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Doubly truncated data appear in a number of applications, including astronomy and 

survival analysis. In this paper we review the existing methods to compute the 

NPMLE under double truncation, which has no explicit form and must be 

approximated numerically. We introduce the bootstrap as a method to estimate the 

finite sample distribution of the NPMLE under double truncation. The performance of 

the bootstrap is investigated in a simulation study. The nonstandard case in which the 

right and left truncation times determine each other is covered. As an illustration, 

nonparametric estimation and inference on the birth process and the age at diagnosis 

for childhood cancer in North Portugal is considered. 
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1 Introduction 

Censored and truncated data appear in a number of applications, including astronomy 

and survival analysis. Turnbull (1976) introduced a substitute for the ordinary 

empirical distribution function ( df ) when the data are incomplete due to grouping, 

censoring and/or truncation. Later, statistical methods for more specific problems 

involving truncation were investigated. Woodroofe (1985) considered the 

nonparametric maximum likelihood estimator (NPMLE) of a df  under left-

truncation, and he derived its asymptotic properties. This estimator was further 

investigated by Stute (1993), who gave an almost sure representation of the NPMLE 



as a sum of iid random variables plus a negligible remainder. The presence of 

censoring from the right in the left-truncation model was considered by Tsai et al. 

(1987) and Zhou and Yip (1999), among others. These methods can be properly 

adapted to deal with right-truncated data. In sum, we can say that the problem of one-

side truncation is quite solved and well-understood nowadays. 

 

However, literature about double truncation is more scarce. The situation of double 

truncation will arise in practice whenever both small and large values of the variable 

of interest are less probably observed, due to the presence of some random bounds 

which may vary from individual to individual. The NPMLE of a df observed under 

doubly truncation was studied by Efron and Petrosian (1999). The asymptotic 

properties of this estimator were formally established by Shen (2008). It seems a bit 

surprising that these two papers are (for the best of our knowledge) almost the only 

contributions in literature devoted to nonparametric statistics for the double truncation 

phenomenon. A possible reason is that the non-explicit form of the NPMLE greatly 

complicates its analysis. Several numerical methods for approximating the NPMLE 

have been proposed (Efron and Petrosian, 1999; Shen, 2008), but their convergence 

properties have not been described in detail. Besides, the issue of truncation is ignored 

many times by practitioners, who do not care about it even when (one-side or double) 

truncation may dramatically deteriorate the observational procedure and introduce a 

systematic bias in estimation. All these facts could explain the lack of research and 

interest on this topic during the last years. 

 

In this paper, we are manly concerned with the revision of the existing numerical 

algorithms and technical results on the NPMLE for doubly truncated data (Section 2). 

The main contribution of our work is the investigation of the bootstrap as a method to 

approximate the finite sample distribution of the NPMLE (Section 3). This is a 

relevant problem, since the asymptotic distribution of this estimator is complicated 

and (so far) it has not been used in the development of practical inference methods. In 

Section 4, we consider a real data application in which double truncation naturally 

arises; this Section 4 serves for the purpose of illustration of the NPMLE and their 

bootstrap approximations. Finally, Section 5 reports the main conclusions of our 

study. 



 

2 The NPMLE revisited 

Let *X be the time of ultimate interest, with df F , and let ( )**,VU  be the pair of 

truncation times, with (joint) df K , so one is only able to observe ( )**,*, XVU  when 

*** VXU ≤≤ (otherwise, nothing is observed). Let ( ) niXVU iii ,...,1,,, =  be the             

observed data. Under the assumption of independence between *X  and ( )**,VU , the 

full likelihood is given by 
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where ( )nffff ,...,, 21=  and ( )nkkkk ,...,, 21=  are distributions putting probability 
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As noted by Shen (2008), this likelihood can be written as a product of the conditional 

likelihood of the iX ’s given the ( )ii VU , ’s, say ( )fL1 , and the marginal likelihood of 

the ( )ii VU , ’s, say ( )kfL ,2 : 
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The conditional NPMLE of F (Efron and Petrosian, 1999) is defined as the maximizer 

of ( )fL1 . This criterion leads to an estimator f̂ satisfying 
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ˆˆ . Equation (1) was used by Efron and Petrosian (1999) to 

introduce the following EM algorithm to compute f̂ : 



 

Step EP1. Compute the initial estimate )0(F̂ corresponding to ( )nnf 1,...,1ˆ
)0( = ; 

Step EP2. Apply (1) to get an improved estimator )1(̂f  and compute the )1(F̂  pertaining 

to )1(̂f ; 

Step EP3. Repeat Step EP2 until convergence criterion is reached. 

 

Efron and Petrosian (1999) also suggested a different algorithm based on a modified 

Lynden-Bell’s (1971) method for one-sided truncation. As claimed by these authors, 

this second method converges faster than EP1-EP3; however, in our experience, we 

have found that it may converge to a wrong solution in some situations, so in principle 

we do not recommend using it in practice.  

 

By interchanging the roles of the iX ’s and the ( )ii VU , ’s, the full likelihood can be 

written as the product 
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, and where ( )kL1  is the conditional 

likelihood of the ( )ii VU , ’s and ( )fkL ,2  is the marginal likelihood of the iX ’s. 

Maximization of ( )kL1  leads to a k̂ such that 
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ˆˆ . Shen (2008) proved that the solutions to (1) and (2) are (not 

only the conditional NPMLEs but also) the unconditional NPMLEs of F  and K  

respectively. Besides, he showed that both estimators can be obtained in a 

simultaneous way by solving the following system of equations: 
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This system of equations suggests the following algorithm to compute the NPMLE 

(Shen, 2008): 

 

Step S1. Compute the initial estimate )0(F̂ corresponding to ( )nnf 1,...,1ˆ
)0( = ; 

Step S2. Apply (4) to get the first step estimator of k , )1(k̂ , and compute the )1(K̂  

pertaining to )1(k̂ ; 

Step S3. Apply (3) to get the first step estimator of f , )1(̂f , and its corresponding )1(F̂ ; 

Step S4. Repeat Steps S2 and S3 until convergence criterion is reached. 

 

In practice, algorithms EP1-EP3 and S1-S4 will give the same solution f̂ . By 

implementing and running both methods, we have confirmed that they converge in a 

number of iterations of the same order. Interestingly, the latter method provides the 

NPMLEs of both F and K  in a simultaneous way. In the simulations below, we use 

EP1-EP3 with stopping rule that the maximum distance among the if ’s computed in 

two successive steps is below ( )n×101 . 

 

Shen (2008) includes an asymptotic analysis of the NPMLE of F . Specifically, the 

uniform consistency and the weak convergence of the estimator are established. The 

asymptotic distribution of F̂  is complicated, so these results do not provide practical 

answers to inference problems under doubly truncation. In our next Section we 

propose the bootstrap as a method to approximate the finite sample distribution of F̂ .  

 

 

3 Bootstrap approximation 

In this Section we consider the simple bootstrap (Gross and Lai, 1996) as a method to 

approximate the distribution of the NPMLE of F  in finite samples. We also 

investigate via simulations the performance of the bootstrap when computing 

confidence limits for F . 



 

Let ( )ibibib XVU ,, , ni ,...,1= , be a bootstrap resample taken from the initial data by 

putting weight n1  at each of the observations ( )iii XVU ,, , ni ,...,1= . Repeat this 

procedure a large number B of times so we have Bb ,...,1=  bootstrap resamples. Put 

bF̂  for the estimator F̂  computed from the b th bootstrap resample, Bb ,...,1= . Then, 

the values ( ) ( )tFtF b
ˆ,...,1̂  can be used to empirically approximate the finite sample 

distribution of ( )tF̂  for a given t .  

 

In our simulations below, 95% confidence limits based on the bootstrap are computed. 

That is, the 2.5% upper and 2.5% lower values of the ( )tFb
ˆ ’s are removed to construct 

the confidence interval. We focus on the attained coverages to see if the simple 

bootstrap behaves consistently. As specific values of t , we consider the nine deciles 

of the simulated F . 

 

Our first simulated model is as follows: **,VU  and *X are mutually independent; 

*X  is drawn from a Uniform ( )1,0  model, while **,VU are drawn from Uniform 

distributions with respective supports ( )a,0  and ( )1,b , where a  and b  are chosen to 

get the following percentages of truncation: 25% ( )75.0,25.0 == ba , 50% 

( )5.0== ba , and 67% ( )33.0,67.0 == ba . The truncation occurs when 

*** VXU ≤≤  is violated.  

We repeat the drawing until forming samples of a given size; sample sizes of 50=n , 

100=n , 150=n  and 250=n  were considered. The number of bootstrap resamples 

was taken to be 500=B (partial results obtained for 1000=B were very similar to 

those reported here). We performed 500 trials for each situation. Results are displayed 

in Tables 1 to 3. 

 

 

 

 

 



Table 1. Coverages of the 95% bootstrap confidence intervals for the NPMLE of F 
along 500 trials for several sample sizes n . ( )1,0~* UX , ( )25.0,0~* UU , 

( )1,75.0~* UV  were simulated as mutually independent (percentage of truncation 
PT=25%). Means and standard deviations of the interval lengths are also reported. 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

1 0.804 0.2456243 0.04416079  1 0.844 0.1842230 0.016439369 

2 0.864 0.3351561 0.02757534  2 0.910 0.2180977 0.010801898 

3 0.914 0.3576116 0.01663728  3 0.918 0.2222340 0.008241057 

4 0.936 0.3655469 0.01159498  4 0.940 0.2257118 0.006925665 

5 0.946 0.3703399 0.01098973  5 0.926 0.2285656 0.007081697 

6 0.952 0.3715230 0.01414495  6 0.934 0.2314368 0.008704853 

7 0.930 0.3696328 0.02163229  7 0.932 0.2338441 0.011991991 

8 0.916 0.3555943 0.03315225  8 0.902 0.2336715 0.016148443 

2
5
%

 

50 

9 0.766 0.2770630 0.06085439  

2
5
%

 

150 

9 0.868 0.2122450 0.023700052 

1 0.840 0.2101497 0.025889812  1 0.866 0.1635029 0.009018960 

2 0.902 0.2627010 0.016048790  2 0.938 0.1785669 0.005931400 

3 0.934 0.2703862 0.011099727  3 0.938 0.1787695 0.004462368 

4 0.940 0.2745797 0.008857473  4 0.956 0.1782646 0.003442428 

5 0.948 0.2776489 0.008755461  5 0.968 0.1777068 0.003238050 

6 0.938 0.2804290 0.011428271  6 0.948 0.1772098 0.003723815 

7 0.918 0.2819764 0.016347936  7 0.934 0.1771925 0.004974283 

8 0.906 0.2797369 0.023488212  8 0.914 0.1762222 0.006726882 

2
5

%
 

100 

9 0.822 0.2432781 0.038462042  

2
5

%
 

250 

9 0.878 0.1622074 0.009823084 

 

Table 2. Coverages of the 95% bootstrap confidence intervals for the NPMLE of F 
along 500 trials for several sample sizes n . ( )1,0~* UX , ( )5.0,0~* UU , 

( )1,5.0~* UV were simulated as mutually independent (percentage of truncation 
PT=50%). Means and standard deviations of the interval lengths are also reported. 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

1 0.800 0.2893772 0.06326777  1 0.820 0.2039402 0.024850033 

2 0.884 0.3896346 0.04333030  2 0.876 0.2526884 0.015606256 

3 0.906 0.4252954 0.02672420  3 0.920 0.2613354 0.010427008 

4 0.934 0.4320490 0.01799294  4 0.940 0.2644056 0.008244577 

5 0.946 0.4320227 0.01488952  5 0.956 0.2664698 0.007781465 

6 0.924 0.4317530 0.01807301  6 0.954 0.2678976 0.009054365 

7 0.904 0.4268223 0.02659023  7 0.938 0.2684207 0.012415691 

8 0.874 0.3932083 0.04345826  8 0.914 0.2614831 0.018086663 

5
0

%
 

50 

9 0.642 0.2870272 0.08478940  

5
0

%
 

150 

9 0.838 0.2232881 0.028837889 

1 0.842 0.2517481 0.04761928  1 0.862 0.1903549 0.020159429 

2 0.894 0.3191751 0.03044891  2 0.904 0.2144114 0.013712314 

3 0.924 0.3302741 0.02022693  3 0.928 0.2180754 0.009590434 

4 0.936 0.3325236 0.01452287  4 0.950 0.2175388 0.007245497 

5 0.948 0.3325854 0.01219506  5 0.950 0.2168241 0.006348315 

6 0.942 0.3327959 0.01366703  6 0.938 0.2170453 0.006665531 

7 0.930 0.3310709 0.01869327  7 0.936 0.2162816 0.008297049 

8 0.890 0.3174481 0.02830693  8 0.908 0.2111539 0.011569802 

5
0
%

 

100 

9 0.814 0.2611456 0.04801988  

5
0
%

 

250 

9 0.862 0.1899454 0.017602704 

  



Table 3. Coverages of the 95% bootstrap confidence intervals for the NPMLE of F 
along 500 trials for several sample sizes n . ( )1,0~* UX , ( )67.0,0~* UU , 

( )1,33.0~* UV  were simulated as mutually independent (percentage of truncation 
PT=25%). Means and standard deviations of the interval lengths are also reported. 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

1 0.830 0.3122912 0.06753057  1 0.862 0.2195450 0.02850742 

2 0.876 0.4066955 0.04630946  2 0.892 0.2653109 0.01873450 

3 0.916 0.4449330 0.02914732  3 0.900 0.2785490 0.01330000 

4 0.930 0.4575003 0.01909018  4 0.908 0.2859858 0.01068658 

5 0.912 0.4600851 0.01596511  5 0.918 0.2897380 0.01090830 

6 0.906 0.4554927 0.01919461  6 0.916 0.2899473 0.01350828 

7 0.896 0.4435533 0.02792070  7 0.910 0.2853926 0.01853920 

8 0.864 0.4038760 0.04657200  8 0.900 0.2765086 0.02726752 

6
7
%

 

50 

9 0.664 0.3001341 0.08849003  

6
7
%

 

150 

9 0.852 0.2419259 0.04136601 

1 0.852 0.2604485 0.04700933  1 0.860 0.1790041 0.013800119 

2 0.896 0.3237959 0.03136434  2 0.922 0.2060986 0.009266317 

3 0.922 0.3374700 0.02089404  3 0.944 0.2154767 0.006891761 

4 0.932 0.3429401 0.01447854  4 0.950 0.2204567 0.005964958 

5 0.934 0.3428345 0.01151395  5 0.944 0.2238385 0.006184628 

6 0.934 0.3393893 0.01204575  6 0.918 0.2237231 0.007700082 

7 0.934 0.3299615 0.01574352  7 0.926 0.2212286 0.010562632 

8 0.886 0.3107754 0.02353785  8 0.914 0.2150350 0.014762260 

6
7

%
 

100 

9 0.838 0.2557840 0.04073803  

6
7

%
 

250 

9 0.878 0.1939044 0.020935150 

In these Tables 1 to 3 we see that the bootstrap improves its performance with an 

increasing sample size. The proportion of truncated data plays some role too, and it 

can be seen that higher truncation rates lead in general to poorer coverages. However, 

this is not always the case, a fact that should not be taken as extremely surprising 

since the final sample sizes are the same regardless the proportion of truncation. 

Another issue that follows from the reported results is that the bootstrap coverages 

tend to underestimate the nominal 95% at both tails of the distribution; however, the 

performance of the method between percentiles 30% and 70% seems to be quite 

satisfactory. 

 

In Tables 1 to 3 we report the mean and the standard deviation of the length of the 

bootstrap confidence interval along the 500 replicates. The relatively large values of 

the standard deviations at both tails of F  suggest that the double truncation provokes 

a serious damage of the sampling information at these extreme points, where the 

variance of ( )tF̂  is not properly estimated. 

 



We are also concerned with the situation in which *U  and *V  determine each other 

via δ−= ** VU , where δ is a known, positive constant which represents in practice 

the width of an observational window (see our Section 4). Because of this, we 

simulated a second model in the following way. *X is drawn from a Uniform ( )15,0  

distribution and, independently, *U  is drawn from a Uniform ( )15,5−  distribution; 

then, we compute 5** += UV . This simulated example is interesting because of two 

reasons. First, it reproduces a situation similar to the practical setup that will be 

explored in Section 4. Second, it represents a case in which the truncated distribution 

(that is, the distribution of *X conditionally on *** VXU ≤≤ ) coincides with that of 

interest; in other words, there is no observational bias, in the sense that the truncation 

does not change the sampling probabilities of each iX . Nevertheless, 37.5% of the 

observations are truncated. Simulation results (again along 500 Monte Carlo trials) are 

displayed in Table 4. In Table 4 we see that the bootstrap coverages are quite close to 

the nominal 95% even for moderate sample sizes. 

 

Table 4. Coverages of the 95% bootstrap confidence intervals for the NPMLE of F 
along 500 trials for several sample sizes n . ( )15,0~* UX , ( )15,5~* −UU  were 
independently simulated, 5** += UV  (percentage of truncation PT=37.5%). Means 
and standard deviations of the interval lengths are also reported. 
PT n Deciles Coverage 

Mean 

Length CI 
Length sd. CI 

 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

1 0.926 0.2963838 0.033498505  1 0.920 0.1334691 0.002107902 

2 0.958 0.4118613 0.027939769  2 0.934 0.1908358 0.002776801 

3 0.960 0.4750338 0.018368003  3 0.952 0.2212942 0.002710846 

4 0.964 0.5057550 0.012083352  4 0.946 0.2348739 0.002339495 

5 0.964 0.5172609 0.009944428  5 0.966 0.2371179 0.002180414 

6 0.954 0.5091094 0.013326961  6 0.946 0.2320010 0.002235822 

7 0.956 0.4786123 0.020850551  7 0.942 0.2189926 0.002442784 

8 0.960 0.4222021 0.031123942  8 0.940 0.1885122 0.002545796 

3
7

,5
%

 

50 

9 0.938 0.3078716 0.038154186  

3
7

,5
%

 

150 

9 0.940 0.1339126 0.001946357 

1 0.946 0.1779742 0.005417392  1 0.952 0.09770567 0.0005203785 

2 0.966 0.2519635 0.005733617  2 0.960 0.13559469 0.0006667569 

3 0.972 0.2940953 0.004752728  3 0.958 0.15420616 0.0007077924 

4 0.970 0.3149343 0.003803556  4 0.958 0.16224800 0.0006776715 

5 0.970 0.3203841 0.003489434  5 0.956 0.16473085 0.0007322845 

6 0.966 0.3147412 0.003953728  6 0.962 0.16221405 0.0008096485 

7 0.952 0.2922541 0.005136242  7 0.948 0.15352497 0.0008784952 

8 0.934 0.2513246 0.006331729  8 0.936 0.13427046 0.0009156716 

3
7
,5

%
 

100 

9 0.946 0.1768550    0.005384688  

3
7
,5

%
 

250 

9 0.944 0.09728982 0.0006555822 

 



As a technical remark, we mention that our second simulated model is not covered by 

the theory in Shen (2008). This is because the density of ( )**,VU  does not exist, and 

hence his conditions do not apply. However, we believe that the asymptotic properties 

of the NPMLE hold (when properly rewritten) even in this situation. Of course, the 

role of the joint density of ( )**,VU in the Theorems in Shen (2008) must be played 

by one of the marginal densities in such a case. The simulations reported in Table 4 

also suggest that the consistency of the NPMLE does not rely on the existence of the 

joint density of the truncation times. 

 

Finally, in Tables 5 to 7 we report the results attained by the bootstrap in a third 

simulated scenario. Here, following Shen (2008), *X  was simulated according to a 

Weibull model with shape parameter 4=fδ , while *U  and *V  were simulated as 

Exponential random variables with scale parameters gδ  and qδ  chosen to give the 

following proportions of truncation: 24% ( )4,25.0 == qg δδ , 61% ( )1,25.0 == qg δδ , 

and 77% ( )1,1 == qg δδ ; the variables *X , *U  and *V  being mutually 

independent. The figures in these Tables 5 to 7 are similar to (with coverages at the 

tails even better than) those reported for the other simulated scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Coverages of the 95% bootstrap confidence intervals for the NPMLE of F 
along 500 trials for several sample sizes n . ( )4~* WeibullX , ( )25.0~* ExpU  and 

( )4~* ExpV  were independently simulated, (percentage of truncation PT=24%). 
Means and standard deviations of the interval lengths are also reported. 

PT n Deciles Coverage 
Mean 

Length CI 

Length sd. 

 CI 

 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

1 0.934  0.1975237  0.005823337   1 0.944 0.1085990 0.0004499294 

2 0.932 0.2967048 0.005574116  2 0.942 0.1670520 0.0005694156 

3 0.926 0.3733609 0.005871491  3 0.946 0.2127983 0.0006119813 

4 0.932 0.4281354 0.006704173  4 0.942 0.2481035 0.0006804801 

5 0.926 0.4664573 0.008870403  5 0.942 0.2724610 0.0008568508 

6 0.922 0.4887661 0.015113794  6 0.924 0.2859906 0.0015149589 

7 0.908 0.4782586 0.025869852  7 0.922 0.2866114 0.0025428711 

8 0.896 0.4167960 0.039955903  8 0.920 0.2681944 0.0046969563 

2
4
%

 

50 

9 0.574 0.2746207 0.004540717  

2
4
%

 

150 

9 0.854 0.2069035 0.0110171636 

1 0.940  0.1353184  0.0009537175   1 0.970  0.08447693 0.0001588800 

2 0.940 0.2089121 0.0011641410  2 0.966 0.13018770 0.0002033821 

3 0.936 0.2656524 0.0015496776  3 0.946 0.16561479 0.0002415360 

4 0.926 0.3084118 0.0021468187  4 0.952 0.19272548 0.0003168499 

5 0.938 0.3395079 0.0031899226  5 0.954 0.21344269 0.0004521632 

6 0.926 0.3566491 0.0052257673  6 0.946 0.22542940 0.0007007448 

7 0.920 0.3554470 0.0091432918  7 0.936 0.22731152 0.0012425856 

8 0.920 0.3294152 0.0158875977  8 0.930 0.21610019 0.0021260028 

2
4

%
 

100 

9 0.804 0.2457709 0.0307463406  

2
4
%

 

250 

9 0.910 0.17743371 0.0042369239 

 

Table 6. Coverages of the 95% bootstrap confidence intervals for the NPMLE of F 
along 500 trials for several sample sizes n . ( )4~* WeibullX , ( )25.0~* ExpU  and 

( )1~* ExpV  were independently simulated, (percentage of truncation PT=61%). 
Means and standard deviations of the interval lengths are also reported. 
 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

1 0.908 0.1856790 0.0047243227  1 0.936  0.1162993 5.245997e-4 

2 0.916 0.2526272 0.0026333367  2 0.934 0.1510687 3.108046e-4 

3 0.928 0.2883946 0.0013351945  3 0.934 0.1700682 1.883559e-4 

4 0.920 0.3054700 0.0007121448  4 0.934 0.1800177 1.079951e-4 

5 0.916 0.3096677 0.0004312397  5 0.936 0.1818839 8.505465e-5 

6 0.914 0.3016381 0.0005555537  6 0.944 0.1768257 1.004030e-4 

7 0.938 0.2815981 0.0009679642  7 0.948 0.1642230 1.418396e-4 

8 0.936 0.2435847 0.0016900318  8 0.940 0.1425388 2.123472e-4 

6
1
%

 

50 

9 0.922 0.1785869 0.0025686772  

6
1
%

 

150 

9 0.932 0.1063069 2.631238e-4 

1 0.920 0.1398757  0.0011737566  1 0.938 0.08991838 2.016862e-4 

2 0.944 0.1834375 0.0006288367  2 0.934 0.11725864 1.319403e-4 

3 0.946 0.2072275 0.0003725595  3 0.926 0.13182968 8.252832e-5 

4 0.952 0.2190578 0.0002032854  4 0.944 0.13981962 5.914922e-5 

5 0.952 0.2219913 0.0001554677  5 0.936 0.14163626 5.663164e-5 

6 0.944 0.2163113 0.0001703713  6 0.950 0.13792121 4.646030e-5 

7 0.952 0.2011812 0.0002595534  7 0.948 0.12857017 5.987313e-5 

8 0.930 0.1730449 0.0004353625  8 0.952 0.11096217 8.142365e-5 

6
1
%

 

100 

9 0.932 0.1266531 0.0006219371  

6
1
%

 

250 

9 0.916 0.08232521 1.060810e-4 



 
 
Table 7. Coverages of the 95% bootstrap confidence intervals for the NPMLE of F 
along 500 trials for several sample sizes n . ( )4~* WeibullX , ( )1~* ExpU  and 

( )1~* ExpV  were independently simulated, (percentage of truncation PT=77%). 
Means and standard deviations of the interval lengths are also reported. 

PT n Deciles Coverage 
Mean 

Length CI 

Length sd. 

CI 

 
PT n Deciles Coverage 

Mean 

Length CI 

Length sd. 

CI 

1 0.926 0.1748611 0.0035380332  1 0.938  0.1096601 3.887405e-4 

2 0.926 0.2424130 0.0021247580  2 0.938 0.1443336 2.412177e-4 

3 0.926 0.2801101 0.0011204420  3 0.952 0.1640779 1.520827e-4 

4 0.936 0.2987272 0.0005444046  4 0.950 0.1754095 8.998838e-5 

5 0.912 0.3047008 0.0004058266  5 0.948 0.1793936 7.433879e-5 

6 0.934 0.2999724 0.0005604185  6 0.948 0.1760500 9.045534e-5 

7 0.946 0.2812444 0.0001155338  7 0.946 0.1649955 1.147859e-4 

8 0.932 0.2440442 0.0018353241  8 0.960 0.1447237 1.711888e-4 

7
7
%

 

50 

9 0.894 0.1809869 0.0033074950  

7
7
%

 

150 

9 0.928 0.1089519 2.730569e-4 

1 0.920 0.1332339 0.0007762434  1 0.932 0.0851074 1.336451e-4 

2 0.948 0.1743842 0.0004721978  2 0.946 0.1116196 8.727653e-5 

3 0.952 0.2000963 0.0002667188  3 0.962 0.1270808 5.752648e-5 

4 0.946 0.2135039 0.0001683143  4 0.952 0.1355112 4.617004e-5 

5 0.932 0.2179024 0.0001391024  5 0.962 0.1385305 3.769955e-5 

6 0.932 0.2136059 0.0001428158  6 0.946 0.1355736 4.332742e-5 

7 0.938 0.2005204 0.0002367707  7 0.958 0.1268817 5.517355e-5 

8 0.966 0.1762387 0.0003677982  8 0.938 0.1112504 8.089469e-5 

 7
7

%
 

100 

9 0.936 0.1325477 0.0006467370  

7
7

%
 

250 

9 0.922 0.0839049 1.184319e-4 

 

 

4 Real data illustration 

 

The childhood cancer data includes all the cases diagnosed in North Portugal between 

January 1st 1999 and December 31st 2003, on children aged below 15 years old, with a 

follow-up until April 30th 2006. The available statistical information is contained in 

the following variables: birth date; date of death; censoring status (value 1 if death is 

observed or 0 otherwise); source of diagnosis (institution at which the diagnosis took 

place); residence (including parishes, small towns and districts); sex; age at diagnosis 

(in years); date of the first symptom; date of first examination; date of diagnosis; and 

type of cancer (leukaemia, lymphoma, central nervous system cancers, 

neuroblastoma, retinoblastoma, renal cancers, hepatic tumours, bone tumours, soft 

tissues tumours, germ cell tumours, melanomas and others epithelial tumours; 

according to paediatric classification tumours whose based according the International 

Childhood Cancer Classification, 3 rd Edition. 



 

The data correspond to 409 children diagnosed from cancer, 180 female and 229 

male, the birth date varying between May 13th 1984 and July 2nd 2003. In the five 

years of recruitment (between January 1st 1999 and December 31st 2003), the yearly 

number of cases diagnosed ranged from 63 (2002) to 90 (2003). The most precocious 

diagnosis corresponded to a 6 days old baby, and the latest diagnostic case verified 

corresponded to an adolescent with almost 15 years old. The more frequent 

diagnostics are the precocious: 50% of the cases correspond to children below six 

years old, and 75% of the cases correspond to children below ten years old. The mean 

age of diagnosis was 6.5 (in years). We concentrate on the 393 cases (220 males, 173 

females) which report complete information about the progress of the disease (see 

Moreira and de Uña-Álvarez, 2007, for details about these data and estimation of 

cancer survivorship). 

 

Let *X be the age (in years) at diagnosis and let *U  be the age of the individual at 

January 1st 1999. Note that ( )**, XU is observed only when 5*** +≤≤ UXU . Hence, 

the distribution of *X  is doubly truncated by ( )**,VU  where 5** += UV . This 

implies that (in principle) ordinary methods for estimating the distribution of the age 

at diagnosis should not be applied.  In Figure 1 we depict the NPMLE of the df  of 

*X  (computed from the algorithm EP1-EP3 in Section 2) along with the 95% 

pointwise confidence band based on the simple bootstrap. This estimator indicates 

that in most of the cases the diagnosis occurs at early ages. For comparison purposes, 

the ordinary empirical df  is also reported. It turns out that both functions almost 

coincide along their support. This suggests that the double truncation issue does not 

induce an observational bias in the diagnosis age. This should not be taken as a 

surprising fact; indeed, when *U  is uniformly distributed, it is easily seen that the 

distribution of *X  conditionally on 5*** +≤≤ UXU  is the same as that of *X . 
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Figure 1. NPMLE of the distribution of the age at diagnosis for the childhood cancer 
data, and 95% pointwise confidence band based on the bootstrap. The ordinary 

empirical distribution of the age at diagnosis is included for comparison. 
 

We also estimated the df  of 5** += UV  by means of its NPMLE. For doing this, we 

just consider *V  as doubly truncated by the pair ( )5**, +XX  and then we apply 

algorithm EP1-EP3. Note that *V  measures time from birth to the end of recruitment 

(December 31st 2003); hence, the distribution of *V  can be interpreted from the 

viewpoint of the birth process of the individuals suffering from cancer during their 

childhood. The resulting estimator is displayed in Figure 2. When looking at the 95% 

limits, we see that there is no disagreement between the NPMLE and the uniform 

distribution (included in Figure 2 for comparison). Although our proposed bootstrap 

only provides pointwise confidence limits, this suggests that the uniform assumption 

on the birth process could be acceptable. 
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Figure 2. NPMLE of the distribution of (time from birth to December 31st 2003) for 
the childhood cancer data, and 95% pointwise confidence band based on the 

bootstrap. The uniform distribution and the ordinary empirical of V* are included for 
comparison. 

 

Figure 2 also reports the ordinary empirical df  of *V  computed from the observed 

right-truncation limits. Unlike for *X  (Figure 1), we see that the impact of the 

observational bias is remarkable in this case. Comparison of the NPMLE and the 

empirical df  indicates that, due to the double truncation, small values (and also 

extremely large values) of *V  are less probably observed. As a consequence, if the 

truncation were ignored, one would underestimate the birth rate of individuals 

(eventually suffering from cancer along their childhood) between 2001 and 2003 

(which correspond to about the first 1000 days in Figure 2). 

 



 

5 Main conclusions 

 

In this paper the NPMLE for doubly truncated data has been revisited. Existing 

algorithms for the numerical approximation of the NPMLE (which has no explicit 

form) have been reviewed. Both the estimation of the doubly truncated distribution 

and of the (joint) distribution of the truncation times were considered. As a 

recommendation to practitioners, we suggest using the first algorithm in Efron and 

Petrosian (1999) or the alternative method in Shen (2008) for the computation of the 

NPMLE. These methods may converge slowly to the NPMLE in some instances; 

some simulations (not reported here) indicate that the choosing of the initial estimate 

)0(̂f  in Step EP1 may influence the number of iteration until reaching convergence. In 

practice, if some information about the observational bias is available, this should be 

used when making a decision about this initial solution, in order to get a faster 

convergence of the algorithm. 

 

Since the asymptotic distribution of the NPMLE (Shen, 2008) is complicated, the 

bootstrap has been introduced as a method to approximate the sampling distribution of 

the NPMLE. The behaviour of the simple bootstrap was tested in a simulation study, 

in which the coverages of the confidence intervals based on the bootstrap were 

computed. For a simple size of 250 or even less, it has been found that the bootstrap 

coverages are close to nominal at least between the 30% and 70% percentiles of the 

true distribution. Some problems were found at both tails, in accordance with the loss 

of information provoked by the double truncation. Both the situation of truncation 

times with and without joint density were covered. 

 

We have applied the proposed methods to explore the age of diagnosis and the birth 

process for childhood cancer in North Portugal. Point estimates and pointwise 

confidence bands based on the bootstrap were displayed for illustration purposes. We 

have seen that ignoring the double truncation issue may introduce a severe bias in 

estimation. All the methods were implemented in R language. 
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