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Abstract

Let (T1, T2) be gap times corresponding to two consecutive events, which are
observed subject to random right-censoring. In this paper a semiparametric
estimator of the bivariate distribution function of (T1, T2) and, more generally,
of a functional E [ϕ(T1, T2)] is proposed. We assume that the probability of
censoring for T2 given the (possibly censored) gap times belongs to a

parametric family of binary regression curves. We investigate the conditions
under which the introduced estimator is consistent. We explore the finite

sample behavior of the estimator through simulations. The main conclusion of
this paper is that the semiparametric estimator may be much more efficient
than purely nonparametric methods. Real data illustration is included.

Key Words and Phrases: bivariate censoring, Kaplan-Meier, presmoothing,
recurrent events, semiparametric censorship model

1 Introduction

The statistical analysis of consecutive gap times is an issue of much importance
in a number of fields, including engineering, economy, epidemiology, and survival
analysis. Most of the times, one will be interested in describing not only the
marginal distribution of the gap times but also the correlation structure among
them. This happens, for example, when analyzing recurrent event data, which
arise when each individual may go through a well-defined event several times
along his history. Then, the inter-event times are referred to as the gap times,
and they are of course determined by the times at which the recurrences take
place (i.e. the recurrence times). See Cook and Lawless (2007) for an up-to-
date revision of statistical methods for recurrent event data. In this paper, the
interest is focused on a given couple of (successive) gap times. In our real data
example in Section 4, these will be the time up to first recurrence and the time
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from first to second recurrence for bladder cancer patients. In order to formalize
the discussion, we now introduce our notation.

Let (T1, T2) be a pair of gap times of successive events, which are ob-
served subject to random right-censoring. Let C be the right-censoring vari-
able, assumed to be independent of (T1, T2), and let Y = T1 + T2 be the to-

tal time. Due to censoring, rather than (T1, T2) we observe
(
T̃1, T̃2,∆1,∆2

)
,

where T̃1 = T1 ∧ C, ∆1 = I(T1 ≤ C) and T̃2 = T2 ∧ C2, ∆2 = I(T2 ≤ C2),
where C2 = (C − T1) I (T1 ≤ C) is the censoring variable for the second gap
time. Note that ∆2 = 1 implies ∆1 = 1. Hence, ∆2 = ∆1∆2 = I (Y ≤ C)

is the censoring indicator pertaining to the total time. We put Ỹ = Y ∧ C.

Let
(
T̃1i, T̃2i,∆1i,∆2i

)
, 1 ≤ i ≤ n, be iid data with the same distribution as

(
T̃1, T̃2,∆1,∆2

)
. Since the censoring time is assumed to be independent of the

process, the marginal distribution of the first gap time T1 may be consistently

estimated by the Kaplan-Meier estimator based on the
(
T̃1i,∆1i

)
’s. Similarly,

the distribution of the total time may be consistently estimated by the Kaplan-

Meier estimator based on the
(
T̃1i + T̃2i,∆2i

)
’s. However, T2 and C2 will be

in general dependent (because the expected correlation between the gap times),
and hence the estimation of the marginal distribution of the second gap time
is not such a simple issue. Also, it is not clear in principle how the bivariate
distribution function F12(x, y) = P (T1 ≤ x, T2 ≤ y) can be efficiently estimated.
This issue was investigated, among others, by Wang and Wells (1998), Lin et
al. (1999), Wang and Chang (1999), Peña et al. (2001), van der Laan et al.

(2002), Schaubel and Cai (2004), van Keilegom (2004), or de Uña-Álvarez and
Meira-Machado (2008).

In this paper we propose a semiparametric estimator for the bivariate dis-
tribution function of the gap times, F12(x, y). For this, we assume that the
probability of censoring for T2 given the (possibly censored) gap times belongs
to a parametric family of binary regression curves. That is, letting m(x, y) =

P (∆2 = 1|T̃1 = x, Ỹ = y), it is assumed that m(x, y) follows some paramet-
ric model. In Section 2 we will see that, in essence, this implies assuming a
parametric (smooth) model for m1(x, y) = P (∆2 = 1|T̃1 = x, Ỹ = y,∆1 = 1).

Note that, since T̃1, Ỹ , ∆1, and ∆2 are observed, this assumption is testable in
practice. On the basis of this parametric assumption, we are able to introduce
a new estimator. Basically, the new method uses a presmoothed version of the
Kaplan-Meier estimator (see e.g. Dikta, 1998) pertaining to the distribution
of the total time (the Y ) to weight the bivariate data. In the limit case of
no presmoothing, the estimator we propose reduces to that in de Uña-Álvarez
and Meira-Machado (2008), which was shown to have nice properties. However,
the introduction of parametric presmoothing may greatly reduce the variance
in the estimation, particularly at the right tail of the (bivariate) distribution or
for heavy censoring on T2. This will become clear below.
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The idea of presmoothing the Kaplan-Meier estimator through a parametric
model goes back to Dikta (1998), who termed this method as ’semiparamet-
ric censorship modeling’. See also Dikta (2000, 2001) and Dikta et al. (2005).
Parametric presmoothing with covariates was considered by de Uña-Álvarez and
Rodŕıguez-Campos (2004), Yuan (2005), or Iglesias-Pérez and de Uña-Álvarez
(2008). All these references conclude that the presmoothed (semiparametric)
estimators have improved variance when compared to purely nonparametric esti-
mators. In this paper we adapt the main ideas in de Uña-Álvarez and Rodŕıguez-
Campos (2004) to the case in which the ’covariate’ is the first gap time, which
can be eventually censored.

The paper is organized as follows. In Section 2 we introduce the new semi-
parametric estimator for the joint distribution function of (T1, T2) and we estab-
lish its consistency. More generally, we prove consistency for an estimator of a
functional of the form S (ϕ) = E [ϕ(T1, T2)], where ϕ is a given transformation
of the vector of gap times. Note that in the case in which ϕ is the indicator of the
event {T1 ≤ x, T2 ≤ y}, the expectation S (ϕ) reduces to F12(x, y). In Section
3 we investigate the finite sample performance of the semiparametric estimator
of F12(x, y) in a simulated scenario, while Section 4 is devoted to the analysis
of real medical data. Main conclusions and some final remarks are reported in
Section 5. The technical proofs are collected in the Appendix.

2 The estimator: consistency

Let Ỹi = T̃1i + T̃2i be the i−th recorded total time, and let Wi be the Kaplan-
Meier weight attached to Ỹi when estimating the marginal distribution of Y

from the
(
Ỹi,∆2i

)
’s. That is,

Wi =
∆2i

n−Ri + 1

i−1∏

Rj=1

[
1−

∆2j
n−Rj + 1

]
where Ri = Rank(Ỹi),

and where, by convention, the ranks of the censored Ỹi’s are higher than those for
uncensored values in the case of ties. In the uncensored case we have Wi = n

−1

for each i. In de Uña-Álvarez and Meira-Machado (2008) the following estimator
was proposed:

F̂12(x, y) =
n∑

i=1

WiI(T̃1i ≤ x, T̃2i ≤ y). (1)

These authors showed that this estimator is consistent whenever x+y is smaller
than the upper bound of the support of the censoring time. In general, one only
has (as usual)

lim
n→∞

F̂12(x, y) = P (T1 ≤ x, T2 ≤ y, T1 + T2 ≤ τH) ≡ F
0
12(x, y),
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where τH is the upper bound of the support of the distribution function H of Ỹ ,
assumed to be continuous throughout the paper. The estimator (1) was proved
to be more efficient than previous estimators, while being more natural at the
same time. Indeed, unlike other available estimators, it is an empirical distri-
bution assigning nonnegative mass to each pair of gap times. Note that this
estimator only assigns positive mass to those pairs of gap times with both com-
ponents uncensored. Now we will modify this estimator in order to incorporate
the semiparametric information.

Put m(x, y) = P (∆2 = 1|T̃1 = x, Ỹ = y), that is, the probability of uncen-
soring for the total time Y given the observable information on both gap times.
Note that this function is only defined for x ≤ y; indeed, assuming P (T2 = 0) =
0 (which of course holds under continuity), we have m(x, x) = 0, since the event{
T̃1 = Ỹ

}
corresponds exactly to ∆1 = 0, and since ∆1 = 0 implies ∆2 = 0.

This shows the discontinuous nature of the function m, and consequently pre-
vents us from using any smooth fit to this unknown curve. On the other hand,
for x < y, we obtain m(x, y) = P (∆2 = 1|T̃1 = x, Ỹ = y,∆1 = 1) ≡ m1(x, y),

since the event ∆1 = 1 is superfluous in the presence of T̃1 < Ỹ . Introduce the
presmoothed Kaplan-Meier weights through

Wi(m) =
m(T̃1i, Ỹi)

n−Ri + 1

i−1∏

Rj=1

[
1−

m(T̃1j , Ỹj)

n−Rj + 1

]
,

that is, each censoring indicator ∆2j , j = 1, ..., i, in Wi is replaced by the con-

ditional probability m(T̃1j , Ỹj). We assume that m(x, y) = m(x, y;β) where β
is a vector of parameters and

m(x, y;β) =

{
0 if x = y

m1(x, y;β) if x < y
,

and m1(., .;β) stands for a (smooth) parametric binary regression model (e.g.
logistic) for m1. In practice, β is replaced by some consistent estimator βn,
which typically will be computed by maximizing the conditional likelihood of

the ∆2’s given
(
T̃1, T̃2

)
, for those individuals with ∆1 = 1 (see e.g. Dikta,

1998, 2000). Thus, we introduce the parametrically presmoothed Kaplan-Meier
weights as

Wi(βn) =
m(T̃1i, Ỹi;βn)

n−Ri + 1

i−1∏

Rj=1

[
1−

m(T̃1j , Ỹj ;βn)

n−Rj + 1

]
,

wherem(x, y;βn) = I(x < y)m1(x, y;βn). Note that this definition ofm(x, y;βn)
mimics the discontinuous behavior of the true m. On the basis of these weights,
we introduce the new semiparametric estimator of F12(x, y) as

F̂ sp12 (x, y) =
n∑

i=1

Wi(βn)I(T̃1i ≤ x, T̃2i ≤ y). (2)
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Unlike for (1), the estimator F sp12 may attach positive mass to pairs of gap
times with a censored T2, while the weight attached to pairs with first gap time
censored remains to be zero. As a consequence, the differences between (2) and
(1) will be more evident when increasing the proportion of censoring on T2 for
the subpopulation ∆1 = 1.

More generally, we are concerned with the estimation of S (ϕ) = E [ϕ(T1, T2)]
for a given transformation ϕ. Specific transformations give the joint and the
marginal distributions of the gap times, the moments of these variables, or the
correlation coefficient. By noting S (ϕ) =

∫
ϕdF12, we introduce the following

estimator of this expectation:

Sn (ϕ) =

∫
ϕdF̂ sp12 =

n∑

i=1

Wi(βn)ϕ(T̃1i, T̃2i).

Note that this is just F̂ sp12 (x, y) when we take ϕ (u, v) = I (u ≤ x, v ≤ y). Next
result establishes the strong consistency of Sn (ϕ) under an integrability condi-
tion. We will also refer to the following assumption:

U : sup
x,y
|m1(x, y;βn)−m1(x, y)| → 0 w. p. 1,

which says that the function m1 can be accurately approximated (in a uniform
way) by some member of the parametric family m1(., .;β), see Dikta (1998,
2000) for further discussion on this.

Theorem 1 Assume P (T2 = 0) = 0. Assume that H is continuous, that U

hold, and that

∫
|ϕ(u, v)|F 012(du, dv)

m1(u, u+ v)(1−H(u+ v))ρ
<∞

is satisfied for some ρ > 0. Then, with probability 1

∫
ϕdF̂ sp12 →

∫
ϕdF 012.

Theorem 1 can be regarded as an adaptation of the Strong Law in Dikta
(2000) to the context of censored gap times. Moreover, the result remains valid
when using any presmoothing function m1n(x, y) satisfying assumption U, so
it is not restricted to parametric presmoothing. We also indicate here that the
integrability assumption in Theorem 1 is a consequence of our unknowledge on
the binary regression m1(x, y); indeed, under the stronger assumption

U ′ : sup
x,y

∣∣∣∣
m1(x, y;βn)

m1(x, y)
− 1

∣∣∣∣→ 0 w. p. 1,
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it is easily seen from the proofs in the Appendix that one can state Theorem 1
merely under

∫
|ϕ(u, v)|F 012(du, dv)

(1−H(u+ v))ρ
<∞,

which basically imposes the existence of the limit
∫
ϕdF 012.

Now, an application of Theorem 1 to ϕ (u, v) = I (u ≤ x, v ≤ y) leads to the

pointwise convergence of F̂ sp12 (x, y) to F
0
12(x, y). Then, a standard uniformity

argument gives the uniform consistency of the semiparametric estimator. This
is stated as a Corollary.

Corollary 2 Under the conditions of Theorem 1, with probability 1

sup
x,y

∣∣∣F̂ sp12 (x, y)− F 012(x, y)
∣∣∣→ 0.

From (2) we can obtain an estimator for the marginal distribution of the
second gap time, F2(y) = P (T2 ≤ y), namely

F̂ sp2 (y) = F̂
sp
12 (∞, y) =

n∑

i=1

Wi (βn) I(T̃2i ≤ y). (3)

Note that F̂ sp2 (y) is not Dikta (1998)’s presmoothed Kaplan-Meier estimator

based on the
(
T̃2i,∆2i

)
’s. This is because the weights Wi (βn) are based on the

Ỹi-ranks rather than on the T̃2i-ranks. Indeed, since T2 and C2 are expected
to be dependent, the ordinary Kaplan-Meier estimator of F2 will be in general
inconsistent. As for (2), in general we have (assuming continuity for H)

lim
n→∞

F̂2(y) = P (T2 ≤ y, T1 + T2 ≤ τH) ≡ F
0
2 (y),

and again the restriction T1 + T2 ≤ τH plays a role. Hence, it is interesting
to discuss the conditions under which both estimators F̂ sp12 (x, y) and F̂

sp
2 (y)

converge to their respective targets.

Let F and G denote the distribution functions of Y and C, respectively. Let
τF be the upper bound of the support of F , and similarly define τG. Assume
again that H is continuous (see de Uña-Álvarez and Meira-Machado, 2008, for
a more general discussion). In essence, two different situations are possible.

(A) If τF ≤ τG, then we get that F̂
sp
12 (x, y) is consistent for any (x, y). (B) If

τG < τF , then τH < τF and consistency is only ensured for x+ y ≤ τH . This
is not surprising, since in this case relevant information on F is missing on the
whole interval (τG, τF ]. The bivariate estimators proposed in Wang and Wells
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(1998), Lin et al. (1999) and de Uña-Álvarez and Meira-Machado (2008) suffer
from the same problem. Similar comments hold for (3). However, note that in

this latter case, to get consistency of F̂ sp2 (y) in situation (B) one should require
P (T1 ≤ τH − y) = 1, a condition that will typically fail for y at the right tail of
F2. Specifically, if τ1 stands for the upper bound of the support of T1, we have
F̂ sp2 (y) → F2(y) w.p. 1 for y ≤ τH − τ1. The practical consequences of these
issues will be more clearly seen when analyzing the real medical data in Section
4.

3 Simulation study

In this Section we investigate the performance of the proposed estimator F̂ sp12 (x, y)
through simulations. The simulated scenario is the same as that described in
Lin et al. (1999) and de Uña-Álvarez and Meira-Machado (2008). To be precise,
the gap times (T1, T2) were generated according to the bivariate distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]

where the marginal distribution functions F1 and F2 are exponential with rate
parameter 1. This corresponds to the so-called Farlie-Gumbel-Morgenstern cop-
ula, where the single parameter θ controls for the amount of dependency be-
tween the gap times. The parameter θ was set to 0 for simulating independent
gap times, and also to 1, corresponding to 0.25 correlation between T1 and T2.
An independent uniform censoring time C was generated, according to models
U [0, 4] and U [0, 3]. The first model resulted in 24% of censoring on the first
gap time, and in 47% of censoring on the second gap time. The second model
increased these censoring levels to 32% and about 57%, respectively. Sample
sizes 50, 100, 250 and 500 were considered. In each simulation, 1,000 samples
were generated.

We considered as (x, y) pairs four different points, corresponding to the four
different combinations of the percentiles 20% and 80% of the marginal distri-
butions of the gap times. In this manner, we were able to explore the relative
behavior of the estimator at the different corners of the joint distribution. As a
measure of efficiency, we took the Mean Squared Error (MSE) of F̂ sp12 (x, y) along
the 1,000 trials. In the simulations, the MSE’s were mainly determined by the
variances, while the bias terms (squared) were of a smaller order of magnitude.
In Tables 1 and 2 we report the MSE’s attained by the proposed estimator when
based on several presmoothing functions. The row labeled with m corresponds
to presmoothing with the true function m(x, y) = P (∆2 = 1|T̃1 = x, Ỹ = y).
This is unrealistic in practice, because this function will be typically unknown,
but the figures are relevant because they represent the optimal situation in which
the presmoothing function is ’perfectly estimated’ (so the attained MSE’s are
expected to be lower bounds for the error of any realistic estimator). In the
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simulated models the function m is given by (for x < y)

m(x, y) =
1

1 + η(x, y)
, where η(x, y) =

λG(y)

λ2|1(y − x|x)
,

and where λG(.) and λ2|1(.|x) stand for the hazard rate functions of C and T2
given T1 = x, respectively. Note that λG(y) = 1/(τG − y) when C ∼ U [0, τG]
and that λ2|1(.|x) is given by

λ2|1(y − x|x) =
2 + 4 exp(−y)− 2 exp(−x)− 2 exp(−y + x)

2 + 2 exp(−y)− 2 exp(−x)− exp(−y + x)
if θ = 1,

being 1 when θ = 0.

C ∼ U [0, 4] C ∼ U [0, 3]
n 50 100 250 500 50 100 250 500
m(.;β) 0.7024 0.3247 0.1244 0.0708 0.7347 0.3293 0.1309 0.0663
m(.; γ) 0.7250 0.3411 0.1352 0.0786 0.7582 0.3444 0.1380 0.0725
m 0.6749 0.3095 0.1246 0.0690 0.6495 0.2900 0.1186 0.0591
KM 0.8298 0.3987 0.1604 0.0865 0.8408 0.4094 0.1579 0.0839

m(.;β) 2.9085 1.4435 0.5471 0.2989 3.0520 1.4900 0.5476 0.2821
m(.; γ) 2.9595 1.4500 0.5526 0.3080 3.0670 1.4964 0.5507 0.2842
m 2.6497 1.2990 0.5148 0.2759 2.5405 1.2782 0.4842 0.2549
KM 3.4877 1.7482 0.6752 0.3537 3.7107 1.9175 0.7235 0.3641

m(.;β) 2.9347 1.3820 0.5378 0.2664 3.2162 1.4967 0.5657 0.2922
m(.; γ) 2.9575 1.3994 0.5486 0.2737 3.2462 1.5109 0.5742 0.2970
m 2.7510 1.2487 0.5123 0.2499 2.7115 1.2622 0.5006 0.2511
KM 3.5112 1.6836 0.6582 0.3406 3.9618 1.8774 0.7539 0.3862

m(.;β) 6.8489 3.4705 1.4054 0.6695 10.211 4.7643 2.0116 0.9723
m(.; γ) 6.9993 3.5538 1.4405 0.7007 10.447 4.9738 2.1642 1.0673
m 5.4665 2.8684 1.1615 0.5388 6.5614 3.0111 1.2640 0.5878
KM 8.3579 4.3358 1.7308 0.8117 13.083 7.1644 2.8870 1.3184

Table 1. 103 ×MSE of F̂ sp12 (x, y) for several presmoothing functions (see text)
along 1,000 simulated samples, case θ = 0. From top to bottom:

(x, y) =
(
F−11 (0.2), F−12 (0.2)

)
,
(
F−11 (0.8), F−12 (0.2)

)
,
(
F−11 (0.2), F−12 (0.8)

)
,

and
(
F−11 (0.8), F−12 (0.8)

)
.

Secondly, the row labeled with m(.;β) corresponds to a presmoothing based
on a certain parametric family which contains the true m. Specifically, we
consider a logistic model with a preliminary transformation of the variables
T̃1 = x and Ỹ = y, as follows. When θ = 0, for x < y we took

m(x, y;β) =
1

1 + exp(β0 + β1ψ(x) + β2ψ(y))

8



where ψ(s) = lnλG(s). Hence, the true m corresponds to β0 = β1 = 0, β2 = 1
in this case. When θ = 1, we just took (x < y)

m(x, y;β) =
1

1 + exp(β0 + β1 ln(η(x, y)))
,

so again the true presmoothing function is included in the parametric family,
specifically it corresponds to β0 = 0 and β1 = 1. In order to investigate the
robustness of the proposed estimator with respect to miss-specifications of the
binary regression family, we considered also presmoothing via a standard lo-
gistic model, without any preliminar transformation of the gap times. This is
labeled with m(.; γ) in Tables 1 and 2. Note that the true m does not belong to
this parametric family. Finally, we also report in Tables 1 and 2 the errors per-
taining to the estimator in de Uña-Álvarez and Meira-Machado (2008), which
corresponds to the situation with no presmoothing at all. This is labeled in the
Tables as KM .

C ∼ U [0, 4] C ∼ U [0, 3]
n 50 100 250 500 50 100 250 500
m(.;β) 1.2979 0.5735 0.2168 0.1173 1.0919 0.5928 0.2437 0.1153
m(.; γ) 1.2958 0.5708 0.2162 0.1174 1.1091 0.6047 0.2486 0.1180
m 1.2600 0.5572 0.2158 0.1141 1.0253 0.5841 0.2335 0.1120
KM 1.4068 0.6267 0.2408 0.1345 1.2210 0.6647 0.2776 0.1313

m(.;β) 3.0332 1.4798 0.5670 0.3137 3.0125 1.4339 0.6353 0.3242
m(.; γ) 3.2090 1.5668 0.6083 0.3311 3.2587 1.5223 0.6781 0.3655
m 2.9112 1.3844 0.5405 0.2969 2.7051 1.3348 0.5770 0.2857
KM 3.6242 1.8101 0.6789 0.3747 3.8507 1.8790 0.8021 0.4182

m(.;β) 3.0088 1.4905 0.6743 0.3225 3.3173 1.5772 0.6647 0.3621
m(.; γ) 3.0129 1.4956 0.6723 0.3233 3.3363 1.5768 0.6683 0.3621
m 2.8146 1.4273 0.6459 0.3079 3.0422 1.5135 0.6214 0.3390
KM 3.3812 1.6898 0.7565 0.3565 3.8003 1.8664 0.7748 0.4177

m(.;β) 6.6111 3.3523 1.4540 0.7006 9.2472 4.3998 1.8009 0.9804
m(.; γ) 6.8618 3.4152 1.4742 0.7402 10.233 4.8078 2.0860 1.2115
m 5.1991 2.7842 1.1823 0.5716 5.6046 2.6988 1.1484 0.6081
KM 8.0523 3.9276 1.6765 0.7967 13.055 6.8854 2.7521 1.6888

Table 2. 103 ×MSE of F̂ sp12 (x, y) for several presmoothing functions (see text)
along 1,000 simulated samples, case θ = 1. From top to bottom:

(x, y) =
(
F−11 (0.2), F−12 (0.2)

)
,
(
F−11 (0.8), F−12 (0.2)

)
,
(
F−11 (0.2), F−12 (0.8)

)
,

and
(
F−11 (0.8), F−12 (0.8)

)
.

Some expected features are clearly seen in the Tables. For example, we see
that the MSE goes down with an increasing sample size, while it increases at the
right corners of the joint distribution, where the censoring effects are stronger.
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Besides, results for C ∼ U [0, 3] are in general worse than those for C ∼ U [0, 4],
although this is not true for all the situations; a possible explanation is that
the presmoothing induces a kind of ’informative censoring’ model, a discussion
that goes back at least to Cheng and Lin (1987). On the other hand, the MSE
tends to be a bit larger when introducing some correlation between the gap
times (case θ = 1), although some exceptions are found at the right corner of
the joint distribution.

More interestingly, from Tables 1 and 2 we see that the minimum MSE is
attained by the estimator which makes use of the true m. Compared to the
estimator without any presmoothing (KM), it is seen that the relative efficiency
of this one is about 67%-75% when taking the average along the four considered
(x, y) points for each simulated scenario. However, a more careful inspection
of the results reveals that, in special cases, this relative efficiency is as small
as 42%. As expected, these cases correspond to the right corner of the joint
distribution ((x, y) =

(
F−11 (0.8), F−12 (0.8)

)
) and the heavily censored case. As

discussed above, in practice one has to estimate the function m. In Tables 1 and
2, the best performance among the realistic versions of F̂ sp12 (x, y) corresponds to
the estimator based on the right parametric family of binary regression curves.
The relative efficiency of KM with respect to this estimator is about 82%-85% on
average, but again in some extreme situations (right corner, heavy censoring) it
goes down to only 67%. Finally, we see that the presmoothed estimator based
on the wrong parametric model m(.; γ) is still (much) better than KM; the
practical message is that it is worthwhile doing some parametric presmoothing
even when we are not completely sure about the parametric family.

An interesting point to discuss is that of the relative benefits of presmooth-
ing when increasing the sample size. The figures in Tables 1 and 2 suggest
that there exist a first order improvement related to presmoothing. That is, if
the MSE of the KM estimator in de Uña-Álvarez and Meira-Machado (2008)
is MSE(KM) ∼ cKM/n, and if the MSE pertaining to the semiparametric
estimator is MSE(SP ) ∼ cSP/n, then we would have cSP /cKM < 1. This is
an interesting feature, since it is known that presmoothing ideas only lead to
second-order improvements of the error in a number of applications (see e.g.
Cao et al., 2005).

4 Real data illustration

In this Section we consider data from a cancer bladder study (Byar, 1980)
conducted by the Veterans Administration Cooperative Urological Research
Group. In this study, patients had superficial bladder tumors that were re-
move transurethrally. Many patients had multiple recurrences of tumors during
the study, and new tumors were removed at each visit. Here we analyzed the
n =85 individuals in the placebo and thiotepa treatment groups; these data
are listed in Wei et al. (1989). Only the first two recurrence times T1 and Y

10



(or the corresponding gap times T1 and T2 = Y − T1) are considered. Among
the 85 patients, 47 relapsed at least once (45% of censoring on T1) and, among
these, 29 had another recurrence (38% of extra censoring). The presence of a
reasonable amount of censored Y ’s among the uncensored T1’s suggests that
presmoothing could lead to an important reduction of variance in estimation.
We will quantify this below.
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Figure 1. Time to first recurrence vs. time to second recurrence for the 85
cases of bladder cancer. Triangles indicate censoring in both times, while

crosses indicate censoring on the second gap time.

In Figure 1 we represent the 85 observed values for the recurrence times(
T̃1, Ỹ

)
(months). Cases with both times censored are located on the line y = x.

On the other hand, 18 points among those out of this line (labelled with a cross)
correspond to observations with second gap time censored. From this Figure it is
not clear in principle which type of correlation (if any) exists between both gap
times T1 and T2. Figure 2 depicts the survival curves corresponding to T1 (solid
line) and Y (dashed line). It is clearly seen that the first recurrence is almost
restricted to the first 3 years after randomization, while a large proportion of
patients (about 60%) do not relapse in 5 years.
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Figure 2. Kaplan-Meier curves for the bladder cancer data: time to first
recurrence (solid line) and time to second recurrence.

In order to compute the semiparametric estimator (2), we have fitted a logis-

tic model to the binary regressionm1(x, y) = P (∆2 = 1|T̃1 = x, Ỹ = y,∆1 = 1).

The results indicate that Ỹ is highly significative (p=0.002590) while T̃1 does

not reach significance (p=0.339851). The coefficient of Ỹ in the model is nega-
tive, thus censoring probability increases with the observed time up to second
recurrence. With this parametric presmoothing we computed the estimator
F̂ sp12 (x, y) for x = 5, 10, 15, 20, 30 months and y = 5, 10, 20 months. Results are
displayed in Table 3, top. For comparison, we also report in this Table 3 (bot-

tom) the values of the estimator corresponding to no presmoothing, F̂12(x, y).
From this Table we see that both methods provide similar point estimates. We
estimate the standard errors for both estimators through the simple bootstrap,

which resamples (with replacement) each
(
T̃1i, T̃2i,∆1i,∆2i

)
with probability

1/n. The results in Table 3 (based on 5000 bootstrap resamples) reveal that: (a)
the errors increase at the right corner of the joint distribution of the gap times,
where the censoring effects are stronger; and (b) the semiparametric estimator
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has smaller standard errors, with a minimum relative efficiency of F̂12(x, y) of
about 86% (91% when averaging the 15 cases of (x, y)).

F̂ sp12 (x, y) y = 5 y = 10 y = 20
x = 5 .0454 (.0216) .0783(.0283) .1896 (.0433)
x = 10 .0906 (.0294) .1455 (.0377) .2568 (.0488)
x = 15 .1133 (.0335) .1683 (.0412) .2796 (.0514)
x = 20 .1482 (.0374) .2031 (.0440) .3144 (.0528)
x = 30 .1965 (.0462) .2715 (.0554) .3828 (.0604)

F̂12(x, y) y = 5 y = 10 y = 20
x = 5 .0372 (.0210) .0761 (.0298) .1921 (.0462)
x = 10 .0775 (.0303) .1439 (.0401) .2598 (.0513)
x = 15 .1056 (.0354) .1719 (.0436) .2879 (.0534)
x = 20 .1359 (.0402) .2023 (.0469) .3183 (.0551)
x = 30 .1920 (.0488) .2829 (.0574) .3989 (.0624)

Table 3. Top: Semiparametric estimator of the joint distribution function of
the gap times F12(x, y) for the colon cancer data (standard errors between

brackets). Bottom: Same information for the estimator without presmoothing.

In Figure 3 we report the semiparametric estimator of the distribution func-
tion of T2 for the individuals with a recurrence during the first x = 30 months
of follow-up. Note that this conditional distribution is

F2|1(y|x) = P (T2 ≤ y|T1 ≤ x) =
F12(x, y)

F1(x)
,

where F1(x) = P (T1 ≤ x), which can be estimated by plugging-in F̂
sp
12 (x, y) in

the numerator and the (ordinary) Kaplan-Meier for the first gap time in the
denominator. We also report in this Figure 3 the estimator constructed with
F̂12(x, y). The main difference between both curves is that the semiparametric
estimator has more jump points, explicitly the censored values of T2 for which
condition T1 ≤ 30,∆1 = 1 is satisfied. This implies that the mass is more
distributed, being the reason behind the variance reduction which is achieved by
presmoothing. The vertical line at y = 29 in Figure 3 indicates that, according
to our remarks to Theorem 1, both estimators should only be interpreted as
empirical versions of F τH2|1 (y|x) = P (T2 ≤ y, Y ≤ τH |T1 ≤ x) from that point

on. Note that τH = 59 in our application and hence Y ≤ τH is not superfluous
when x = 30 and y > 29.
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Figure 3. Semiparametric estimator (solid line) and no-presmoothed estimator
(dashed line) of the distribution of time from first to second recurrence, for the

subgroup with a recurrence in the first 30 months after randomization.

Finally, we give in Figures 4 and 5 two other plots which depict the joint
behavior of both gap times. In Figure 4, two estimated distribution functions
of T2 based on the semiparametric estimator are plotted. The solid line cor-
responds to the subgroup T1 ≤ 10 months, while the dashed line refers to the
subpopulation 10 < T1 ≤ 30. This Figure suggests a negative correlation be-
tween both gap times. Figure 5 depicts the surface F̂ sp12 (., .), and again suggests
that large times to first recurrence are connected with relatively small values of
T2.
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Figure 4. Semiparametric estimator of the distribution of time from first to
second recurrence: relapse in the first 10 months (solid line) and relapse
between month 10 and 30 (dashed line). Negative correlation between both

gap times suggested.
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Figure 5. Cumulative joint distribution of the two gap times, based on the
semiparametric estimator.

5 Conclusions and final remarks

In this paper we have introduced a new semiparametric estimator F̂ sp12 (x, y)
of the bivariate distribution of gap times which are observed under censoring.
The semiparametric estimator is based on a parametric specification of the con-
ditional probability of censoring for the second gap time, given the available
information. This specification can be tested in practice. We have derived the
consistency of the proposed estimator and, more generally, of an empirical func-
tional based on it. We have verified through simulations that the semiparametric
estimator may be much more efficient than other available estimators. This will
be particularly true at points in which there is a large proportion of censored
T2 among those with ∆1 = 1. Besides, we have seen that the method is robust
against miss-specifications of the parametric model. A real data illustration has
been provided.

An issue of much practical interest is that of the construction of confidence
limits from F̂ sp12 (x, y). This could be done in a number of ways. For example, a
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central limit theorems and mathematical derivation of the asymptotic variance
seems to be possible following the ideas in Dikta et al. (2005), see also Stute
(1996a) and references therein. Besides, variance estimation could be performed
on the basis of the jackknife as in Stute (1996b), or through other resampling
methods such as the bootstrap. In Section 4 we have used the simple bootstrap
to approximate the standard errors of the estimators, and a general result of
the validity of the bootstrap in our setup would be of interest. These problems
are currently under investigation.

The proposed estimator falls in the scope of the so-called presmoothing meth-
ods, which are based on the idea of replacing the censoring indicators by some
smooth fit. This very idea could be applied to more complex multi-state models,
as the k−th state progressive model or the illness-death model (see e.g. Meira-
Machado et al., 2009). In the first case, the censoring indicator for the total
survival time Y = T1 + ... + Tk should be replaced by a smooth (parametric)
fit to the probability of censoring given the observed (possibly censored) gap
times, and given that the k−1 first gap times are uncensored. We are exploring
the benefits of this method in real data applications, and we will provide the
corresponding results when more evidence on it is reached. There is some hope
that presmoothing ideas can be applied for the illness-death model too, when
the sojourn time in the first (’healthy’) state plays the same role as the first gap
time here. But this issue demands for more investigation.

Interestingly, nonparametric presmoothing is also possible for the proposed
methods, as the main consistency result remains valid. This avoids the problem
of choosing a proper parametric family for the binary regression. However, the
gains in efficiency when using a nonparametric binary regression curve should
be explored in detail. Typically, this nonparametric presmoothing will involve
the selection of several smoothing parameters, which may be a critical point in
the final performance of the estimator. In any case, this seems to be another
promising field of research.
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the Spanish Ministerio de Ciencia e Innovación and PGIDIT07PXIB300191PR
of the Xunta de Galicia.
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7 Appendix: Technical proofs

In this Section we give the technical proof to our main result (Theorem 1). We
will see that this proof is similar to that of Theorem 2.1 in de Uña-Álvarez and
Rodŕıguez-Campos (2004); here, the role of their covariate vector is played by
the first gap time, while the total time Y is taken as the ’response’. Note that,
since C is assumed to be independent of (T1, T2), the identifiability conditions
H1 and H2 in de Uña-Álvarez and Rodŕiguez-Campos (2004) automatically hold.
In our setup, these conditions read

H1. Y and C are independent
H2. P (Y ≤ C|T1, Y ) = P (Y ≤ C|Y )

which clearly follow from the independence between the censoring time and
the gap times.

In order to formalize things, introduce

Sn(m) =
n∑

i=1

Wi(m)ϕ(T̃i, T̃2i) =
n∑

i=1

Wi(m)ξ
ϕ(T̃i, Ỹi),

where Wi(m) are the presmoothed weights introduced in Section 2 and where
ξϕ(u, v) = ϕ(u, v − u). Note that this Sn(m) is an ’estimator’ of S (ϕ) =
E [ϕ(T1, T2)] = E[ξϕ(T1, Y )] based on the true m which in practice will be
unknown. Recall that the proposed semiparametric estimator of S (ϕ) is

Sn (ϕ) =

∫
ϕdF̂ sp12 =

n∑

i=1

Wi(βn)ϕ(T̃1i, T̃2i) =
n∑

i=1

Wi(βn)ξ
ϕ(T̃1i, Ỹi),

where Wi(βn) = Wi(mn) with mn(x, y) = m(x, y;βn) the presmoother based
on the parametric model. As in de Uña-Álvarez and Rodŕıguez-Campos (2004),
we proceed in two steps. First, we show the convergence of Sn(m) to

∫
ϕdF 012 =

E [ξϕ(T1, Y )I(Y ≤ τH)], and then we prove that the difference Sn (ϕ)− Sn(m)
goes to zero under appropriate conditions.

For proving the consistency of Sn(m) we need three Lemmas. The first
one states the supermartingale structure of Sn(m), which enables us to apply
powerful convergence results. The other two Lemmas allow for the identification
of the limit.

Let Ỹi:n be the i−th ordered statistic among the Ỹj ’s, and let T̃[1i:n] be the

first gap time corresponding to Ỹi:n, i.e., the i−th concomitant. Introduce the
sequence (Fn)n≥1, where

Fn = σ
(
T̃[1i:n], Ỹi:n, 1 ≤ i ≤ n, T̃1,n+1,Ỹn+1,...

)
.

Note that Sn(m) is adapted to Fn. Note also that Fn ↓ and set F∞ = ∩n≥1Fn
for the limit of Fn.
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Lemma 3 Assume that H is continuous. Then,

E [Sn(m) | Fn+1] = Sn+1(m)−
ξϕ(T̃[1,n+1:n+1], Ỹn+1:n+1)

n+ 1
×

×m(T̃[1,n+1:n+1], Ỹn+1:n+1)(1−m(T̃[1n:n+1], Ỹn:n+1)
n−1∏

j=1

[
1−

m(T̃[1j:n+1], Ỹj:n+1)

n− j + 1

]
.

In particular, for ϕ ≥ 0, (Sn(m),Fn)n≥1 is a reverse-time supermartingale.

Proof. The proof follows exactly the same steps as in the proof to Lemma
4.1 in de Uña-Álvarez and Rodŕiguez-Campos (2004), which in its turn is a
consequence of Lemma 2.1 in Stute (1993), Lemma 2.2 in Stute and Wang
(1993), and Lemma 2.1 in Dikta (2000).�

Lemma 3 allows for the application of the convergence result in Neveu
(1975), Proposition V-3-11. Indeed, the Hewitt-Savage 0-1 law ensures that
the limit S of Sn(m) is constant with probability 1. In order to determine S =
limn→∞E [Sn(m)], we will need the following lemma. This is a proper adapta-
tion to our context of Lemma 2.3 in Stute (1993). Introduce the notation

ϕn(t) =
n∏

i=1

[
1 +

1− m̃(Ỹi:n)

n− i+ 1

]I(Ỹi:n<t)
, where m̃(z) = E(∆2 | Ỹ = z),

and

gn(t) = E [ϕn(t)] ; g0(t) ≡ 1.

Finally,

ξ̃(z) = E
[
ξϕ(T̃1, Ỹ )∆2 | Ỹ = z

]
.

Lemma 4 Under the assumptions of Lemma 3 , we have

E [Sn(m)] = E
[
ξ̃(Ỹ )gn−1(Ỹ )

]
.

Proof. Similar to that in Stute (1993), Lemma 2.3, after noting that

E
[
m(T̃1, Ỹ ) | Ỹ = z

]
= m̃(z), E

[
ξϕ(T̃1, Ỹ )m(T̃1, Ỹ ) | Ỹ = z

]
= ξ̃(z).

Note that the fact that the ’covariate’ T̃1 is a censored version of the ’true
covariate’ T1 is not an issue here, since the outer expectation integrate this
variable out.�
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Now, by Stute and Wang (1993), we have

gn(t) ↑
1

1−G(t)
for each t such that H(t) < 1.

This fact together with Lemma 4 will allow for the identification of S.

Lemma 5 Under the assumptions of Lemma 3, we have with probability 1

Sn(m)→ S = lim
n→∞

E [Sn(m)] =

∫
ϕdF 012.

Proof. Assume ϕ ≥ 0 w.l.o.g. The general case is obtained by decomposing
ϕ into its positive and negative part. Lemma 5 and the monotone convergence
theorem give

S = E

[
ξ̃(Ỹ )

1

1−G(Ỹ )

]
= E

[
ξϕ(T̃1, Ỹ )∆2

1−G(Ỹ )

]
= E

[
ξϕ(T1, Ỹ )∆2

1−G(Ỹ )

]
=

∫
ϕdF 012,

where for the last equality we have used the independence between C and
(T1, Y ).�

For proving that the difference Sn (ϕ) − Sn(m) goes to zero, we need the
following result, which is a proper adaptation of Lemma 2.2 in Dikta (2000) to
our setup. Introduce for any pair of functions p(x, z) and q(x, z) with 0 ≤ q ≤ 1
the quantity

Sn(p, q) =
n∑

i=1

W i,n(p, q)ϕ(T̃[1i:n], Ỹi:n)

where

W i,n(p, q) =
p(T̃[1i:n], Ỹi:n)

n− i+ 1

i−1∏

j=1

[
1−

q(T̃[1j:n], Ỹj:n)

n− j + 1

]
.

The proof, which we omit, is based on martingale properties (as those described
in Lemma 3) of both Sn(p, q) and

ϕq,n(t) =
n∏

i=1

[
1 +

1− q̃(Ỹi:n)

n− i+ 1

]I(Ỹi:n<t)
, where q̃(z) = E(q(T̃1, Ỹ ) | Ỹ = z).

Lemma 6 Under assumptions of Lemma 3, we have with probability 1

Sn(p, q)→ S(p, q) ≡ E

[
ϕ(T̃1, Ỹ )p(T̃1, Ỹ ) exp

{∫ Ỹ

0

1− q̃

1−H
dH

}]
.

22



Assume now that condition U holds. Then, since bothm(x, y) andm(x, y;βn)
are zero for x = y, we have

sup
x,y
|m(x, y;βn)−m(x, y)| → 0 w. p. 1.

We have, for a given ε > 0,

0 ≤ m(T̃[1i:n], Ỹi:n;βn) ≤
∣∣∣mn(T̃[1i:n], Ỹi:n;βn)−m(T̃[1i:n], Ỹi:n)

∣∣∣+m(T̃[1i:n], Ỹi:n) ≤

≤ ε+m(T̃[1i:n], Ỹi:n)

eventually. Similarly, since a+ b ≥ |a| − |b| whenever a+ b ≥ 0, we eventually
have

m(T̃[1i:n], Ỹi:n;βn) ≥ m(T̃[1i:n], Ỹi:n)−
∣∣∣m(T̃[1i:n], Ỹi:n;βn)−m(T̃[1i:n], Ỹi:n)

∣∣∣ ≥

≥ m(T̃[1i:n], Ỹi:n)− ε.

Introduce the functions

M1,ε(x, z) = max(0,m(x, z)− ε), M2,ε(x, z) = min(1,m(x, z) + ε).

Assume ϕ ≥ 0 w.l.o.g. Since M2,ε(x, z) ≤ M1,ε(x, z) + 2ε, we get (with mn =
m(., .;βn))

Sn(mn) ≤ Sn(M2,ε,M1,ε) ≤ Sn(M1,ε) + 2εSn(1,M1,ε)

where we use the obvious notation Sn(q) = Sn(q, q). We also have

Sn(mn) ≥ Sn(M1,ε,M2,ε) ≥ Sn(M2,ε)− 2εSn(1,M2,ε).

Use Lemma 6 to obtain

S(M2,ε)− 2εS(1,M2,ε) ≤ lim inf
n→∞

Sn(mn) ≤ lim sup
n→∞

Sn(mn) ≤

≤ S(M1,ε) + 2εS(1,M1,ε)

where we put S(q) = S(q, q). Bounds for S(M2,ε)−2εS(1,M2,ε) and S(M1,ε)+
2εS(1,M1,ε) can be easily found as in Dikta (2000):

S(M1,ε) + 2εS(1,M1,ε) ≤

∫ ∫
ϕ(x, y)

(1−H(x+ y))ε
F 012(dx, dy) +

+2ε

∫ ∫
ϕ(x, y)

m(x, x+ y)(1−H(x+ y))ε
F 012(dx, dy),
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S(M2,ε)− 2εS(1,M2,ε) ≥

∫ ∫
ϕ(x, y)(1−H(x+ y))εF012(dx, dy)−

−2ε

∫ ∫
ϕ(x, y)

m(x, x+ y)
F 012(dx, dy).

Note that m(x, x + y) = m1(x, x + y) unless T2 has positive mass at zero, a
situation excluded by assumption P (T2 = 0) = 0. Let ε ↓ 0 and apply the
monotone convergence theorem to end with the proof of Theorem 1.�
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