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Studying the Bandwidth in k–Sample Smooth Tests
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Summary In this paper, the problem of bandwidth choice in smooth k-sample tests
is considered. Three different bootstrap methods are discussed and implemented. All the
methods persecute the bandwidth leading to the maximum power, while preserving the
level of the test. The relative performance of the methods is investigated in a simulation
study. Illustration through real medical data is provided. The main conclusion is that
the bootstrap minimum (BM) method provides a good compromise between statistical
power and conservativeness. Robustness of the methods with respect to the number of
bootstrap resamples and practical limitations are discussed.

Keywords: k–Sample tests; Kernel estimator; Bandwidth selection; Double Boot-
strap; Double Minimum; BM algorithm.

1. Introduction

Smoothing methods have become a very popular tool when exploring data, because
of their capability to estimate the population structure without any a priori type of
parametric (e.g. Gaussian) assumption. On the other hand, smoothing-based statistics are
a very natural way of testing the goodness-of-fit of the data to a given model specification.
However, it is recognized that the choice of the smoothing degree or bandwidth may
greatly influence the final shape of a smooth estimator, while having a big impact in
testing for significance too.

Many methods for the selection of the smoothing degree have been provided. Focus-
ing on the kernel density estimator (KDE), we only mention Park and Marron (1990),
Devroye (1997), Bowman and Azzalini (2001) or, more recently, Ahmad and Amezziane
(2007) for the access to a huge literature. The proposed methods look for a small error
when approximating the underlying population curve by the smooth estimate. The goal
in testing problems is different to that in nature, since one will be interested in (rather
than a good estimator) the construction of a powerful test statistic. Optimal data-driven
smoothing selectors in the sense of integrated deviations may not be appropriated to that
end. Still, methods for bandwidth choice in testing problems have received relatively lit-
tle attention in the related literature. Exceptions to this have been recently reviewed in
Gao and Gijbels (2008).

In this paper we consider smooth tests for the k-sample problem. Specifically, it is
assumed that k (continuous) populations are sampled independently, and that the test
statistic Th measures the discrepancy among the kernel density estimators pertaining to
each one of the samples. Here, h stands for the bandwidth or smoothing degree when
computing the kernel density estimators. Anderson et al. (1994) investigated the test
statistic based on the L2-norm for the two-sample problem, when using a fixed common
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bandwidth h for the two kernel density estimators. Louani (1998, 2000) studied large
deviations for the L1 and L∞ distances between a kernel density estimator and the true
density, and he proved that the Bahadur efficiency of the L1-based (resp. L∞-based)
smooth test is greater (resp. smaller) than that of the Kolmogorov-Smirnov one-sample
test. Cao and Lugosi (2005) analyzed minimum L1-distance automatic bandwidth choice
for the L1-based one-sample smooth test. Cao and Van Keilegom (2006) introduced a
new smooth test for the two-sample problem via empirical likelihood; the test statistic
involves a comparison of two kernel density estimators based on the same bandwidth h.
Cao and Van Keilegom (2006) showed that the choice of h influences the power of the
test to a great extent, and in practice they suggested to use the bandwidth leading to an
optimal (estimated) power over a given grid of smoothing levels.

Smooth k-sample tests were considered in Mart́ınez-Camblor et al. (2008); these authors
introduced the common area measure as a generalization of the L1-norm to the k-sample
case. Later, Mart́ınez-Camblor and de Uña-Álvarez (2009) compared the common area
test statistic to other type of discrepancy measures, including a different generalization
of the L1-distance and generalized L2 and L∞ distances too. These papers indicate that
(for the k-sample problem):

(a) Smooth tests may be more powerful than tests based on the comparison of empirical
distribution functions;

(b) The chosen distance among kernel density estimators has a big impact in the power
of the test;

(c) The bandwidth may influence a lot the power.

However, no optimal solution to the problem of bandwidth choice in smooth test is
currently available.

To be more specific, let f1,...,fk k probability densities which are independently sam-
pled, and let Xi = {xi,1, . . . , xi,ni

} be the random sample taken from the density fi
(1 ≤ i ≤ k). The kernel density estimator of fi is defined through

f̂hi
(Xi, t) =

1
nihi

ni∑
j=1

K

(
xi,j − t
hi

)
where K is a kernel function and hi is a smoothing parameter or bandwidth. Then, any
discrepancy measure among the f̂hi

(Xi, ·)’s can be the basis of a test statistic for the
null hypothesis H0 : f1 = ... = fk . Mart́ınez-Camblor and de Uña-Álvarez (2009) found
that the most powerful smooth test (among four) was that based on the generalized
L1-distance given by

Lk,1(h) =
1
N

k∑
i=1

ni

∫
|f̂hi

(Xi, t)− f̂h̄(X, t)|dt

where N =
∑k
i=1 ni, and where f̂h̄(X, t) stands for the kernel density estimator based

on the pooled sample X with bandwidth h̄. The single bandwidth h controls the amount
of smoothing for each sample via hi = hσ̂in

−1/5
i and h̄ = hˆ̄σN−1/5, where σ̂i and ˆ̄σ

are the standard deviation of the i-th and the pooled samples respectively. Hence, the
asymptotically optimal rate n−1/5 (where n is the sample size) in estimation is used
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for each bandwidth, but our aim is to choose the factor h to improve the power, while
preserving the level of the test. This is the test we consider in this paper.

This paper is organized as follows. In Section 2 we discuss bandwidth choice princi-
ples for a general smooth test, say Th. Specific algorithms to compute the bandwidth in
practice are introduced in Section 3. In Section 4 we investigate via simulations the perfor-
mance of the best k-sample smooth test Lk,1(h) in Mart́ınez-Camblor and de Uña-Álvarez
(2009) when based on different bandwidth selectors. Section 5 reports an illustration with
real medical data. Finally, a discussion of our main findings is given in Section 6.

2. Bandwidth selection criterions

In this Section we discuss two different approaches to bandwidth selection for a smooth
test statistic Th. The first one concentrates on the maximization of the power of the test,
while the second considers the idea of minimizing the P -value. It will be seen that both
approaches have a strong relationship. Practical implementation of these ideas will be
discussed in Section 3. Without loss of generality, we will assume that the null hypothesis
(whatever it is) is rejected for large values of Th. Besides, we will denote by T0,h and
T1,h independent random variables with the null and the alternative distribution of Th
respectively.

Let {Th > cα,h} be the rejection region at level α. One appealing idea is choosing the
smoothing level h to maximize the power of the test (e.g. Cao and Van Keilegom, 2006).
This leads to the maximum power bandwidth

hM,α = argmax{h>0}P {T1,h > cα,h} .

Note that this bandwidth depends on α.

Given the actual value of the test statistic, Th = Th say, more evidence against the
null is obtained for smaller P -values of Th. Hence, to construct a powerful test it makes
sense to minimize πv(Th) = P{T0,h > Th} along h. This idea is related to looking for a
minimum in the so-called significance trace of the test (Hart, 1997, p. 160). The minimum
P -value bandwidth is defined as

hm = argmin{h>0}πv(Th)

This idea was used in de Uña-Álvarez and Mart́ınez-Camblor (2009). An interesting
question is if P -values should be computed (and then minimized) for the actual values
of the test {Th}h>0 even when the null hypothesis is true (a fact that is unknown in
practice). Since our objective is the construction of a powerful test statistic, one may be
tempted to minimize the P -values of the Th that would be obtained under the alternative,
and then averaging w.r.t the distribution of T1,h; this criterion gives the alternative
bandwidth

hm̄ = E
[
argmin{h>0}πv(T1,h)

]
.

For going deeply into the comparison of these ideas, let us assume that the null and the

alternative distributions of the test are Gaussian, that is, T0,h ∼ N(µ0,h, σ0,h) and T1,h ∼
N(µ1,h, σ1,h). In practice we will have this situation asymptotically for many smooth
tests. Specifically, Mart́ınez-Camblor and de Uña-Álvarez (2009) established asymptotic
normality for the k-sample smooth test based on the Lp-distance. Under this assumption
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Figure 1. Estimating µ0,h, σ0,h, µ1,h and σ1,h for Lk,1(h) statistic from 1000 ran-
dom samples for the models MD 1 (left) and MD 2 (rigth) with a = 3/4 and with
n = (25, 25, 25). Graphical representation for the functions E[Zm(h)] (black lines) and
ZM,α(h) + 3/2 for α = 0.05 (grey lines). With hi = hσ̂in

−1/5
i (ni and σ̂i are the sam-

ple size and the standard deviation for the i-th sample, respectively). The dashed line
represents the statistical power at level α = 0.05.
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we have (putting Z for the standard normal):

hm = argmin{h>0}πv(Th) = argmax{h>0}

{
Th − µ0,h

σ0,h

}
,

hbm =argmin{h>0}πv(T1,h)

=argmax{h>0}

{
σ1,hZ + µ1,h − µ0,h

σ0,h

}
≡ argmax{h>0}Zm(h),

(note that hm̄ = E[hbm]) and (noting that cα,h = σ0,hzα+µ0,h where zα is the 100(1−α)%
percentile of Z)

hM,α =argmax{h>0}P {T1,h > cα,h}

=argmax{h>0}

{
µ1,h − µ0,h − σ0,hzα

σ1,h

}
≡ argmax{h>0}ZM,α(h).

In Figure 1 we depict the functions Zm(h) (averaged) and ZM,α(h) (in the case α = 0.05),
together with their corresponding maximizers, for two of the specific models simulated
in Section 4. We see that both criterions seem to be closely related.
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3. Bandwidth selection algorithms

In this Section we present the algorithms for performing the bandwidth choice in
practice. They are related to the general ideas discussed in Section 2, and all of them make
use of some preliminary bootstrap estimators of the involved objective functions. We will
refer to null and alternative bootstrap resamples, indicating the fact that the bootstrap
incorporates the null hypothesis (former case) or the alternative hypothesis (latter). In
the k-sample smooth tests investigated in Section 4, null bootstrap resamples are drawn
from a (pilot) smoother of the empirical distribution of the pooled sample; while the
alternative bootstrap resamples are drawn independently from each of the kernel density
estimators based on some pilot bandwidth. See Section 4 for the details. Maximization
in the algorithms below is performed on a fixed grid of bandwidths H = {h1, ..., ht}.
Practical choice of this grid is important as it will be discussed in Section 4. For the
moment we only mention that the finer the grid, the better the approximation of the
bandwidth.

First, we introduce the double minimum (DM) method, which is oriented to the esti-
mation of hm (i.e. the minimum P -value bandwidth). This algorithm was introduced by
Mart́ınez-Camblor et al. (2008) in the scope of smooth k-sample tests, see also Mart́ınez-
Camblor and de Uña-Álvarez (2009). The method’s name is a consequence of the two
minimization steps performed in the plan below. The steps of the algorithm are the
following.

DM0. Let be H = {h1, . . . , ht} a grid of h-values among which the optimal one is to be
selected.

DM1. Draw B0 bootstrap resamples under the null. Let T b0,h be the statistic Th when
based on the b-th null bootstrap resample, b = 1, ..., B0, and the bandwidth h.

DM2. Compute

PB = min{h∈H}

{
1
B0

B0∑
b=1

I
{
T b0,h > Th

}}
≡ min{h∈H}πBv (Th) ≡ πBv (ThDM

)

where hDM = argmin{h∈H}π
B
v (Th).

DM3. Draw independently B′0 bootstrap resamples under the null. Let T b,∗0,h be the
statistic Th when based on the b-th null bootstrap resample, b = 1, ..., B′0, and
the bandwidth h. Then, reject the null hypothesis if and only if

PB∗ ≡
1
B′0

B′0∑
b′=1

I
{
P b
′

B∗ < PB

}
< α

where for 1 ≤ b′ ≤ B′0,

P b
′

B∗ =min{h∈H}

{
1
B0

B0∑
b=1

I
{
T b0,h > T

b′,∗
0,h

}}
≡ min{h∈H}πv(T b

′,∗
0,h )

and α is the significance level of the test.
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Note that, although calculation of hDM is involved in the above procedure (Step DM2),
the goal of the algorithm is to provide the P -value of the test, for which keeping the spe-
cific value of the bandwidth is unimportant. In other words: only the minimum P -values
reported in PB (original sample), P bB∗ (b-th second bootstrap resample, b = 1, ..., B′0),
and PB∗ (final P -value of the test) are needed to make a decision. The test statistic
is only computed t(B0 + B′0) times along Steps DM1-DM3. In order to improve the
computational cost of the DM algorithm, a stopping rule for the obvious case in which
πBv (Th) > α (resp. πBv (Th) < α) along the grid can be introduced; in such a case, the
null hypothesis is accepted (resp. rejected) after Step DM2.

Let us now introduce a modification of the DM algorithm which is oriented to the
approximation of hm̄ rather than of hm. The algorithm is called BM (taken from boot-
strap minimum). The steps of the BM method are:

BM0. Let be H = {h1, . . . , ht} a grid of h-values among which the optimal one is to be
selected.

BM1. Draw B0 bootstrap resamples under the null. Let T b0,h be the statistic Th when
based on the b-th null bootstrap resample, b = 1, ..., B0, and the bandwidth h.

BM2. Draw independently B1 bootstrap resamples under the alternative. Let T b1,h be the
statistic Th when based on the b-th alternative bootstrap resample, b = 1, ..., B1,
and the bandwidth h.

BM3. For each b = 1, ..., B1 compute

hbBM = argmin{h∈H}

{
1
B0

B0∑
b′=1

I
{
T b
′

0,h > T b1,h
}}

BM4. Finally, compute

hBM =
1
B1

B1∑
b=1

hbBM

Note that the computation of the BM bandwidth as described along Steps BM1-
BM4 implies B1 + B0 evaluations of the test statistic Th, multiplied by the number of
bandwidths in the grid, t. Besides, in order to approximate the P -value of the data-
driven test ThBM

, one needs to perform B′0 extra evaluations of the statistic under the
null (total number of evaluations: t(B1 +B0)+B′0). A decision on the null and alternative
hypotheses is reached after the following Step:

BM5. Draw independently B′0 bootstrap resamples under the null. Let T b0,hBM
the statis-

tic Th when based on the b-th null bootstrap resample, b = 1, ..., B′0, and the
bandwidth hBM . Then, reject the null hypothesis if and only if

1
B′0

B′0∑
b=1

I
{
T b0,hBM

> ThBM

}
< α

where ThBM
is the actual value of the test statistic (when based on hBM ) and α

is the significance level of the test.
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The third algorithm is called double bootstrap (DB), and it follows the original idea
described in Cao and Van Keilegom (2006) for their empirical likelihood two-sample
smooth test. Given the level of the test (α), the DB algorithm is a practical implemen-
tation of the bandwidth hM,α which maximizes the power of the test statistic Th. The
steps of the DB algorithm are as follows.

DB0. Let be H = {h1, . . . , ht} a grid of h-values among which the optimal one is to be
selected.

DB1. Draw B1 bootstrap resamples under the alternative. Let T b1,h be the statistic Th
when based on the b-th alternative bootstrap resample, b = 1, ..., B1, and the
bandwidth h.

DB2. Draw independently B0 bootstrap resamples under the null. Let T b0,h be the statis-
tic Th when based on the b-th null bootstrap resample, b = 1, ..., B0, and the
bandwidth h.

DB3. For each h compute

cBα,h = inf
{
t : FB0

0,h(t) ≥ 1− α
}

where FB0
0,h is the empirical distribution function of the T b0,h’s.

DB4. Finally, compute

hDB = argmax{h∈H}

{
1
B1

B1∑
b=1

I
{
T b1,h > cBα,h

}}
.

This algorithm involves t(B1 + B0) evaluations of the test statistic. As for the DM
method, the total number of evaluations is t(B1 +B0)+B′0, when B′0 new null bootstrap
resamples are drawn for the approximation (in an obvious way) of the p-value of the
test based on hDB . For the computation of the DB bandwidth, Cao and Van Keilegom
(2006) have proposed to draw specific null bootstrap resamples in Step DB2 for each
resampled alternative in Step DB1. This implies the calculation of a cBαh(b) value in Step
DB3, where b refers to the b-th alternative bootstrap resample fixed in Step DB1. The
number of evaluations of Th over the grid of t bandwidths grows up to tB1B0 +B′0 in this
case, and this significantly increases the computational times in intensive Monte Carlo
simulations. However, Cao and Van Keilegom (2006) did not correct the P -value of the
test, thus resulting in an anticonservative method (see the simulations below, in which
the DB method is implemented as described in that paper).

4. Simulation study

In order to investigate the practical behaviour of the described procedures for band-
width choice, a small simulation study for the k-sample smooth test Lk,1(h) was carried
out. We consdered the case k = 3, where the first two densities are standard normal and
the third density can be different. Given the computational cost involved in the calcula-
tions, the statistical powers (the significance level is α = 0.05) were estimated from 500
Monte Carlo simulations for two different alternative models:

MD 1: Z ≡ (1− a)N(0, 1) + aN(0, 2).
MD 2: Z ≡ (1− a)N(0, 1) + aN(1, 1).
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Figure 2. Simulated densities under MD 1 and MD 2 for the cases a=1/2 (thick line),
a=3/4 (thin line) and a=0 (dotted line).
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Two levels of contamination were used: a = 1/2 and a = 3/4. The case a = 0 corre-
sponds to the null hypothesis (MD 0). In Figure 2 the two simulated alternative densities
MD 1 and MD 2 are depicted. For MD 1, a change in shape (but not in location) occurs
for a non-zero a. MD 2 represents the opposite situation of changing location while
mantaining a similar shape under the alternative.

We considered both the balanced and unbalanced designs by taking triplets of sample
sizes (n1, n2, n3) = (25, 25, 25) and (n1, n2, n3) = (25, 50, 75). Note that these situa-
tions include low (N = 75) to moderate (N = 150) total sample sizes. As mentioned
in the Introduction, we used bandwidths of the form hi = hσ̂in

−1/5
i and h̄ = hˆ̄σm−1/5,

where σ̂i and ˆ̄σ are the standard deviation of the i-th and the pooled samples respec-
tively. Four different grids of bandwidths H = {h1, ..., ht} were considered for the selec-
tion of h: H1 = {1/4, 1/2, 1, 2, 3, 4} (the largest), H2 = {1/2, 1, 2} (shortest with small
bandwidths), H3 = {1, 2, 3} (shortest with large bandwdiths), and H4 = H2 ∪ H3 =
{1/2, 1, 2, 3} (intermediate). These grids include the optimal smoothing levels for the
simulated models, as explained below.

As mentioned in Section 3, we used the smoothed bootstrap (Hall et al., 1989) to obtain
the bootstrap resamples under the null and under the alternative. The pilot bandwidth
used in the smoothed bootstrap was always g = Cn−1/3 (where n is the corresponding
sample size), which corresponds with the bandwidth minimizing asymptotically the mean
integrated squarred error of the smoothed empirical distribution function. For simplicity,
we took C = 1. The number of null bootstrap replicates was chosen as B0 = 199 for
the DB algorithm, and as B0 = 499 for the DM and BM algorithms. Note that the
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Table 1. Observed rejection probabilities for the Lk,1(h) statistic in the proposed models
for bandwidth hσ̂in

−1/5
i where σ̂i is the sample standard deviation, ni (1 ≤ i ≤ 3) is the

sample size and h ∈ {1/4, 1/2, 1, 2, 3, 4}.

n = (25, 25, 25) n = (25, 50, 75)
h h

MD a 1/4 1/2 1 2 3 4 1/4 1/2 1 2 3 4
0 0.062 0.054 0.044 0.050 0.060 0.056 0.052 0.054 0.052 0.038 0.052 0.050
1 1/2 0.146 0.174 0.268 0.292 0.250 0.222 0.328 0.394 0.574 0.632 0.594 0.560

3/4 0.328 0.414 0.526 0.558 0.498 0.442 0.668 0.816 0.908 0.938 0.932 0.898
2 1/2 0.194 0.242 0.276 0.210 0.130 0.096 0.426 0.538 0.630 0.590 0.502 0.364

3/4 0.380 0.476 0.556 0.442 0.258 0.130 0.786 0.894 0.946 0.946 0.898 0.744

computational savings of DM and BM methods allow for this extra effort in the bootstrap
approximation of the P -values. The number of alternative bootstrap resamples was B1 =
100 for DB and BM (note that DM does not make use of alternative bootstrap resamples).
B′0 = 499 new null bootstrap resamples were used to compute the P -value correction of
the test statistic when based on hDM or hBM , while no correction was performed for
hDB according to the original conception of Cao and Van Keilegom (2006).

Table 1 summarizes the observed statistical powers for different h values along the
largest grid H1. In this case, no method for bandwidth selection was used, since first
we were concerned with the influence of the bandwidth on the power of the smooth test
for the simulated scenarios. The nominal levels were well respected in all the considered
cases. The optimal h for MD 1 was h = 2 (which is included within the four considered
grids) and for model MD 2 was h = 1, although for a = 3/4 and unbalanced samples
the observed statistical power for h = 2 is the same (both values are included within the
four grids).

The rejection levels of the test statistic when using the automatic bandwidth selectors
hDM , hBM and hDB are displayed in Table 2. We see that the DB method resulted in a
clearly anticonservative test (specially for the largest grids). This is because the method,
as originally proposed in Cao and Van Keilegom (2006), does not correct the P -value of
the test for the multiplicity of bandwidths. Indeed, the DB obtained a rejected percentage
larger than the optimal whithin the reference grid in 32 of the 40 considered situations.
This point, which is positive in the sense of the power, makes that the nominal level
was not well respected by this method. The results obtained by the BM procedure are
always close to the optimum within the reference grid, while the nominal level was well
respected. DM method was too conservative, showing a power uniformly below that of
BM, which in summary could be considered as the winner in the comparison of the three
bandwidth selectors. Means and standard deviations of the bandwidths hBM and hDB
along the 500 trials are reported in Table 3. It is seen that the BM gave bandwidths more
concentrated around its mean than the DB.
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Table 2. Rejection probabilities for the Lk,1(h) statistic in the proposed models for
the Double Bootstrap (DB; B0 = 199 = B′0 and B1 = 100), Double Minimum (DM;
B0 = 499) and BM (B0 = 499 = B′0 and B1 = 100) algorithms on the grids
H1 = {1/4, 1/2, 1, 2, 3, 4}, H2 = {1/2, 1, 2}, H3 = {1, 2, 3} and H4 = {1/2, 1, 2, 3}.

n = (25, 25, 25)
H1 H2 H3 H4

MD a DB DM BM DB DM BM DB DM BM DB DM BM
0 0.092 0.052 0.056 0.072 0.054 0.058 0.060 0.046 0.056 0.080 0.048 0.056
1 1/2 0.316 0.230 0.276 0.294 0.246 0.276 0.294 0.254 0.296 0.298 0.230 0.282

3/4 0.582 0.460 0.532 0.576 0.488 0.524 0.562 0.514 0.572 0.576 0.470 0.562
2 1/2 0.300 0.226 0.280 0.306 0.236 0.278 0.272 0.220 0.264 0.294 0.222 0.276

3/4 0.582 0.436 0.540 0.560 0.488 0.540 0.548 0.454 0.530 0.558 0.460 0.550
n = (25, 50, 75)

H1 H2 H3 H4

MD a DB DM BM DB DM BM DB DM BM DB DM BM
0 0.080 0.054 0.052 0.058 0.042 0.052 0.054 0.040 0.054 0.070 0.046 0.054
1 1/2 0.644 0.526 0.614 0.649 0.554 0.602 0.660 0.586 0.644 0.652 0.548 0.626

3/4 0.926 0.894 0.926 0.938 0.900 0.916 0.940 0.910 0.934 0.932 0.898 0.926
2 1/2 0.656 0.542 0.634 0.628 0.592 0.630 0.644 0.584 0.634 0.650 0.584 0.642

3/4 0.946 0.922 0.948 0.952 0.928 0.944 0.948 0.936 0.950 0.946 0.928 0.954

Table 3. Mean and standard deviation (between brackets) for the final used bandwidths
for the DB and BM algortithms on the grids H1 = {1/4, 1/2, 1, 2, 3, 4}, H2 = {1/2, 1, 2},
H3 = {1, 2, 3} and H4 = {1/2, 1, 2, 3}.

n = (25, 25, 25)
H1 H2 H3 H4

MD a DB BM DB BM DB BM DB BM
0 1.98 (1.58) 1.97 (1.58) 1.19 (0.69) 1.19 (0.67) 2.05 (0.92) 2.07 (0.91) 1.68 (1.10) 1.70 (1.07)
1 1/2 1.58 (1.14) 1.77 (1.12) 1.40 (0.65) 1.34 (0.61) 1.79 (0.79) 1.82 (0.75) 1.62 (0.89) 1.57 (0.87)

3/4 1.34 (0.90) 1.26 (1.10) 1.29 (0.63) 1.26 (0.57) 1.53 (0.66) 1.61 (0.63) 1.37 (0.76) 1.38 (0.73)
2 1/2 1.36 (1.15) 1.34 (1.03) 1.62 (0.77) 1.13 (0.56) 1.55 (0.78) 1.62 (0.77) 1.32 (0.87) 1.33 (0.82)

3/4 1.34 (0.90) 1.03 (0.75) 1.62 (0.77) 1.03 (0.49) 1.30 (0.66) 1.37 (0.56) 1.07 (0.67) 1.13 (0.65)
n = (25, 50, 75)

H1 H2 H3 H4

MD a DB BM DB BM DB BM DB BM
0 2.03 (1.56) 2.06 (1.55) 1.14 (0.68) 1.15 (0.68) 2.09 (0.91) 2.10 (0.89) 1.62 (1.10) 1.66 (1.05)
1 1/2 1.63 (1.08) 1.38 (0.92) 1.39 (0.65) 1.30 (0.56) 1.74 (0.74) 1.73 (0.66) 1.58 (0.88) 1.45 (0.75)

3/4 1.03 (0.85) 0.93 (0.65) 0.99 (0.60) 1.05 (0.56) 1.31 (0.55) 1.37 (0.54) 1.06 (0.75) 1.07 (0.62)
2 1/2 1.28 (1.05) 1.26 (0.92) 1.11 (0.60) 1.16 (0.55) 1.48 (0.72) 1.51 (0.67) 1.25 (0.83) 1.26 (0.76)

3/4 0.70 (0.63) 0.68 (0.51) 0.89 (0.55) 0.82 (0.47) 1.10 (0.31) 1.14 (0.36) 0.77 (0.48) 0.85 (0.52)

5. Real data analysis

In order to illustrate the proposed methods in a practical setup, in this Section we
consider 427 cases of breast cancer registered in Gipuzkoa region, North of Spain. These
data were previously analized in Mart́ınez-Camblor et al. (2009). Two groups of women
are considered, corresponding to stages I (148 women) and II (279 women) of cancer
at diagnosis. The null hypothesis is that the distribution of the age at diagnosis is the
same for the two groups. Empirical distribution functions and kernel density estimates
for both samples are depicted in Figure 3.
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Figure 3. Empirical distribution functions (left) and kernel density estimators with band-
width 3.5 (right) for the stage I (thick line) and stage II (thin line) groups, breast cancer
data.
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The mean and standard deviation of the age at diagnosis (in years) were 58.5 and
10.99 for stage I, and 57.9 and 13.7 for stage II. The P -values of the Levene test for
equal variances and of the Welch test for equal means were 0.001 and 0.630 respectively,
while the nonparametric Mann-Whitney-Wilcoxon test yielded a P -value of 0.7216. So, in
principle, one can say that both populations share the same location but they are different
in their shape (as it can be seen in Figure 3). We also applied the three likelihood-ratio
tests based on the empirical distribution functions introduced by Zhang and Wu (2007),
obtaining P -values between 0.01 and 0.05, and thus rejecting the null hypothesis of equal
distributions.

Figure 4 provides the P -values of the smooth test based on Lk,1(h) along the grid
H1= {1/4, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4} estimated through 5000 bootstrap resamples. We
also considered the other three smooth tests investigated in Mart́ınez-Camblor and de
Uña-Álvarez (2009), namely:

AC(h) =
∫
min{fh1(t), . . . , fhk

(t)}dt,

Lk,2(h) =
1
N

k∑
i=1

ni

∫
(fhi

(t)− fh̄(t))2dt,

Sk(h) =
1
N

k∑
i=1

nisup{t∈R}|fhi
(t)− fh̄(t)|.
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Figure 4. P-values (estimated from 5000 bootstrap samples) for the breast cancer data,
obtained by the statistics Lk,1(h) (black thick line) AC(h) (grey thick line), Lk,2(h)
(black thin line) and Sk(h) (grey thin line) given by Mart́ınez-Camblor and de Uña-
Álvarez (2009) and the significance level (dotted line). hi = hn

−1/5
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All of them reported highly significant P -values on a large range of values of h, although
when oversmoothing and undersmoothing in an extreme way, P -values above 0.05 could
be obtained. In order to make a decision about the suitable level of smoothness in the
test statistic, we applied the DM, the BM, and the DB methods, as described in Section
3, for two different grids: H1 (see above) and H2 = {1/2, 1, 2} (a reduction of 67% on the
number of possible bandwidths with respect to H1). The numbers of bootstrap replicates
were B0 = B′0 = 1000 and B1 = 500 when needed. The P -values obtained by the DM
method for Lk,1(h) were 0.01 (H1) and 0.002 (H2); BM reported a P -value of 0.007 for
both grids (bandwidths h = 0.891 and h = 0.885 respectively), while DB gave a P -value
of 0.002 and a bandwidth h = 1 for both grids. Hence, all bandwidth selectors allowed
to reject the equality of the two groups at the standard 0.05 level. We mention that the
tests AC(h), Lk,2(h) and Sk(h) reported final P -values below 0.025 when based on the
automatic bandwidths, thus reporting similar conclusions.

6. Discussion

In this paper we have addressed the problem of automatic bandwidth selection in
smooth tests, where the goal is choosing the optimal bandwidth on a given grid H
according to some suitable criterion. Different methods have been proposed in a general
setup, and they have been compared through simulations and real data analysis in the
special case of k-sample smooth tests. Since both the amount of data dispersion and the
sample size determine the reasonable level of smoothing, we suggest to adapt the grid
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Figure 5. Misclassification probability for different B0 values against the real P -value.
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taking these parameters into account. The basic optimality criterion used in this work is
to reach the highest statistical power while preserving the given significance level of the
test.

The issue of the influence of the bandwidth in smooth tests has received some attention
in the recent literature. As reviewed in Gao and Gijbels (2008), roughly speaking there
exist two different approaches to solve the problem of bandwidth choice. A first approach
is to use an estimation-based optimal smoothing parameter (e.g. cross-validation) to con-
struct the test. That approach can not be justified in theory and practice since estimation-
based optimal values may not be optimal in testing problems. The second approach starts
with an initial set of suitable values for the bandwidth and proceeds further from there.
Our proposal follows this second philosophy.

Up to three different methods for bandwidth choice have been formalized in this paper.
The double minimum (DM) method looks for the bandwidth minimizing the P -value
of the test statistic along the grid. That is, the best bandwidth is the one reporting
the most significant value for the smooth test. This idea connects to that of the max-
statistic, which has been found useful in different scenarios (e.g. González et al., 2008). As
usual, P -values and P -value correction for the multiplicity of tests is conducted through
the (smoothed) bootstrap. A modification of the DM method which results in a less
conservative test, the bootstrap minimum (BM) method, has been introduced. The BM
bandwidth proceeds by minimizing the P -value of the test statistic when averaged along
its alternative distribution. This implies bootstrapping not only the null but also the
alternative hypothesis, and it resembles in some way the idea of the double bootstrap
(DB) as described in Cao and Van Keilegom (2006). The DB bandwidth persecutes the
maximum power; comparison with the DM and BM methods provided in this paper shows
that the DB method rejects too many times the null, while being very computationally
demmanding. Hence, further refinements of the method are in order.
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Table 4. Observed rejection probabilities for the DB and BM bandwidths in the proposed
models for different B1 values and n = (25, 25, 25). The reference grid is H1.

Double Bootstrap BM
B1 B1

MD a 10 25 50 100 10 25 50 100
0 0.074 0.090 0.086 0.092 0.056 0.064 0.062 0.056
1 1/2 0.262 0.300 0.320 0.316 0.274 0.274 0.284 0.276

3/4 0.484 0.544 0.572 0.582 0.528 0.528 0.536 0.532
2 1/2 0.264 0.282 0.294 0.300 0.262 0.278 0.282 0.280

3/4 0.484 0.544 0.572 0.582 0.538 0.544 0.546 0.540

An interesting issue is that of the influence of the number of (null and alternative)
bootstrap resamples in the performance of the methods. Too small values of B0 can
be associated to incorrect decisions, specially when the true P -values are close to the
nominal level. Missclassification errors for different values of B0 versus the real P -value
at level α = 0.05 are shown in Figure 5. On the other hand, the BM and DB methods
estimate the alternative hypothesis through the using of B1 bootstrap resamples. We
have found that both methods are quite robust with respect to B1. Table 4 reports
the statistical power of the Lk,1(h) smooth test for for the bootstrap minimum and the
double bootstrap methods and the models simulated in Section 4 (with the largest grid
of bandwidths), along different values of B1. From this Table we see that a very small
number of alternative bootstrap resamples may lead to a decreasement in the percentages
of rejections for the DB method, and that the BM method seems to be more robust with
respect to the choice of B1. Recall also that DB is anticonservative because no P -value
correction was used (see Section 3). Table 5 shows the figures corresponding to the real
medical data in Section 5, when using the Lk,1(h) test statistic, the BM and DB methods,
and the grid H1= {1/4, 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4}. We let the value of B1 vary between
B1 =10 and B1 =500, with almost no influence on the reported P -value. From our whole
experience, we thus recommend to dedicate more computational time to the estimation
of the null hypothesis (i. e. a large B0) than to the intensive resampling of the alternative.

In summary, we can say that the BM method showed the best performance in the
simulations, reaching a good compromise between respecting the nominal level of the test
and maximizing the power. BM bandwidth could be considered as a suitable modification
of the DM method as originally conceived in Mart́ınez-Camblor et al. (2008), which is
too conservative. On the other hand, DB method (as implemented, see Section 3) is too
anticonservative (although its final P -value could be corrected in the spirit of the other
two methods), while being very computationally intensive. Besides, BM enjoys of the
attractiveness of reporting a P -value independent of the specific level of the test, while
DB is oriented to get the maximum power for a given α. Finally, it should be noted that,
in principle, the bandwidth selectors discussed in our paper can be used in any type of
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Table 5. Breast cancer data. Final BM and DB bandwidths used and respective estimated
P -values from differents B1 values.

B1

10 25 50 100 250 500
ĥBM 1.000 0.830 0.925 0.922 0.920 0.891

P -value(BM) 0.006 0.007 0.008 0.007 0.007 0.007
ĥDB 1.000 0.500 1.000 1.000 1.000 1.000

P -value(DB) 0.002 0.002 0.002 0.002 0.002 0.002

smooth test; to this end, the test statistic should be properly parametrized first so it
depends on a single smoothing level in a suitable way.
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