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Abstract

Doubly truncated data are often encountered in the analysis of survival
times, when the sample reduces to those individuals with terminating event
falling on a given observational window. In this paper we assume that some
information on the bivariate distribution function (df) of the truncation times
is available. More specifically, we represent this information by means of a para-
metric model for the joint df of the truncation times. Under this assumption, a
new semiparametric estimator of the lifetime df is derived. We obtain asymp-
totic results for the new estimator, and we show in simulations that it may be
more efficient than the Efron-Petrosian NPMLE. Data on the age at diagnosis
of childhood cancer in North Portugal are analyzed with the new method.

Key Words: Double truncation, Observational bias, Nonparametric esti-
mation, Survival analysis.

1 Introduction

Randomly truncated data appear in a number of fields, including Epidemiol-
ogy, survival analysis, economics and Astronomy. Under left-truncation, only
individuals with lifetime exceeding a random time (the truncation time) are
observed, and ignoring this issue results in a severe bias in estimation. A typ-
ical example involving left-truncation is that of cross-sectional sampling, for
which the sample reduces to the individuals in progress at a given date. Right-
truncation is a similar phenomenon, and studies on AIDS incubation (among
others) are known to suffer from this type of selection issue. This is because
typically AIDS databases consist only on those individuals diagnosed prior some
specific date.



Nonparametric methods for one-sided (left or right) truncated data were
introduced in the seminal paper [1], see also [2] and [3]. Some authors have
pointed out that available information on the truncation time allows for the
construction of more efficient estimators. See for example [4], [5] and [6]. This
is an interesting feature in truncated data analysis which is not true for other
types of observational biases, as those associated to random censoring. Indeed,
in the random censoring model, information on the distribution of the censoring
time is useless, since it does not allow for less variance in estimation.

Doubly truncated data are sometimes encountered. Double truncation means
that only lifetimes falling on an observable random interval will be recruited.
Efron and Petrosian [7] motivated this problem with quasar data, and they
introduced the nonparametric maximum likelihood estimator (NPMLE) under
double truncation too. Also, Bilker and Wang [8] noticed that time from HIV
infection to AIDS diagnosis can be treated as doubly truncated because, besides
the right-truncation issue discussed above, HIV was unknown before 1982, thus
leading to a left-truncated setup. The NPMLE for doubly truncated data was
revisited in [9], who formally established its uniform consistency and conver-
gence to a normal. Moreira and de Utia-Alvarez [10] introduced a bootstrap
approximation for the NPMLE.

For further motivation and in order to help intuition, let us introduce in some
detail the childhood cancer data analyzed in Section 3. These data concern all
the cases of childhood cancer diagnosed in North Portugal between January 1st
1999 and December 31st 2003. Put X* for the age at diagnosis, and let V* be
the time from birth to the end of recruitment. Then, the sampling information
reduces to those (X*,V*) values satisfying U* < X* < V*, where U* =V* -5
and where time is measured in years. Here, the truncation interval [U*,V*]
varies from individual to individual, since it is determined by the (random)
individual’s birthdate. The same truncation pattern will be found in any appli-
cation in which the sample reduces to those subjects with terminating event in
a fixed observational window. Now, if we are interested in the estimation of the
distribution function (df) of X*, computation of the ordinary empirical df can
not be recommended in general. This is because each value = of X* is observed
with a probability given by

PU<X*<V*X*"=z)=PU" <z <V")

(assuming independence between (U*, V*) and X*), which is clearly influenced
by the z-value. Roughly speaking, relatively small and large values of X* may be
less frequently observed, hence inducing a sampling bias which is immediately
transferred to a systematic bias of the ordinary empirical df. Of course, for
specific choices of the distribution of (U*,V*) this observational bias can be
more or less severe, and this will be explored in much more detail in Section 3.
Similar problems arise when the interest is focused on the df of V*, which for
the childhood cancer data is linked to the so-called birth process of the diseased



population. Note that, since U* = V* — 5, the pair (X*, X* + 5) plays the role
of truncation interval for V'*.

In this paper we introduce a new estimator under double truncation which
makes use of some available information on the df of the pair of truncation
times. The definition of the estimator and its main properties are given in
Section 2. This new estimator is semiparametric, since some parametric family
of df’s is assumed for the truncation times, while nothing is assumed about
the lifetime df. This situation can be realistic in practice; for example, for the
childhood cancer data, the birth dates of the individuals developing the disease
could be assumed in principle to follow a stationary process, thus leading to a
uniform distribution of U* (resp. of V*). Interestingly, unlike the NPMLE, the
new estimator has explicit form, which facilitates its usage and analysis. More
specifically, we introduce an empirical approximation of the standard error of
the estimator and we use it to construct confidence limits. Simulations reported
in Section 3 show that the new estimator may behave more efficiently than the
Efron-Petrosian NPMLE. Section 4 is devoted to the analysis of the childhood
cancer data, while the technical details are deferred to Section 5.

2 The estimator. Asymptotic results

First we introduce some notation. Let X* be the lifetime of ultimate inter-
est and let (U*,V*) be the pair of truncation times, so we observe the triplet
(U*, X*,V*) if and only if U* < X* < V*. We assume that (U*,V*) is inde-
pendent of X*. Let F denote the df of X*, and let K be the joint df of (U*,V*).
We denote by (U;, X;,V;), 1 <i <mn, the observed data. Throughout this paper
we assume that K belongs to a parametric family of df’s, {Kp},o say, where
6 is a vector of parameters and © stands for the parametric space. Also, 6y will
denote the ’true’ parameter.

Under the described double truncation scenario, the relative probability of
observing a lifetime z is proportional to

G(z;6) :/ Ko(du,dv).
{u<z<v}
In order to see this, let F™* be the df of the observed lifetimes. Then,
Fr'(z) =P(X*<z|U* < X*< V¥ /GtHdF

where P() = P(U* < X* < V*) = [ G(t;0)dF(t). As a consequence, the
quotient F*(dz)/F(dz) (i.e. the relatlve probablhty of sampling x) reduces to
P(§)"*G(x;6). Assume that G(x;6) is strictly positive on the support of X*.
One immediately obtains the reversed equation

TAF*(t) _ [ dF*(t / / dF*

F@)=PO) | Gae = ), Gao)




and hence a natural estimator of F' follows:

~ ~

Ay py [CAER() _ [TAES(t) , [ dE;(2)
Fle:0) = P6) | G(t;0) _/0 G(t;é)//o G(t;0) W

where @ is a suitable estimator of 0, and where F) stands for the ordinary
empirical df of the X/s.

The estimator ﬁ(a:, 5) can be alternatively motivated as a MLE. As noted by
Shen [8], the likelihood of the (U;, Xi, V;)’s (£) can be factorized as a product of
the conditional likelihood of the (U;, V;)’s given the X;’s (£L.), and the marginal
likelihood of the X;’s (L,):

L=C, xcm_HgU’)’(ﬁe Xﬁag(',,a

i=1
where g(u,v;0) = P(U* = u,V* = v) = Ky(du, dv) stands for the joint density
of (U*,V*) (assumed to exist). For each 6, £, is maximized by
- T ARt [T dF(t dF* (t
F(z:0) = nr’l =
@0 =PO) | G =), G0 // Gt9

and the maximum is a constant [4]. Hence, the maximizer of the full-likelihood
L is given by (é\, ﬁ’(x, 5)), where 8 stands for the maximizer of Le.

The estimator (1) reduces to the semiparametric estimator in [4] when there
is no truncation from the right (i.e. P(V* = oo) = 1). Note that, unlike with
left-truncated data, the function G(z;#) does not need to be (and, in general,
it will not be) monotone here.

Remark 1. In some instances the random vector (U*,V*) will fall on a
line w. p. 1, V* = U* 4+ 7 say, see Section 4 for motivation. In this case,
we rather have (whenever v = u + 7) g(u,v;6) = P(U* = u) = L(du;6) and
G(z;0) = L(z;0) — L(z — 7;6), where L(.;8) is the df of the parametric model
assumed for U*. In particular, if U* follows a uniform distribution on an interval
which contains (ap — 7,bp), where (ap,bp) stands for the support of X*, we
have that G(x;0) is constant. In this case, there is no observational bias, and
the ordinary empirical df of the X;’s is a consistent estimator of F'.

Remark 2. Unlike the Efron-Petrosian NPMLE (which must be computed
in an iterative way), the new semiparametric estimator ﬁ(a:,a) has explicit
form. This immediately leads to simpler asymptotic expressions for the limiting
distribution. As it will be seen, a simple plug-in method to estimate the standard
error of (1) can be introduced.

Now we state the main results for both the estimated parameter 9 and the
semiparametric estimator F (z; 0) Since we are mainly interested in testing



problems about # and the construction of confidence limits for F(z), we only
report here the results concerning the distributional convergence of these esti-
mators. Of course, formal results of consistency can be also obtained following
similar arguments to those in [4]. Also, in order to favour the reading of the
manuscript, we only refer to the needed, notationally involved assumptions as
”under regularity”: These assumptions mainly impose smoothness on log £, and
the convergence of the solution of the maximum likelihood equation. Similarly,
all the limit variances are assumed to be finite. See Section 5 for further details.

Theorem 2.1. Let 8 a solution to the maximum likelihood equation, that
is,
0 ~
2 log £.(8) = 0.
Under regularity, we have /n (5— 90) — N(0,1(f9)" 1) in law, where I(6p) is

the Fisher information matrix
9:5}

As usual, in practice one will rather use the empirical Fisher information

0* 9(Us, Vi 6)

1(60) = —Ei, {W T G(X,:0)

N s 9(Us, Vi 6)
0= 2 50 8 G 0) ooy

0=0

to compute the standard errors and covariances of the estimated parameters.

Example 1. As an illustrative example, we consider a situation in which
U* ~ Beta(f1,1) and V* ~ Beta(l,65) are independent. Then, we have
g(u,v,0) = 016u’ 71 (1 —v)?271 0 < u,v < 1. Assume that the support of
X*, (ap,br) say, is contained in the interval (0, 1), so we have

Gx;0) =P(U*<X*<V*|X*=2)=PU* <z)P(V*>2z) =2""(1-2)2 ar < z < bp.

The conditional likelihood becomes L. (8) = L1 (01) Lc,2 (62), where

nog Ut 2y (1— vyt
Lea () =|]| —5— Le2O)=]||—3—>
05 LT

which are respectively maximized by

~ 1 & U;
6= |—— log —
[T

-1 —1

) 92

_lzn:lo 1-Vi
n & 811X,




It is straightforward to obtain the second order derivatives of the log-likelihood,
these are:

0 . g(u,v,0) 1 0% . g(u,v,9) 1 0 9(u,v,9)
a7 108 = = — 75, 252 08 5 T T log

007 G(t,9) 07 005 G(t,9) 03 06100> G(t,0)

=0,

so the Fisher information matrix becomes I(#) = diag(1/6?,1/63). This exam-
ple will be of further use in the simulations section below.

For our next result we need to introduce the following matrix:

- 6Gt9 dF*() * gF*(t aG F (1)
Wiw.6) = Gt:0)? J, Gt0 ,9)2

- / 9) L (F@) — 1(t < ) dF ()

= ), T8 Gwo = ‘

Theorem 2.2. Under regularity, we have /n (ﬁ(a:, 5) - F(a:)) — N(0,0%(x))
in law, where 0%(z) = 0?(x) + 03 (), with o?(z) = W (z,00)TI(60)W (,8,) and

v CAR®) | [ dF(@) * dF()
72(2) = P(6) { o G(t;60) @ o G(t;00) (z) 0 G(t;‘%)] -

Remark 3. The first term in the limit variance o%(x) comes from the
variance when estimating 6y, while the second term is directly related to the
correction of the observational bias. Indeed, the limit variance of (1) reduces
to o3(z) in the case of perfect knowledge on the biasing function G(.;6y). This
would be the case, for example, when sampling individuals with terminating
events in a fixed, given observational window of length 7 (V* = U* + 1), if one
knew the distributional form of the ’incidence process’ U*. Also interestingly,
in the case of no observational bias (i.e. a constant function G(.;6p)), o3(x)
reduces to F(z)(1 — F(x)) which is just the asymptotic variance of the ordinary
empirical df.

In practice, one will be interested in the construction of confidence limits for
F(z). Theorem 2.2 suggests the following 100(1 — a)% confidence interval:

Ioo= (ﬁ(x;@ + /iﬁ)) 2)
with
G(x) = W@, IOW (2,0)+
5 | [FAF0) | s s, [CdF(t0) e T AF(t;6)
) /0 G(t;9) +F(x’0)/o G(t;6) 2K ’0)/0 G(t;6)




where

o [P OG(0) dFNE) [T AFNl) s, [T OG(t:0) dE(t)
W(z.6) = P(6) /0 0 Gl e )/0 90 G(t:0)

and where z, /5 stands for the (1 — a)-th quantile of the standard normal dis-
tribution.

3 Simulations

In this section we illustrate the finite sample behaviour of the semiparametric
estimator (1) through simulation studies. Results corresponding to the (condi-
tional) maximum likelihood estimator of 6y will be reported too. One of the
main goals of our simulations will be the comparison between the new estimator
and the Efron-Petrosian NPMLE, say F.FF(z). For this comparison, we will use
the quotient of mean squared errors (MSEs) as a measure of relative efficiency.
Note that if N
EP DD\ MSE(F($§9))
RE(F," (z), F(x;0)) = m

attains a value of p < 1, then the semiparametric estimator performs better;
more specifically, it is meant that the efficiency of the NPMLE is just the 100p%
that of the semiparametric estimator, or that the new estimator is 1/p times
more efficient that the NPMLE.

We have considered two different situations of double truncation. In Case
1, the pair (U*,V*) has a joint density g(u,v) = g1(u)g2(v), where g; and go
denote the marginal densities (so U* and V* are independently generated). In
Case 2, we simulate U* and then we take V* 4 1 for some fixed constant 7 > 0,
so the joint density of (U*,V*) does not exist. Note that Case 2 follows the
spirit of the childhood cancer data discussed in the Introduction.

For Case 1, we take U* ~ U(0,1) and V* ~ U(0, 1), while X* was generated
according to a U(ar,br) (Models 1.1-1.3) or Beta(1/2,1) adapted to the sup-
port (ap,br), that is X* = (bp —ar)U(0,1)? + ar (Models 1.4-1.6), where the
values of 0 < ar < bp < 1 were chosen as follows: (ar,br) = (0.25,1) for Mod-
els 1.1 and 1.5, = (0.1,0.9) for Models 1.2 and 1.4, = (0.5,0.75) for Model 1.3,
and = (0,0.5) for Model 1.6. All these Models 1.1-1.6 fall under the umbrella of
our Example 1 in Section 2. For Case 2, we take U* ~ U(0,0.75), X* ~ U(0, 1)
in Model 2.1, and U* ~ U(0,1), X* ~ 0.75Beta(3/4,1) + 0.25 in Model 2.2.

In Figure 1 we illustrate the observational bias induced by each of these eight
models. Note that the situations range from no or almost no observational bias
(Models 2.2, 1.3), to strongly biased situations (Models 2.1, 1.4, 1.5, 1.6). We
included in the simulations sampling biases in favour of small lifetimes (e.g.
Models 1.1 and 1.5) and large lifetimes too (Model 1.6); besides, situations with
an observable s-shaped curve (when the true curve is either linear or concave)



were also considered (Models 2.1, 1.2 and 1.4). As parametric information on
the pair (U*,V*) we always consider a Beta(61,1) for U* and a Beta(1,65) for
V* in Case 1. For each Model, we simulate 1000 trials with final sample size
n = 50, 250 or 500. This means that, for each trial, the number of simulated data
is much larger than n, actually N ~ nP(fy)~" were needed on average, where
recall that P(6p) stands for the proportion of no truncation. For the simulated
models, the proportion of truncation ranged between 75% and 88%; however,
since (as usual with truncated data) we worked on the basis of reaching a given
n, the type of observational bias as depicted in Figure 1 is more informative
than the probability of truncation itself.

-Insert Figure 1-

In Tables 1-8 we report the MSEs of the semiparametric estimator and of the
NPMLE for each Model and sample size, evaluated at each of the nine deciles
Zo.1,---,To.9 Of F. For comparison purposes, we also include in these Tables 1-8
the MSE pertaining to the ideal’ estimator which makes use of the true biasing
function G(.;60), say F(z;60). We also report in Table 9 the bias and standard
deviations of the estimated parameter fy. In all the cases it is seen that the
estimators converge to their respective targets. As expected, the more efficient
estimator was that based on the true biasing function; in this case, the term

o2(z) in the variance of the semiparametric estimator, see Theorem 2.2, just

vanishes. When comparing 1?'(3:, 5) to FEP(2), the most relevant result in that
in all the cases the relative efficiency of the NPMLE was below 1, with the
only exception of Model 2.2, medium and large sample size (n = 250,n = 500),
and Model 2.1, large sample size (n = 500). In this latter case, a systematic
bias in the estimation of 6, is appreciated (see Table 9), which could probably
explain the relative poor behaviour of the new estimator. Indeed, even in these
exceptions the estimator F(z;6p) outperforms the NPMLE. In general, we can
conclude that the new estimator is more efficient, with a MSE which can be up
to 13% that of the NPMLE.

-Insert Tables 1-9-

Another consequence of the simulations is that the efficiency of the semi-
parametric estimator relative to the NPMLE tends to increase at the right tail.
An exception to this are those situations with no much observational bias (e.g.
Models 1.2, 1.3 and 2.2), for which the maximum deficiency of the NPMLE
is found around the median. As regards the influence of the sample size on
the relative performance of the estimators, we can see from Tables 1-8 that, in
general, a larger n leads to a slightly worse relative behaviour of the NPMLE.
Finally, it is interesting to compare the MSEs of the ’ideal’ estimator under
double truncation, F'(z;6y), to those corresponding to the ordinary empirical df
based on the same sample size, which is known to be

F(a)(1 = F(z))

MSEord (QZ) = n



This comparison allows to investigate the relative difficulties in estimation which
are directly implied by the sampling bias. For example, in Model 1.3 it is seen
that the MSE of F(z;6p) is close to M SE,.q(x) along all the = deciles; this is
in agreement with the absence of a strong sampling bias (Figure 1). On the
contrary, in Model 1.6 (under which there is a significative observational bias)
we see that the MSE of ﬁ(a:;t%) is up to one order of magnitude grater than
that associated to the ordinary empirical df.

4 The childhood cancer data

In this section we report our analysis of the childhood cancer data. As mentioned
in the Introduction, these data concern all the cases of childhood cancer diag-
nosed in North Portugal between January 1st 1999 and December 31st 2003. 406
individuals reported complete information on the age at diagnosis X* (we take
years as time scale) and the date of birth D*. As discussed in the Introduction,
the age at diagnosis is doubly truncated by (U* = V* — 5,V*), where V* stands
for the elapsed time between birth and end of study (December 31st 2003); in
other words, V* represents the age of the individual at the closing date. Then,
following our Remark 1 in Section 2, we have G(z;6) = L(x;0) — L(x — 7;0) for
the biasing function, where L(.; ) stands for the df of U* and 7 is the length of
the observational window (5 years). In Figure 2, left, the semiparametric esti-
mator of the df of X* is depicted, together with the 95% pointwise confidence
band, which was calculated according to (2). As parametric information on U*,
we have taken the Beta(6,1) distribution, adapted to the support (—5,15). It
is important to remark that, by definition of childhood cancer, the support of
X* is (0,15), and hence our sampling information reduces to the births which
took place in 1984 and afterwards. For comparison purposes, we also included
in Figure 2, left, the Efron-Petrosian NPMLE.
In Figure 2, right, we depict the NPMLE of the df of U* (which is doubly trun-
cated by (X* — 5, X*)) together with the fitted Beta(6, 1) model, for which we
obtained § = 1.19 (standard error: 0.1817). Note that the estimators in the
left panel are constructed by inverse-weighting the data X;according to their
counterparts in the right panel. We also point out that the null hypothesis of a
uniform distribution for U* (that is, § = 1) is accepted at a 5% level; this can
be interpreted in terms of the stationarity of the birth dates for the individuals
who will develop the disease. As a consequence, there is no much observational
bias on the age at diagnosis in this case (see Remark 1).
When analyzing subgroups of individuals, however, we have found situations in
which there exists a clear sampling bias. This was the case for example for the
38 reported cases of neuroblastoma cancer (results not shown). Similarly, we
have confirmed the existence of a remarkable bias on the V/'s for the whole data
set, resembling the situation of simulated Model 2.1, see Figure 1. Hence, ac-
counting for an eventual observational bias may be a matter of much importance
in applications.

-Insert Figure 2-



In order to investigate the performance of the confidence limits in Figure
2, left, we have compared along 1000 trials the Monte Carlo standard devia-
tion spro(z) of the semiparametric estimator and the values of the asymptotic
approximation s4(z) = o (z) /4/n, and the mean and standard deviation of
sypc(x)/sa(z) for the nine deciles are reported in Table 10. We have taken
Model 2.2 and n = 500 for these simulations since it corresponds almost per-
fectly to the situation in Figure 2 (see Figure 1). From this Table 10 we see that
the asymptotic formula provides a good approximation of the standard error of
the semiparametric estimator at least up to quantile 0.70. At the right tail of
the distribution, however, some overestimation of the actual standard is appre-
ciated. As a consequence, the confidence band in Figure 2 could be somehow
inflated at the far right tail.

-Insert Table 10-

5 Technical proofs

Technical proofs of Theorems 2.1 and 2.2 follow standard arguments. For the
sake of completeness, here we provide the key steps of the proofs.

Proof to Theorem 2.1.

Under regularity, we have:

d Uz,Vz,0)
= l =
0 55 108 £:(0 Zaa G(X0) |,s
— 0 g(Ui, Vi; 0) — 0" g(U;, Vi; 0) 5
_ log I0ix Vii9) I g V) (G g
<365 GXG0) |y, L 0P B G(Xi0) 015( )

where we have used the mean value theorem and where @ is between 8 and
fy. Introduce the matrix 4, = —1 Zl 1 802 log g(U;, V;i;0)G(X;;0)~ |0 ~ S0

we have
N Uza ‘/;a 9)
An (9_90)_ Zao GXZ,G)
Since the conditional density of (U;, V;) given X; is g(u,v;00)G(X;;00) 1 (u <

X; <w) we have
// 0 g(u,v;0)
<xi<v 00 G(Xi50) [g_y,

G(X3;0)
g(u,v; )
T 9 //u<X < G Xzae)dUd

10

o=00 "=

Eoo | 56 G(Xi; 9)

dudv

| Xi
#=0p

I
=)




where we have assumed interchangeability of differentiation and integration.
Hence: Eg(Ula ‘/i: XZ) =0.

Besides, assuming interchangeability of differentiation and integration,

2 . .
a g(Ula‘/ue) |X7,
0=0q

log

~Eo | 552 G(Xi;0)

B g(u,v;6)
B //u<X <v 962 G Xue) dUdU
T
// 9 g(u,v;6) 2 g(u,v;6) G(X;;6p) dude
u<X;<v a9 G( Xz,g) =0, 00 G(Xy;0) =0 g(u,v;6p)
g(u,v;0)
= d d'U
//u<X <v lee) =0,
gwoi0)| [0, gwue)| |
g(u,v; g(u,v;
— log =——+—= dudv
//u<X <v 89 G Xua) 0=0, _80 & G(Xi§9) 090]
T
_ gwod) [0 gwuin)] ] gl
= o+ f /M <, 90 G0 |,y |08 G(Xz,(a) L] GO0y ™
= B, (801 G(X;0) > (801 G(X;;60) s RAE

so the information matrix I(6y) = Ej, [f(Ui, Vi, X:)E(U;, Vi, Xi)T] becomes

0 |y 9L Vi)

I(6o) = —Eon | 547 G(X:;0)

=00

Under regularity, we have A4,, — I(6y), so

n

—~ 1
6 — 60~ I(0)"' > (U, Vi, Xi)

i=1

and, by the CLT,

NG (5— 90) S N(0,1(8)Y)  in law.
Proof to Theorem 2.2.

Note that



For I we have:

© dF;(t) CdFT(t)
o Gsto) %)), Gen)
B dF’(t) T dF*(t)
B { G(t;60)  Jo G(t;eo)} (Bo) +

+ [P(60) " = P(65) "] P(80) P(60)

F(x36) — F(x) P(6o)

© dFy(t)
0 G(tE 90)-

By the SLLN we have that 13(60) foz G(t;00) LdF} (t) — P(6p) foz G(t;0) LdF*(t) =
F(z) w. p. 1, and hence II is asymptotically equivalent to

Mo~ PO Y g P e (@)
B 1 K I(X;<z)—F(z
- P(GO)EZ; G (X, 00) E"X”x

where n(t,z) = P(6y)(I(t < z) — F(x))G(t,0p)~'. For I introduce the function
0 (5 T AFx(t)
%(P(G) 0 G(t0>

) )
5 © 0G(t;0) dF*(t) [* dF:(t) aG dF*()
= PO” 0 20  G(t;6)? J, Gt0 — P / G(t;0)2’

W (z,6)

By the mean value we have, for some 8 between 8 and 0o,

b= = 10 [ 25 [ 25

= W (nd) (3-00).

Note that (under regularity) we have W (a:,g) — W (x,0) for each sequence

6 — 6y, where W (z;6) is the matrix in Theorem 2.2, namely

, [® 0G(:0) dF*(t) [T dF*(t) * 9G(t;0) dF*(t)
P(6) /0 06  G(t:0)% ), G(t;0) _P(e)/o 90  G(t;0)?

- /Ooo aGa(Z e G(tl; g [F@) — It <o)} dF(?).

W (z,0)

This shows that I ~ W (z, 00 (9 00) and hence

n

T~ W (o, 00) 1(00) > €U Vi X,

i=1
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In sum,
F(a;6) — F(a) ~ W (z,00)"1(00)"' izn;s(v;, Vi X+ izn;mxi,w)
and, by the CLT,
N (ﬁ(z; 9) — F(a:)) = N(0,0%(z)) in law,
where
o®(z) = Varg, [W(z,00)"I(80) " E(Us, Vi, X5) + n(Xi, z)] -

Since E90 [n(XZ,Q?)] = 07 E@o [£(U17 ‘/laXl) | Xl] :Qa and E90 I:é.(Ula ‘/ZaXZ)g(UZ: V;,aXl)T] =
1(6y), it is easily seen that

02(1‘) = W(xaao)TI(GO)W(x790) + E90 [n(Xlax)2] = U%(:L‘) + E90 [U(Xuﬂf)2] )

while

By, [n(Xi,2)°] = P(6s)"Ep, [(I(be;i);;);;(z)) ]
- TAEW) | gy [T AF®) " dF (1)
- { o Gty " @ o G(t:60) —2F(a:)/0 G(t;ﬁo)}

= o3(z).
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Tables and Figures

PT n  Deciles MSE(SP) MSE(EP) MSE(F0)
T 0.002061525 _ 0.002501928 _ 0.001763928
2 0.004360882  0.005616232  0.003535746
3 0.006532868  0.008791825  0.005062856
4 0.008465470  0.011780232  0.006492010
81% 50 5 0.010744836  0.015313579  0.008155081
6 0.012467664  0.018293383  0.009417968
7 0.013742171  0.020847448  0.010575092
8 0.013452420  0.022124487  0.010353295
9 0.012523448  0.022805056  0.009881422
1 0.0004605006 _ 0.0005834183 _ 0.0003965030
2 0.0009644717  0.0013419631  0.0007742867
3 0.0014673954  0.0021546637  0.0011621046
4 0.0020203275  0.0031082746  0.0016366977
81% 250 5 0.0026204136  0.0042121517  0.0021234243
6 0.0029918981  0.0052171106  0.0024414605
7 0.0033648650  0.0062948142  0.0028592649
8 0.0035624288  0.0072376022  0.0031989463
9 0.0035199741  0.0080021470  0.0033504125
T 0.0002155447 _ 0.0002904056 _ 0.0001807584
2 0.0004951456  0.0007152155  0.0003997071
3 0.0007966937  0.0012244044  0.0006110297
4 0.0010717383  0.0017311702  0.0008291346
81% 500 5 0.0013595858  0.0022541476  0.0010573720
6 0.0016508148  0.0028493750  0.0013230435
7 0.0019271126  0.0034747819  0.0016089230
8 0.0021161708  0.0040692894  0.0018204765
9 0.0021049021  0.0044711624  0.0019353243

Table 1: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 1.1. (Sample size n, proportion
of truncation PT).

15



PT n  Deciles MSE(SP) MSE(EP) MSE(F0)

1 0.003205087 0.004098422 0.002786051
2 0.005268108 0.006261627 0.004206696
3 0.006696844 0.007787114 0.005041426
4 0.007539667 0.008738120 0.005515241
80% 50 5 0.007798335 0.009009446 0.005656342
6 0.007288578 0.008532197 0.005281088
7 0.006823107 0.007836684 0.004993707
8 0.005843062 0.006688943 0.004401733
9 0.003665437 0.004133689 0.002844762
1 0.0006612811 0.0007401788 0.0005704673
2 0.0011054316  0.0012673141 0.0008702240
3 0.0014132606  0.0016158483 0.0010215962
4 0.0016154385  0.0018796395 0.0011028547
80% 250 5 0.0015849107  0.0018471389 0.0010887800
6 0.0014835090  0.0017447277  0.0010803251
7 0.0013203771 0.0015496812 0.0009956297
8 0.0010728513  0.0012337628 0.0008595568
9 0.0006518220  0.0007339265 0.0005764728
1 0.0003120416  0.0003602504 0.0002766546
2 0.0005149313  0.0006415407  0.0004045606
3 0.0006709098  0.0008446623 0.0004912223
4 0.0007257232  0.0009391137  0.0005099646
80% 500 5 0.0007586053  0.0009860204 0.0005285877
6 0.0007277505  0.0009313139 0.0005214042
7 0.0006724494  0.0008398698 0.0005021680
8 0.0005273762  0.0006345009 0.0004312750
9 0.0003424828  0.0003995011 0.0003063205

Table 2: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 1.2. (Sample size n, proportion
of truncation PT).
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PT n  Deciles MSE(SP) MSE(EP) MSE(F0)

1 0.001643361 0.001826674 0.001617875
2 0.003355181 0.003829595 0.003299569
3 0.004476626 0.005039243 0.004368294
4 0.004793375 0.005321404 0.004660045
7% 50 5 0.004961015 0.005571135 0.004782501
6 0.004945223 0.005437397 0.004709823
7 0.004373857 0.004716770 0.004248012
8 0.003448285 0.003633319 0.003323457
9 0.002102385 0.002182934 0.002042890
1 0.0003699743  0.0004009675 0.0003674355
2 0.0006148683  0.0007147792 0.0006022873
3 0.0008438507  0.0009896280 0.0008299906
4 0.0009957376  0.0011658171 0.0009813479
7% 250 5 0.0010278453  0.0011676031 0.0010152014
6 0.0010026198  0.0011193546 0.0009935872
7 0.0009102337  0.0009967867  0.0009010553
8 0.0007269902  0.0007931460 0.0007154419
9 0.0004328618  0.0004545924 0.0004262758
1 0.0001780884  0.0001920186 0.0001749993
2 0.0003065206  0.0003423694 0.0002999427
3 0.0003934577  0.0004459520 0.0003824862
4 0.0004777986  0.0005382140 0.0004629937
7% 500 5 0.0005015651 0.0005819730 0.0004880664
6 0.0005055059  0.0005813051 0.0004910243
7 0.0004660662  0.0005366701 0.0004536832
8 0.0003672294  0.0004171184 0.0003567809
9 0.0002039861 0.0002210477  0.0002002135

Table 3: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 1.3. (Sample size n, proportion
of truncation PT).

17



PT n  Deciles MSE(SP) MSE(EP) MSE(F0)

1 0.002756128 0.002843182 0.002504684
2 0.005741742 0.006169036 0.004858145
3 0.007566078 0.008418652 0.006068308
4 0.008116256 0.009188946 0.006159935
82% 50 5 0.007582895 0.009071123 0.005409582
6 0.007247459 0.008781476 0.005028898
7 0.006140689 0.007619646 0.004219278
8 0.004704445 0.005777274 0.003340843
9 0.003011730 0.003878136 0.002324548
1 0.0006807418  0.0007117903 0.0006448516
2 0.0011905385  0.0013069722 0.0010468952
3 0.0014523878  0.0016876455 0.0011520026
4 0.0017076320  0.0020382737  0.0012527151
82% 250 5 0.0016394125  0.0020223843 0.0010800891
6 0.0014859324  0.0018870870 0.0009264248
7 0.0012353703  0.0016329398 0.0007706206
8 0.0009740618  0.0012899735 0.0006340005
9 0.0005863008  0.0007491766 0.0004251185
1 0.0003660532  0.0003877299 0.0003344946
2 0.0005866765  0.0006861441 0.0005016258
3 0.0007175698  0.0008797747  0.0005690123
4 0.0007953163  0.0010352153 0.0005650214
82% 500 5 0.0008368848  0.0011034784 0.0005613380
6 0.0007377919  0.0009823821 0.0004790982
7 0.0006520586  0.0008537107  0.0004394912
8 0.0004701132  0.0006208146 0.0003270498
9 0.0002835636  0.0003509468 0.0002314125

Table 4: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 1.4. (Sample size n, proportion
of truncation PT).
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PT n  Deciles MSE(SP) MSE(EP) MSE(F0)

1 0.002338723 0.002622883 0.002121781
2 0.004129233 0.004980223 0.003494245
3 0.005742738 0.007501941 0.004654370
4 0.007507386 0.010353965 0.005987021
80% 50 5 0.008916953 0.012815505 0.006952554
6 0.009539072 0.014890884 0.007463607
7 0.010113182 0.016709066 0.007970725
8 0.010047823 0.017811123 0.008084181
9 0.009284608 0.018508854 0.007705560
1 0.000456180 0.0005249711 0.0004320292
2 0.000831028 0.0010391416 0.0007375843
3 0.001176654 0.0015957810 0.0009895059
4 0.001493068 0.0021930578 0.0011914535
80% 250 5 0.001877504 0.0028716680 0.0014562261
6 0.002177379 0.0034408979 0.0016677462
7 0.002293955 0.0038849495 0.0017679650
8 0.002402818 0.0041641200 0.0019276272
9 0.002174655 0.0040684373 0.0018668506
1 0.0002046008  0.0002294443 0.0001852800
2 0.0003983050  0.0004834413 0.0003383581
3 0.0005883101 0.0007714166 0.0004719512
4 0.0007923803  0.0010535405 0.0006189862
80% 500 5 0.0009679968  0.0012965262 0.0007535814
6 0.0010725547  0.0014963970 0.0008366527
7 0.0012592570  0.0017692816 0.0010034636
8 0.0012904023  0.0018442446 0.0011026186
9 0.0011690711 0.0017159248 0.0010669378

Table 5: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 1.5. (Sample size n, proportion
of truncation PT).

19



PT n  Deciles MSE(SP) MSE(EP) MSE(F0)

1 0.022404885 0.045594084 0.018490388
2 0.024503233 0.044865534 0.020270767
3 0.032486759 0.048896819 0.028455172
4 0.034998113 0.047797480 0.031139253
88% 50 5 0.027908672 0.037770787 0.024600942
6 0.019496239 0.026238071 0.016553085
7 0.012145830 0.016351242 0.010091269
8 0.006495243 0.008700548 0.005392628
9 0.002341388 0.003095843 0.002008335
1 0.0121041067  0.0223848545 0.0117419308
2 0.0171870249  0.0258557977  0.0164099578
3 0.0165201139  0.0232662978 0.0154892774
4 0.0131557457  0.0182123528 0.0118974900
88% 250 5 0.0098292503  0.0134045860 0.0086339675
6 0.0068030350  0.0091360734 0.0057766857
7 0.0041079031 0.0054709021 0.0033669327
8 0.0019914063  0.0026563129 0.0015796922
9 0.0006210185  0.0008114685 0.0004868327
1 0.0081730927  0.0175171374 0.0077169826
2 0.0107087347  0.0184297984 0.0101753062
3 0.0090210141 0.0150610888 0.0083696209
4 0.0070218726  0.0114885416 0.0063805859
88% 500 5 0.0051321210  0.0082448627  0.0045158575
6 0.0035244073  0.0055293217  0.0030031453
7 0.0021658743  0.0033106562 0.0017893906
8 0.0010492905  0.0015661037  0.0008573037
9 0.0003185259  0.0004595646 0.0002616082

Table 6: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 1.6. (Sample size n, proportion
of truncation PT).
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PT n  Deciless MSE(SP) MSE(EP) MSE(FO0)

1 0.019951458 0.05083268 0.008611647
2 0.026848915 0.05245271 0.010828164
3 0.028649233 0.05107925 0.010199766
4 0.027721640 0.05055763 0.010164008
75% 50 5 0.024536855 0.05011307 0.010660798
6 0.020311702 0.05058149 0.011120568
7 0.016901747 0.05124272 0.012462514
8 0.014123425 0.05112158 0.013067435
9 0.006360175 0.05051990 0.006298227
1 0.005671855 0.01524855 0.003434277
2 0.007075935 0.01495085 0.003643953
3 0.008356141 0.01494414 0.004206298
4 0.008727914 0.01453400 0.005175000
5% 250 5 0.008802001 0.01397055 0.006402457
6 0.009423967 0.01344969 0.008386406
7 0.010680300 0.01279897 0.010656285
8 0.011727498 0.01195224 0.012072659
9 0.005905551 0.01144145 0.006012630
1 0.006666588 0.007032078  0.001722100
2 0.020947175 0.007110407  0.002215478
3 0.034679305 0.007493308  0.003065115
4 0.034917055 0.007663500  0.004265499
75% 500 5 0.026043511 0.007710129  0.005839187
6 0.013169883 0.007592489  0.007793968
7 0.002742600 0.007364631 0.010183209
8 0.001639729 0.006730566  0.011738457
9 0.003346154 0.006165853  0.005967015

Table 7: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 2.1. (Sample size n, proportion
of truncation PT).
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PT n  Decils MSE(SP) MSE(EP) MSE(F0)
T 0.004760624  0.003344468 _ 0.0018248
2 0.010151958  0.007000935  0.0032980
3 0.013932303  0.009912258  0.0039784
4 0.015960945  0.012009022  0.0046872
75% 50 5 0.015804086  0.013167737  0.0048392
6 0.013632571  0.013639357  0.0045700
7 0.010423768  0.013382892  0.0038996
8 0.006592271  0.011517173  0.0028600
9 0.003097190  0.007558132  0.0018792
1 0.0009581576 _ 0.0004867772 _ 0.000363568
2 0.0022491909  0.0009275727  0.000651888
3 0.0033527567  0.0012455409  0.000850256
4 0.0039056644  0.0014435148  0.001038560
75% 250 5 0.0037282665  0.0014132206  0.001005504
6 0.0032595586  0.0013991997  0.000984464
7 0.0024715950  0.0012702681  0.000864368
8 0.0015001175  0.0010560455  0.000705072
9 0.0005944791  0.0005435971  0.000370624
T 0.0004388828 _ 0.0002269796 _ 0.000186032
2 0.0011374353  0.0004904380  0.000359636
3 0.0015451974  0.0005727416  0.000406516
4 0.0018451360  0.0006748815  0.000495724
75% 500 5 0.0018560337  0.0006790248  0.000523612
6 0.0016470770  0.0006552353  0.000497228
7 0.0012445665  0.0005955961  0.000444732
8 0.0007602557  0.0004673307  0.000328308
9 0.0003028591  0.0002689372  0.000181004

Table 8: MSE of the semiparametric estimator (SP), the Efron-Petrosian
NPMLE (EP), and the ideal estimator with perfect knowledge on the bias-
ing function (F0), along 1000 trials for Model 2.2.(Sample size n, proportion of

truncation PT).

n Models 61 B
1.1 0.01705371(0.1514354) 0.01585983 (0.1443526)
1.2 0.01726363 (0.1497229) 0.02933369 (0.1495772)
1.3 0.01749347 (0.1460744) 0.02417042 (0.1514656)
1.4 0.02186703 (0.1474750) 0.02048321 (0.1430628)
50 1.5 0.02706971 (0.1552804) 0.01079327 (0.1445023)
1.6 0.02180327 (0.1449595) 0.01996355(0.1423285)
2.1 0.02899540 (0.3013396)
2.2 0.03638238 (0.4554813)
1.1 0.004412362 (0.0667142) 0.002932107 (0.0630119)
1.2 0.004521573 (0.06132066) 0.005129794 (0.0634064)
1.3 0.004876636 (0.06022638) 0.001160238 (0.06304874)
1.4 0.001231379 (0.06294079) 0.003617618 (0.0664989)
250 1.5 0.004666796 (0.06252818) 0.003306503 (0.06489206)
1.6 0.003802629 (0.06437469) 0.0009008375 (0.06324714)
2.1 -0.02029049 (0.1324506)
2.2 0.02308238 (0.1993036)
1.1 0.001510942 (0.04522862) 0.00257935 (0.04530109)
1.2 0.0006533051 (0.04351268) 0.001897150 (0.04442708)
1.3 0.001790503 (0.04461787) 0.002274069 (0.04564226)
1.4 0.002067952 (0.04379179) 0.001343955 (0.04421807)
500 1.5 0.004440153 (0.04496469) -0.0003432533 (0.04393165)
1.6 0.002948612 (0.04498032) 0.0001128553 (0.04477341)
2.1 -0.5619712 (0.06346337)
2.2 0.009266967 (0.1393680)

Table 9: Bias and standard deviation (in brackets) of the estimated parameters

for the simulated models.
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Deciles  Mean Sy (2)/Sa(z)  sd Spe(z)/Sa(z)

1 1.0550 0.2424487
2 1.1330 0.2526269
3 1.1170 0.2434006
4 1.1470 0.2502776
5 1.1460 0.2532571
6 1.1170 0.2531902
7 1.0360 0.2476896
8 0.8911 0.2390539
9 0.6544 0.2262604

Table 10: Mean and standard deviation of syrc(z)/sa(x) along 1000 trials of
Model 2.2 with n = 500.

23



Model 1.1 Model 1.2

02 04 06 08 10 02 04 06 08 10

Model 1.3 Model 1.4

050 060  0.70 00 02 04 06 08

24



Model 1.5 Model 1.6

(@]

Q-
02 04 06 08 1.0 00 01 02 03 04 05

Model 2.1 Model 2.2

o] [00]

o | o |

< <

o | o |

o | o |_

o O T T T T 1
00 02 04 06 08 1.0 02 04 06 08 10

Figure 1: Observational bias for the simulated models: target F (dashed line)
and observable lifetime distribution approximated by the empirical df F}; of a
single sample with n=5000 (solid line).
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Figure 2: Left: The semiparametric estimator of the cumulative df for the age
at diagnosis(solid line) and 95% pointwise confidence band (dotted lines);the
Efron-Petrosian NPMLE is indicated. Right: Fitted beta distribution for V*
(solid line) and corresponding Efron-Petrosian NPMLE (dashed line). Child-
hood cancer data.
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