘induced’ methodology [3]–
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[6]; and (2) ‘direct’ methodology [7]–[10]. Induced ROC methodology is based on specifying a model

for the diagnostic test result as a function of covariates, in both healthy and diseased populations,

so that the induced covariate specific ROC can then be calculated on the basis of the two models.

In contrast to this, in direct methodology the effect of the covariates is directly evaluated on the

ROC curve. Using this methodology, the general form of the covariate-specific ROC curve is given

by the following generalized linear model (GLM)

ROCX (t) = g
(
X

′
β + h (t)

)
, t ∈ (0, 1) , (2)

where X is a p-dimensional vector of covariates, β is a p-dimensional vector of unknown parame-

ters, h is an unknown monotone increasing function of the FPFs, and g is a known link function,

describing the functional relationship between the ROC curve and the covariates. Models such as

(2) define the so-called class of ROC-GLMs [11]. As regard the function h, while it is assumed to

have a parametric form by Alonzo and Pepe [8], in the case of Cai and Pepe [9] and Cai [10] it

remains completely unspecified.

Along with the advantage of directly evaluating the effect of the covariate on the ROC curve,

direct methodology has some other appealing features, including the following: the ROC’s property

of being invariant to monotonic transformation of the test result is preserved; and, any possible

interaction between covariates and FPFs is easy to incorporate into the regression model.

In some circumstances, however, the ROC-GLM regression model (2) can be very restrictive,

since it assumes linearity in the effect of the continuous covariates. Misleading conclusions may

be drawn if this effect is incorrectly specified. This restriction can be avoided by, say, using an

extension of (2) as an generalized additive model (GAM) [12]. In this setting, the researcher, rather

than assuming a parametric form for the effects of the continuous covariates, solely assumes that

these effects could be represented by arbitrary smooth functions. The ROC-GAM can thus be

expressed as:

ROCX (t) = g

(
α+

p∑
k=1

fk (Xk) + h (t)

)
, t ∈ (0, 1) , (3)

where fj and h are assumed to be smooth and unknown functions.
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To date, some attempts have been made to include covariates in ROC analysis in the nonpara-

metric field. Recently, López-de-Ullibarri et al. [13] studied the effect of covariates on the ROC

curve, using a nonparametric approach based on local linear estimation of conditional survival func-

tions in healthy and diseased subjects. In the induced ROC regression context, González-Manteiga

et al. [14] and Rodŕıguez-Álvarez et al. [15] have proposed new nonparametric estimators of the

covariate-specific ROC curve, based on kernel-type regression estimators. Although all these ap-

proaches have proved useful, they suffer from the limitation of only being able to address a single

continuous covariate.

To the best of our knowledge, there have been no approaches proposed in the literature, based

on direct methodology, in which the effect of continuous covariates on the ROC curve are modeled

nonparametrically. The main goal of this paper is to present a new flexible estimator of the covariate-

specific ROC curve based on the ROC-GAM regression model given in (3). To this end, use is made

of the local scoring algorithm with an inner backfitting loop [12, 16], based on local linear kernel

smoothers [17, 18]. Among the advantages of using such smoothers is the possible use of binning

type acceleration techniques [19] to reduce computational time and so ensure that the problem can

be adequately addressed in practical situations.

It should be noted that the class of ROC-GAM regression models given in (3) includes, by way

of specific examples, other models previously addressed in the literature. For instance, if g = Φ

and h (t) = α0 + α1Φ−1 (t), the ROC curve follows the classic binormal model. If the effects of

the covariates Xj is linear, however, then the corresponding partial functions can be expressed

parametrically fj (Xj) = βjXj , yielding the ROC-GLM regression model (2).

The remainder of the paper is structured as follows: Section 2 introduces the proposed algorithm

for the estimation of the ROC-GAM regression model (3). This algorithm is an extension to the

nonparametric framework of the algorithm proposed by Alonzo and Pepe [8]. In Section 3, the

performance of the estimation procedure is evaluated by means of simulations. In Section 4, we

illustrate our method using data from the endocrine field, and conclude with a discussion in Section

5. Some technical details have been added by way of an appendix.
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2 ROC-GAM ESTIMATION PROCEDURE

This section presents an algorithm for the estimation of the ROC-GAM regression model (3). It

should be noted that, in order to guarantee the identification of model (3), we introduce a constant

α into the model and require a zero mean E (fj) = 0 for the partial functions (see [12]). For study

purposes, deem X to be a p-dimensional covariate vector and let
{(
yD̄i ,x

D̄
i

)}nD̄
i=1

and
{(
yDj ,x

D
j

)}nD
j=1

be two independent random samples drawn from the healthy and diseased populations, respectively.

Unlike standard regression analysis, in ROC-GAM regression model (3) the dependent variable

is not directly observable. This makes it necessary for another interpretation to be given to the

ROC curve (see [7], [20]). The key idea for fitting the model (3) is based on the placement values

[21] of YD defined as PVD ≡ SD̄X (YD). Given that

E [I [PVD ≤ t]|X] = ROCX (t) ,

the covariate-specific ROC curve can be viewed as the conditional expectation of the binary variable

BDt = I [PVD ≤ t]. The ROC-GAM regression model (3) can therefore be viewed as a regression

model for BDt. This suggests [8] that estimation of the ROC-GAM regression model (3) can be

based on the following algorithm:

1. choose a set T = {tl, l = 1, . . . , nT } of FPFs;

2. estimate SD̄X on the basis of
{(
yD̄i ,x

D̄
i

)}nD̄
i=1

;

3. for each disease observation, calculate the estimated placement value PVj = ŜD̄xDj

(
yDj
)
, j =

1, . . . , nD;

4. for all tl ∈ T and each disease observation, calculate the binary placement value indicator

B̂jtl = I [PVj ≤ tl] , l = 1, . . . , nT , j = 1, . . . , nD; and

5. fit the following ROC-GAM binary regression model

ROCX (t) = g

(
α+

p∑
k=1

fk (Xk) + h (t)

)
, (4)
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to the data
{(
B̂jtl ,

{
xDj , tl

})
, l = 1, . . . , nT , j = 1, . . . , nD

}
, and obtain the estimates R̂OCX (t).

To estimate the binary GAM (4), the local scoring algorithm with backfitting was used [16, 22].

Briefly, the local scoring algorithm is analogous to the use of iterative reweighted least squares

[23] for solving nonlinear regression equations. The backfitting algorithm cycles through each of

the covariates Xj , (j = 1, . . . , p) and the estimates f̂j are obtained by applying local linear kernel

smoothers [17, 18] to the corresponding partial residuals. We have chosen to use of local linear kernel

smoothers, since these estimators enable us to implement binning [19] directly into the estimation

algorithm and computing time is thus drastically reduced (see Appendix for a detailed description).

It should be noted that the observations used to fit the binary GAM (4) are no longer inde-

pendent, since each disease observation is ‘compared’ with all tl ∈ T . It is well known that in the

presence of correlated errors, standard bandwidths selectors fail to work and can result in an over

(or under) fit (see e.g. [24]). In this study, the cross-validation criterion was used for the auto-

matic choice of bandwidths. As pointed out, this choice of bandwidths may be far from optimal.

Nevertheless, the estimation procedure seems to perform reasonably well in the simulation studies

presented in Section 3 below. Finally, to obtain an increasing monotone estimation curve of h, we

used the monotone smoothing technique proposed by Friedman and Tibshirani [25].

To implement the estimation procedure presented at the beginning of this section, the conditional

survival function in healthy subjects must be estimated, SD̄X (see Step 2). In this paper, we propose

to model the effect of covariates on YD̄ by a nonparametric location-scale regression model, such

that

YD̄ = µD̄(X) + σD̄(X)εD̄, (5)

where µD̄ and σ2
D̄

are the regression and the variance functions, respectively, and error εD̄ is assumed

to be independent of the covariates X, with zero mean, unit variance and survival function S. With

this configuration, it can be shown that

SD̄X (y) = S

(
y − µD̄(X)

σD̄(X)

)
.
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Our proposal is based on using local linear kernel smoothers to estimate the regression and variance

functions of (5), and then estimating the survival function S on the basis of the empirical survival

distribution of the standardized residuals. More specifically, an additive covariate model is assumed,

and µD̄ is then estimated based on the sample
{(
yD̄i ,x

D̄
i

)}nD̄
i=1

with local linear kernel smoothers and

the backfitting algorithm being used for the unweighted case (see Appendix for details). Next, to es-

timate σ2
D̄

, an additive smooth model can be fitted to the sample

{((
yD̄i − µ̂D̄

(
xD̄i

))2

,xD̄i

)}nD̄
i=1

.

However, to guarantee σ̂2
D̄
> 0, the transformed variance, log

(
σ2
D̄

)
, is first estimated by fitting an

additive covariate model (using local linear kernel smoothers, as before) to the transformed data{(
log
(
yD̄i − µ̂D̄

(
xD̄i

))2

,xD̄i

)}nD̄
i=1

. The final estimate of σ2
D̄

can be obtained as exp
(

̂log
(
σ2
D̄

))
.

Nevertheless, this näıve approach may or may not work well (see [12], p. 194). Accordingly, an

improved approach is used here, which consists of obtaining the estimates σ̂2
D̄

by smoothing the

data

{(
yD̄i − µ̂D̄

(
xD̄i

))2
}nD̄
i=1

against

{
̂

log
(
σ2
D̄

(
xD̄i

))}nD̄
i=1

, with the Nadaraya-Watson estimator

being used for the purpose estimator [26, 27]. Finally, the survival function S is estimated on the

basis of the empirical distribution of the standardized residuals

Ŝ(z) =
1

nD̄

nD̄∑
i=1

I

[
yD̄i − µ̂D̄(xD̄i )

σ̂D̄(xD̄i )
≥ z

]
.

3 SIMULATION STUDY

This section reports the results of a simulation study conducted to study the practical behavior of

the estimation procedure described in Section 2 above.

In step 5 of our estimation procedure, the assumption that the observations are independent

no longer holds, and so this study first examined the behavior of the cross-validation criterion

used to choose the optimal smoothing parameters. To this end, the performance of the proposed

method was compared against that of the induced nonparametric regression approach [15], in which

this particular issue is of no concern. In addition, the efficiency and robustness of our model was

studied, by comparing it to the direct parametric approach proposed by Alonzo and Pepe [8] and

the semiparametric model suggested by Cai [10].

7



Data were simulated from two scenarios, namely,

• Scenario I

YD = 2 + 4X1 + εD,

YD̄ = 1.5 + 3X1 + 0.5εD̄,

with this configuration, the corresponding covariate-specific ROCX(t) is

ROCX(t) = Φ
(
0.5 +X1 + 0.5Φ−1 (t)

)
.

• Scenario II

YD = 1 + sin (π(X1 + 2)) + (.25 + .25(X1 + 1)) εD,

YD̄ = 0.5 exp(X1) + (.25 + .25(X1 + 1)) εD̄,

with this configuration, the corresponding covariate-specific ROCX(t) is

ROCX(t) = Φ

(
1 + sin (π(X1 + 2))− 0.5 exp(X1)

(.25 + .25(X1 + 1))
+ Φ−1 (t)

)
.

In both scenarios, X1 is uniformly distributed on [−1, 1], εD̄ and εD have the standard normal

distribution, and Φ denotes the CDF of a standard normal variable.

The discrepancy between the estimator of the covariate-specific ROC curve and the true ROC

curve was measured in terms of the empirical version of the global mean squared error (MSE):

MSE =
1

nX1

nX1∑
l=1

1

nτ

nτ∑
r=1

(
R̂OCX1=xl (tr)−ROCX1=xl (tr)

)2

,

with xl = −1.0 + 2 l−1
nX1
−1 , l = 1, . . . , nX1

, tr = r−1
nτ−1 , r = 1, . . . , nτ and nX1

=nτ=50.

It should be noted that to fit the ROC-GAM model (3), the set T of FPFs must be chosen
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(step 1 of the estimation algorithm). In the results shown below, nT = 50 and equally-spaced

values were considered. Other simulations were performed for different cardinalities of set T , with

very similar results (not shown). Table 1 lists the averages and standard deviations of the MSEs

obtained in 1000 data sets simulated from Scenario I and II. In all cases, the same sample size

was considered for healthy and diseased subjects, with n = nD = nD̄ = 50, 100, 200, 500. As

expected, the MSE decreases as the sample sizes increase. As can be seen, the proposed ROC-GAM

regression model performs similarly to the induced nonparametric (Induced NP) approach, which

suggests that the behavior of the cross-validation criterion used to choose the optimal smoothing

parameters is satisfactory. As would be expected under Scenario I, the models that displayed the

best performance were the parametric and semi-parametric approaches, though our method also

performed satisfactorily (see Figure 1(a)). For Scenario II, however, the effect of the covariate

on the ROC curve was far from linear, and the estimates obtained by the parametric and semi-

parametric models were thus not suitable, as can be seen from Figure 1(b). The good performance

of the proposed model is clearly observable in Figure 2, where the true ROC curve (solid line) and

the corresponding average of the estimated ROCs (dashed line) for Scenario II are shown. The

estimated standard deviation is shown in Figure 3. Figure 4 depicts the average of the AUCs

estimated by the proposed model, along with the 2.5 and 97.5 simulation quantiles, for the different

sample sizes. As can be seen, the proposed estimator behaves well, with variance decreasing as

sample size increases.

Lastly, the behavior of the proposed model was examined in a scenario with more than one

continuous covariate. We have simulated data from the following scenario:

• Scenario III

YD = .5 sin (π(X1 + 1)) + .5 exp(X1)−X2
2 + .5εD,

YD̄ = .5 exp(X1)− 2X2
2 + .5εD̄,
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Table 1: Average and standard deviation of estimated mean squared error (MSE) (x 1000) based
on the 1000 simulated data sets, yielded by the proposed ROC-GAM, the induced nonparametric
approach (Induced NP), Alonzo-Pepe’s direct parametric approach (Parametric ROC-GLM) and
Cai’s direct semi-parametric approach (Semi-parametric ROC-GLM)

Sample size
Scenario Model 50 100 200 500

I

ROC-GAM 17.454 (11.224) 9.393 (5.105) 5.777 (2.306) 3.508 (0.921)
Induced NP 17.647 (10.054) 9.311 (4.700) 5.163 (2.177) 2.579 (0.894)

Parametric ROC-GLM 6.125 (5.828) 2.979 (2.945) 1.511 (1.337) 0.595 (0.559)
Semi-parametric ROC-GLM 9.586 (6.079) 5.596 (3.250) 3.358 (1.486) 1.864 (0.727)

II

ROC-GAM 32.532 (15.031) 15.887 (6.522) 7.706 (3.160) 3.293 (1.212)
Induced NP 38.923 (17.904) 18.609 (7.832) 8.811 (3.740) 3.454( 1.385)

Parametric ROC-GLM 64.705 (7.108) 64.089 (4.876) 62.164 (2.759) 61.332(1.628)
Semi-parametric ROC-GLM 66.414 (7.000) 63.631 (3.971) 61.030 (1.873) 59.618(0.832)
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Figure 1: True AUC (solid line) versus the average of simulated AUCs (dashed line), along with
the 2.5 and 97.5 simulation quantiles, for n = 200, based on 1000 estimates. From left to right:
Proposed ROC-GAM, induced nonparametric (Induced NP) approach, Alonzo-Pepe’s direct para-
metric approach (Parametric ROC-GLM), Cai’s direct semi-parametric approach (Semi-parametric
ROC-GLM).
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Figure 2: Contour plot for the true ROC (solid line) versus the average of simulated ROCs (dashed
line) yielded by the ROC-GAM, for Scenario II and for different samples sizes (n = nD = nD̄),
based on 1000 estimates.
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Figure 3: Contour plot for standard deviation of simulated ROCs yielded by the ROC-GAM, for
Scenario II and for different samples sizes (n = nD = nD̄), based on 1000 estimates.
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with this configuration, the corresponding covariate-specific ROCX(t) is

ROCX(t) = Φ
(
sin (π(X1 + 1)) + 2X2

2 + Φ−1 (t)
)
,

where X1 and X2 are uniformly distributed on [−1, 1], εD̄ and εD have the standard normal distri-

bution, and Φ denotes the CDF of a standard normal variable.

For this particular scenario, we investigated the performance of the ROC-GAM when estimating

the two partial functions f1 (X1) = sin (π(X1 + 1)) and f2 (X2) = 2X2
2 , and the baseline function

h (t) = Φ−1 (t). Averages of the results are graphically depicted in Figure 5. The same sample

size was considered for both healthy and diseased subjects, with n = nD = nD̄ = 400. The good

performance of the resulting estimates is evident, with the functional forms of the corresponding

true curves being recovered very successfully.

4 APPLICATION TO REAL DATA

Coronary heart and cerebrovascular disease are one of the leading causes of adult mortality world-

wide. There are several cardiovascular disease (CVD) risk factors for developing these vascular

diseases, including diabetes mellitus, dyslipidemia, arterial hypertension and obesity. These CVD

risks have a metabolic basis and the common characteristic of tending to occur in clusters (e.g.,

metabolic syndrome), in that when one risk factor is present in any subject, another is also likely

to appear in the same individual. Although the metabolic defect ultimately responsible for such

clustering is not known, obesity is nonetheless well documented as being a common denominator

[29].

Yet, serious concern exists as to which anthropometric measure related to excess body fat best

predicts cardiovascular risks. Although there is some evidence to indicate that indices of abdominal

fat accumulation, such as waist circumference (WC) or waist-to-hip ratio (WHR), may be better

predictors than body mass index (BMI) [30, 31], the question of which obesity index is best for

predicting CVD risks is still a matter of controversy in biomedical research [32, 33].
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In view of the existing gaps in knowledge, we applied the proposed ROC-GAM methodology to

an endocrine study [34, 35], with the aim of assessing the performance of BMI, WC and WHR for

predicting clusters of cardiovascular risk factors in an age- and gender-adjusted adult population

in Galicia (NW Spain). Since it is well established that anthropometric measures perform differ-

ently according to gender, the age-by-gender interaction was included in the ROC-GAM regression

models.

4.1 Data source

This study consisted of field work covering a random sample, representative of the Galician adult

population (2850 subjects, age range 18-85 years). Direct anthropometric measurements were taken,

including weight (in kilograms), height (in meters), WC (in centimeters) and hip circumference (in

centimeters), and the WHR was subsequently calculated. BMI was computed as weight divided by

height squared. A diseased subject was defined as any person presenting with two or more CVD

risk factors (raised triglycerides, reduced HDL-cholesterol, raised blood pressure and raised fasting

plasma glucose) as per the International Diabetes Federation criteria [36]. Of the total of 2850

subjects, 46.2% were men (899 healthy and 418 diseased) and 53.8% women (1250 healthy and 273

diseased). A detailed description of this dataset can be found in [35].

4.2 Statistical analysis

For each anthropometric measure, separate covariate-specific ROC curves were calculated, assuming

the following multivariate interaction model:

ROC(Age,Gender) = Φ
(
β0 + fMen(Age)1{Gender=Men} + fWomen(Age)1{Gender=Women} + h(t)

)
,

where fMen and fWomen are smooth functions of Age in men and women, respectively, h (t) is a

smooth function of the false positive fraction, and 1A denotes the indicator function of event A.

In addition to the estimated covariate-specific ROC curves, another summary measure of accu-

racy, the AUC, was obtained. Bootstrap-based methods were used for constructing confidence inter-
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vals for this measure [28]. For our purposes, the global sample will be denoted as {(xk, yk, dk)}nD̄+nD
k=1 ,

where d is a binary indicator, taking the value 1 for disased and 0 for healthy individuals.

Given a point x in the range of X the steps for the construction of the confidence interval were

as follows:

1. for b = 1, . . . , 500, draw a random sample of size nD̄ + nD, with replacement from the global

population; and,

2. from
{(

xbk, y
b
k, d

b
k

)}nD̄+nD

k=1
obtain R̂OC

b

X=x(t) and compute

ÂUC
b

X=x =

∫ 1

0

R̂OC
b

X=x(t)dt.

Once the above process has been completed, the 100 per cent x (1 − α) limits for the confidence

interval for the true AUCX=x are given by

(
ÂUC

α/2

X=x, ÂUC
1−α/2
X=x

)

where ÂUC
p

X=x represents the p-percentile of the estimated ÂUC
b

X=x (b = 1, . . . , B).

4.3 Results

The covariate-specific ROC curves are plotted in Figure 6. Figure 7 depicts the covariate-specific

AUCs together with the corresponding 95% bootstrap-confidence intervals. As can be seen from

these figures, the discriminatory capacity of the measures studied was affected by sex and age alike.

In general, age displayed a more marked effect among women than among men, particularly in

the case of BMI and WC. These results suggest the need for the incorporation of the age-gender

interaction in the ROC-GAM regression models fitted.

In the case of men, the three measures will be seen to behave similarly, with accuracy tending

to decline progressively and eventually starting to lose significance around age 55 years in the case

of WC, and age 65 years in the case of BMI and WHR.
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With respect to women, the AUCs indicate very good discriminatory capacity for the youngest

women, especially in the case of BMI and the WC, with values greater than 0.8. This better

behavior of BMI and WC vis-à-vis WHR remains constant until the age of 45 years. From here

onwards, the three measures reach a plateau until subjects are in their sixties. Thereafter, WHR

becomes the best predictor. From the age of sixty, both BMI and the WC decline progressively

and start losing significance from age 65− 70 years onwards. WHR, on the other hand, retains its

discriminatory capacity beyond the age of 70 years, and only then does its discriminatory capacity

disappear.

It is interesting to observe the similar behavior displayed by BMI and WC as compared to WHR,

particularly in the case of women. As will be observed, WHR’s discriminatory capacity displays

a more constant behavior than do the other two measures over subjects’ lifetime, with no major

differences between men and women in this instance.

5 DISCUSSION

This paper presents a new nonparametric estimator for covariate-specific ROC curve based on direct

modeling. The proposed estimator enables a set of continuous and/or categorical covariates, and

any possible interactions, to be incorporated into the regression model for the ROC curve.

The proposed estimation procedure is based on a combination of local scoring and backfitting

algorithms, and uses local linear kernel smoothers. Use is made of the cross-validation criterion to

choose optimal smoothing parameters, and binning techniques to speed up computation time. The

process of estimation of the ROC-GAM regression model requires the conditional survival function

in the healthy population to be estimated. This paper proposes a location-scale regression model for

the test result in the healthy population. Local linear estimators are used to estimate regression and

variance functions, and the survival function is empirically estimated on the basis of standardized

residuals.

The steps of the proposed estimation algorithm imply the non-independence of the observation

upon which the estimation of the ROC-GAM regression model is based. Despite this, the results of
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the simulation study that compares the new and induced nonparametric approaches would appear to

indicate the good performance of our model, and, specifically, that of the cross-validation criterion

used for automatic selection of the smoothing parameters. We also compared the performance of

the ROC-GAM against previous direct approaches, as well as its behavior in the presence of more

than one continuous covariate. The results show that our estimator also performs well in all these

situations.

The methodology proposed in this paper was used to analyze an endocrine dataset, in order

to evaluate the effect of age and gender on the discriminatory capacity of different anthropometric

measures when it came to detecting the presence of two or more cardiovascular risk factors. The

results show the different behavior of the measures considered according to individuals’ sex and

age, with the latter aspect proving particularly evident in the case of women. Even so, our study

does not suggest that any one measure studied has a discriminatory capacity that is clearly better

than that of the others over the span of a subject’s lifetime. It should be noted that, the results

obtained in this study are representative of Galicia alone and so cannot be extrapolated to other

populations.

Although our methodology was motivated by endocrine data, it could nonetheless be applied in

any other biomedical field where the accuracy of a given diagnostic test might depend on a set of

continuous and factor-type covariates.

This paper has focused on the presentation of the process of estimation of the ROC-GAM

model, yet considerably more work is still needed. For instance, an interesting field for future

research would be the development of test statistics for the effects of the covariates on the ROC

curve, the linearity of the effects of the continuous covariates, or the existence of interactions among

covariates, aspects on which there is still little in the literature. Special attention should be paid

to Cai and Zheng’s paper [37], in which different procedures to check the goodness-of-fit for some

parametric and semiparametric ROC regression approaches are proposed.

In our endocrine study, different ROC-GAM regression models were separately fitted for each

anthropometric measure. It would, however, be desirable for all the markers to be incorporated into

a single regression model. Having more than one observation per subject would mean that, in such
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a situation, there would be a new source of non-artificial correlation in the data. Consequently,

an interesting issue for future research would be to incorporate a structure of correlation among

observations pertaining to the same individual into the process of estimation of the ROC-GAM

regression model.

It should be pointed out that, in practical situations, the new methodology may represent a

flexible exploratory tool for identifying non-linear covariate effects on the ROC curve. ROC-GAMs

can also be used in a diagnostic mode, as an aid for choosing parametric transformation for the

covariates (where necessary), in which case a ROC-GLM could thus be used.

Software implementing the ROC-GAM estimation procedure proposed in this paper can be

obtained by contacting the first-mentioned author at mariajose.rodriguez.alvarez@usc.es.
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Appendix: Computational aspects

The local scoring algorithm

Given a sample {(yi,xi)}ni=1 of (Y,X), the steps of the local scoring algorithm for estimating a

GAM for binary response

µ = E[Y |X] = g (α+ f1(X1) + . . .+ fp(Xp)) ,

are as follows:
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Initialise. Compute the initial estimates, α̂ = g−1 (ȳ), f̂0
j = 0 (1 ≤ j ≤ p) and µ̂0

i = ȳ =

n−1
∑n
i=1 yi (i = 1, . . . , n).

Step 1. Form the adjusted dependent variables ỹi = η̂0
i +

(
yi − µ̂0

i

) /
g′
(
η0
i

)
and weights w̃i =

g′
(
η0
i

)2 /
µ̂0
i

(
1− µ̂0

i

)
, where η̂0

i = α̂+ f̂0
1 (xi1) + . . .+ f̂0

p (xip).

Step 2. Fit an additive model to ỹ using the backfitting algorithm (explained in the following

subsection) with weights w̃ and compute the updates f̂j(xij) for i = 1, . . . , n and j = 1, . . . , p.

Step 3. Repeat Step 1, with µ̂0
i being replaced by µ̂i = g (η̂i) for i = 1, . . . , n, until

∣∣D (µ̂0,Y
)
−D (µ̂,Y)

∣∣
D (µ̂0,Y)

≤ ε,

where ε is a small threshold and D (µ̂,Y) = −2
∑n
i=1 [yi log (µ̂i) + (1− yi) log (1− µ̂i)].

Fitting weighted additive models

This section describes an algorithm for fitting the additive covariate model

E[Y |X] = α+ f1(X1) + . . .+ fp(Xp).

The algorithm discussed below is a modification to the weighted case of the backfitting algorithm

[22]. The backfitting algorithm cycles through the covariates Xj (j = 1, . . . , p), and estimates each

fj by applying local linear kernel smoothers to the partial residuals. These residuals are obtained

by removing the estimated effects of the other covariates.

Given a sample {(yi,xi)}ni=1 of (Y,X) weighted by {wi}ni=1, the steps of the estimation algorithm

are as follows:

Initialise. Compute the initial estimates α̂ =
∑n
i=1 wiyi/

∑n
i=1 wi and f̂0

j (xij), for i = 1, . . . , n

and j = 1, . . . , p.

Step 1. For j = 1, . . . , p calculate residuals by removing the estimated effects of all the other
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covariates:

yji = yi − α̂−
j−1∑
s=1

f̂s (Xis)−
p∑

s=j+1

f̂0
s (Xis),

and compute the weighted local linear kernel estimators for i = 1, . . . , n [17]

f̂j (xij) =

(
1 0

) s0
j (xij) s1

j (xij)

s1
j (xij) s2

j (xij)


−1 u0

j (xij)

u1
j (xij)

 (6)

where srj (x) =
∑n
i=1

(
wi · Lrj (x, xij)

)
and urj (x) =

∑n
i=1

(
wi · Lrj (x, xij) · yji

)
, with

Lrj (x, y) = (2π)
−1/2

(x− y)
r

exp
(
−0.5

(
h−1
j (x− y)

)2)
,

and with hj being the bandwidth associated with the estimation of f̂j .

Step 2. Repeat Step 1 with f̂0
j replaced by f̂j , until the convergence criterion

n∑
i=1

[
f̂j (xij)− f̂0

j (xij)
]2/ n∑

i=1

f̂0
j (xij)

2

is below some small threshold ε for all the j = 1, . . . , p.

In the unweighted case, the above backfitting is reduced to that introduced by Opsomer [22].

In such a case, Opsomer and Ruppert [38] (see also [39]) established the theoretical convergence

and consistency of the method. The backfitting algorithm’s performance in practice was revised by

Nielsen and Sperlich [40].

Bandwidth selection

It is well known that the estimates obtained for the model depend heavily on the bandwidths

(h1 . . . , hp) used in the local linear kernel estimates of the partial functions (f1 . . . , fp). The band-

widths are a trade-off between the bias and variance of the resulting estimates. Various proposals

for an optimal selection have been suggested for the additive models, yet the difficulty of asymptotic
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theory in a backfitting context means that nowadays optimal selection is still a challenging, open

problem. Cross-validation was used for the automatic choice of bandwidths.

In each of the cycles of the algorithm, the bandwidth (hj) used to obtain the estimates f̂j in

equation (6) was automatically selected by minimizing the following weighted cross-validation error

criterion:

CVj =

n∑
i=1

wi

(
yji − f̂

(−i)
j (xij)

)2

where f̂
(−i)
j is the estimate obtained without the ith element of the sample.

Cross-validation implies a high computational cost, inasmuch as it is necessary to repeat the

estimation operations several times in order to select the optimal bandwidths. To speed up this

process, we used binning-type acceleration techniques [17, 18] to obtain the binning approximations

of f̂j in each of the iterations of the estimation algorithm.

The binning approximations were obtained from the binning sample
{
x•jr , y

•j
r

}
and the weights

{w•r} (1 ≤ r ≤ N), with

x•j1 < . . . < x•jN

being a grid of equidistant points along the jth direction. Let us consider δ the distance between

consecutive grids. The binning responses y•jr and the binning weights W •r are constructed according

to w•r =
∑n
i=1 w

•i
r and y•jr =

∑n
i=1 w

•i
r y

j
i with

w•ir = wi
(
1−

∣∣xij − x•jr ∣∣/δ)+
The binning approximation of the estimator f̂j (x) is obtained by applying the approximations

srj (x) ≈
N∑
l=1

Lrj

(
x, x•jl ;hj

)
w•l and trj (x) ≈

N∑
l=1

Lrj

(
x, x•jl ;hj

)
w•l y

•j
l

As in the estimation algorithm, in the case of the binning technique the cross-validation error
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CVj can be approximated by:

CVj ≈
N∑
r=1

w•jr

(
f̂
−(r)
j

(
x•jr
)
− y•jr

w•jr

)2

,

where f̂
−(r)
j is obtained without the (r) element of the binning sample.

The finer the grid of points selected, the better the binning approximations. The choice of the

number of grid points is a compromise between approximation error and computational speed. In

this paper, we used 30 grid points covering the range of each Xj . In practice, depending on the

sample size n and the distribution of the covariates, a larger amount of grid points might be more

appropriate.
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Solache I, Pérez-Fernández R. Prevalence of metabolic syndrome in Galicia (NW Spain) on

four alternative definitions and association with insulin resistance. Journal of Endocrinological

Investigation 2008; (in press).

[36] International Diabetes Federation. The IDF consensus worldwide definition of the metabolic

syndrome. (http://www.idf.org/webdata/docs/IDF Meta def final.pdf). Accessed 3 December

2009.

[37] Cai T, Zheng Y. Model Checking for ROC Regression Analysis. Biometrics 2007; 63: 152–163.

[38] Opsomer JD, Ruppert D. Fitting a bivariate additive model by local polynomial regression.

Annals of Statistics 1997; 25: 186–211.

[39] Opsomer JD, Kauermann G. Weighted local polynomial regression weighted additive models

and local scoring. Preprint Series #00-7, Department of Statistics, Iowa State University 2000.

[40] Nielsen JP, Sperlich S. Smooth backfitting in practice. Journal of the Royal Statistical Society

Series B 2005; 10: 43–61.

29


