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The Owen value in minimum cost spanning
tree problems with coalition structure�

Gustavo Bergantiños, Research Group in Economic Analysis
Universidade de Vigo (Spain)

María Gómez-Rúa. Departamento de Estatística e I.O.
Universidade de Vigo (Spain)

Abstract

Minimum cost spanning tree problems with coalition structure
were introduced in Bergantiños and Gómez-Rúa (2007). Moreover,
a rule for dividing the cost of connecting all the agents to the source
in this kind of problems is de�ned. In this paper we prove that this
rule coincides with the Owen value of the TU game associated with
the irreducible matrix.
Keywords: minimum cost spanning tree problems with coalition

structure. TU game, Owen value.

1 Introduction

The classical minimum cost spanning tree problems (mcstp)model situations
where a group of agents (denoted by N), located at di¤erent geographical
places, want a particular service which can only be provided by a common
supplier, called the source (denoted by 0). Agents will be served through
connections which involve some cost. Moreover, they do not care whether
they are connected directly or indirectly to the source. This situation is
described by a symmetric matrix C = (cij)i;j2N[f0g, where cij denotes the

�Financial support from Ministerio de Ciencia y Tecnología and FEDER
through grant SEJ2005-07637-C02-01 and from Xunta de Galicia through grants
PGIDIT06PXIB362390PR and PGIDIT06PXIC300184PN is gratefully acknowledged.
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connection costs between i and j (i; j 2 N [ f0g) : There are many economic
situations that can be modeled in this way. For instance, several towns may
draw power from a common power plant, and hence have to share the cost of
the distribution network (Dutta and Kar, 2004). Bergantiños and Lorenzo
(2004, 2005) studied a real situation where villagers had to pay the cost of
constructing pipes from their respective houses to a water supplier. Other
examples include communication networks, such as telephone, internet, or
cable television.
We assume that the agents construct a minimum cost spanning tree (mt):

The question is how to divide the cost associated with the mt between the
agents. Di¤erent rules give di¤erent answers to this question.
There are several rules studied in the literature. For instance, the rules

studied in Bird (1976), Kar (2002), and Dutta and Kar (2004). Feltkamp
et al: (1994) de�ned a rule called Equal Remaining Obligations rule (ERO).
ERO is called the P -value in Branzei et al: (2004).
One of the most important topics is the axiomatic characterization of

rules. The idea is to propose desirable properties and to �nd out which of
them characterize each rule. Properties often help agents to compare di¤erent
rules and to decide which rule is preferred in a particular situation.
However, this model ignores the fact that some group of agents are lo-

cated in the same city or village. In Bergantiños and Gómez-Rúa (2007)
the minimum cost spanning tree problems with coalition structure are in-
troduced. In these problems we include this fact in the model. We do it
by considering an extra element: a partition G = fG1; :::; Gmg of the set of
agents: For each k = 1; :::;m, Gk represents the coalition of agents located in
the same village or city.
In Bergantiños and Gómez-Rúa (2007) we introduced a rule for this kind

of problems, F and we provided an axiomatic characterization of this rule.
The proposed rule is a generalization of the rule provided by Bergantiños
and Vidal-Puga (2007a), which we denote as ':
Owen (1977) introduced a value for transferable utility (TU; for short)

games with a coalition structure. It is assumed that the agents are partitioned
into di¤erent coalitions. Moreover, our objective is to divide the value of the
grand coalition among the agents taking into account the coalition structure.
Owen (1977) proved that his value generalizes the Shapley value.
Bird (1976) de�ned the minimal network and the TU game (N; vC) asso-

ciated with an mcstp (N0; C) : Bergantiños and Vidal-Puga (2007a) de�ned
the irreducible matrix C� associated with anmcstp (N0; C) through the min-
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imal network. The rule ' in mcstp is de�ned as the Shapley value of the TU
game (N; vC�). As we pointed before, the rule F in mcstp with coalition
structure generalizes the rule ': We may ask if there exists any relationship
between F and the Owen value of (N; vC� ; G) : The answer is not trivial be-
cause (N; vC� ; G) does not appear in the de�nition of F: Nevertheless, in this
paper we prove that F coincides with the Owen value of (N; vC� ; G) :
The paper is organized as follows. In Section 2 we introduce the model.

In Section 3 we prove that F coincides with the Owen value.

2 The model

Let N = f1; 2; :::g be the set of all possible agents. Given a �nite set N � N ,
let �N be the set of all permutations over N . Given � 2 �N , let Pre (i; �)
denote the set of the elements of N which come before i in the order given
by �, i:e: Pre (i; �) = fj 2 N : � (j) < � (i)g. Given S � N , let �S denote
the order induced by � among the agents in S.
We are interested in networks whose nodes are elements of a set N0 =

N [ f0g, where N � N is �nite and 0 is a special node called the source.
Usually we take N = f1; :::; ng.
A cost matrix C = (cij)i;j2N0 on N represents the cost of direct link

between any pair of nodes. We assume that cij = cji � 0 for each i; j 2 N0
and cii = 0 for each i 2 N0. Since cij = cji we work with undirected arcs, i:e:
(i; j) = (j; i).
We denote the set of all cost matrices over N as CN . Given C; C 0 2 CN

we say C � C 0 if cij � c0ij for all i; j 2 N0:
Aminimum cost spanning tree problem, brie�y anmcstp; is a pair (N0; C)

where N � N is a �nite set of agents, 0 is the source, and C 2 CN is the
cost matrix.
Given an mcstp (N0; C), we de�ne the mcstp induced by C in S � N as

(S0; C).
A network g over N0 is a subset of f(i; j) : i; j 2 N0g : The elements

of g are called arcs: Given a network g over N0 and S � N0 we denote
by gS the network induced by g among the elements of S: Namely, gS =
f(i; j) 2 g : fi; jg � Sg :
Given a network g and a pair of nodes i and j, a path from i to j in g

is a sequence of di¤erent arcs f(ih�1; ih)glh=1 satisfying (ih�1; ih) 2 g for all
h 2 f1; 2; :::; lg, i = i0, and j = il.
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A tree is a network such that for all i 2 N there is a unique path from i to
the source. If t is a tree, we usually write t = f(i0; i)gi2N where i0 represents
the �rst agent in the unique path in t from i to 0.
Let GN denote the set of all networks over N0. Let GN0 denote the set of

all networks where every agent i 2 N is connected to the source, i:e: there
exists a path from i to 0 in the network.
Given an mcstp (N0; C) and g 2 GN , we de�ne the cost associated with

g as
c (N0; C; g) =

X
(i;j)2g

cij:

When there is no ambiguity, we write c (g) or c (C; g) instead of c (N0; C; g).
A minimum cost spanning tree for (N0; C), brie�y an mt, is a tree t over

N0 such that c (t) = min
g2GN0

c (g). It is well-known that an mt exists, even

though it is not necessarily unique. Given an mcstp (N0; C), we denote the
cost associated with any mt as m (N0; C).
There are several algorithms in the literature to construct an mt. Prim

(1957) provides such an algorithm. The idea of this algorithm is as follows:
sequentially, the agents connect to the source. At each stage, the cheapest arc
between the connected and the unconnected agents is added. This algorithm
leads to a tree, but this is not always unique.
Given an mcstp (N0; C) and an mt t, Bird (1976) de�ned the minimal

network (N0; Ct) associated with t as follows: ctij = max
(k;l)2gij

fcklg, where gij
denotes the unique path in t from i to j. Even though gij depends on the
choice of t, ctij is independent of the chosen t. Proof of this can be found in
Aarts and Driessen (1993).
The irreducible form of an mcstp (N0; C) is de�ned as the minimal net-

work (N0; C�) associated with a particular mt t. If (N0; C�) is an irreducible
form, we say that C� is an irreducible matrix.

A (cost allocation) rule is a function f such that f (N0; C) 2 RN andP
i2N

fi (N0; C) = m (N0; C) for each mcstp (N0; C). As usual,  i (N0; C) rep-

resents the cost allocated to agent i.
Notice that we implicitly assume that the agents build an mt. As far as

we know, all the rules proposed in the literature make this assumption.

A coalitional game with transferable utility, brie�y a TU game, is a pair
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(N; v) where v : 2N ! R satis�es v (?) = 0. Sh (N; v) denotes the Shapley
value (Shapley (1953)) of (N; v).
For each mcstp (N0; C) ; Bird (1976) introduces the TU game (N; vC).

For each coalition S � N ,

vC (S) = m (S0; C) :

On the other hand, Bergantiños and Vidal-Puga (2007a) de�ned the rule
' as

' (N0; C) = Sh (N; vC�)

where C� is the irreducible matrix associated with C. Bergantiños and Vidal-
Puga (2007e) proved that, surprisingly, ' coincides with ERO. This rule is
also studied in Bergantiños and Vidal-Puga (2007b, 2007c, 2007d).

In Bergantiños and Gómez-Rúa (2007) we introduced the mcstp with
coalition structure. An mcstp with coalition structure is a triple (N0; C;G)
where (N0; C) is a mcstp, G = fG1; :::; Gmg is a partition of N and for each
k = 1; :::m

max
i;j2Gk

fcijg � min
i2Gk;j =2Gk

fcijg :

A rule inmcstp with coalition structure is a function f such that f (N0; C;G) 2
RN and

P
i2N

fi (N0; C;G) = m (N0; C) for each mcstp (N0; C).

As in classical mcstp; the main objective is to divide the cost associated
with an mt among the agents in a fair way.
A rule for mcstp with coalition structure, F is de�ned in Bergantiños and

Gómez-Rúa (2007). The intuitive idea of this rule is as follows. F can be
considered as a "two-steps" rule. In the �rst step we compute the amount
that each coalition should pay in order to be connected to the source. We
do it applying the rule ' de�ned in Bergantiños and Vidal-Puga (2007a).
In the second step we decide the amount that each agent of each coalition

has to pay. For each coalition Gk; we consider themcstp inside each coalition�
Gk0; C

'
�
: In this mcstp; the connection cost between two agents of Gk is the

same as in C but the connection cost between any agent of Gk and the source
is the amount assigned to the coalition Gk in the �rst step.
Formally this rule is de�ned as follows: Given the mcstp with coalition

structure (N0; C;G) ; with G = fG1; :::; Gmg and M = f1; :::;mg; we de�ne
the mcstp among coalitions, (M0; C

G) as follows:
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� M0 = f0; 1; :::;mg:

� CG is the cost matrix and for each k; k0 2 M0; the connection cost
between k and k0 is denoted by

cGkk0 = min
i2Gk;j2Gk0

fcijg:

Let (N0; C;G) be anmcstp with coalition structure and i 2 Gk:We de�ne

Fi (N0; C;G) = 'i
�
Gk0; C

'
�

where C' = (c'jj0)j;j02Gk0 is de�ned as

c'jj0 =

�
cjj0 if 0 =2 fj; j0g
'k
�
M0; C

G
�
if 0 2 fj; j0g :

Before introducing the result of the paper, we present two Lemmas which
will be used often in the proofs of the main result.

Lemma 1 (Bergantiños and Vidal-Puga (2007a)) If C� = (c�ij)i;j2N0 is an
irreducible matrix, then for all S � N0, i =2 S we have that

vC� (S [ fig)� vC� (S) = min
j2S0

�
c�ij
	
:

Lemma 2 (Bergantiños and Gómez-Rúa (2007)) Given (N0; C;G) we can
�nd an mt t in (N0; C) satisfying:

(i) For each k = 1; :::;m; tGk induces an mt in
�
Gk; C

�
:

(ii)
�
(k; k0) : 9i 2 Gk; j 2 Gk0 with (i; j) 2 t

	
is an mt in

�
M0; C

G
�
:

(iii) For each k = 1; ::::;m and each i 2 Gk; tGk [ f(0; i)g is an mt in
(Gk0; C

'):
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3 An approach using TU games

Owen (1977) introduces a value for TU games with coalition structure. It
is assumed that agents are partitioned into di¤erent coalitions. Moreover,
the objective is to divide the value of the grand coalition among the agents
taking into account the coalition structure. Owen (1977) proves that his
value generalizes the Shapley value.
The rule ' in mcstp is de�ned as the Shapley value of the TU game

(N; vC�). The rule F in mcstp with coalition structure generalizes the rule
': We can ask if there is some relationship between F and the Owen value
of (N; vC� ; G) : The answer is not trivial because (N; vC� ; G) does not appear
in the de�nition of F: Nevertheless, we will prove that F coincides with the
Owen value of (N; vC� ; G) :
We �rst introduce the Owen value formally. A TU game with coali-

tion structure is a triple (N; v;G) where (N; v) is a TU game and G =
fG1; :::; Gmg is a partition of N:
We say that a permutation � 2 �N is admissible with respect to G if

given i; i0 2 Gk 2 G and j 2 N with �(i) < �(j) < �(i0), then j 2 Gk: We
denote by �G the set of all permutations over N admissible with respect to
G.
Given (N; v;G) and i 2 Gk 2 G; the Owen value is de�ned as

Owi (N; v;G) =
1

j�Gj
X
�2�G

[v (Pre (i; �) [ fig)� v (Pre (i; �))] :

Now we present our result.

Theorem 3 For eachmcstp with coalition structure (N0; C;G) and i 2 Gk 2
G;

Fi (N0; C;G) = Owi (N; vC� ; G) :

Proof. Let (N0; C;G) be an mcstp with coalition structure and i 2 Gk 2 G:
We will prove the result in several Claims.
For each mcstp with coalition structure (N0; C;G) and each Gk 2 G;

let (N 0
0; C

0; G0) the problem obtained from (N0; C;G) by considering that the
rest of the coalitions have a unique agent whose connection cost to the rest

of the agents is given by
�
M0; C

G
�
: Namely, N 0 = Gk [

 S
l 6=k
filg

!
; G0 =
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fGkg [ ffilggl2Mnfkg; and C 0 is de�ned as follows: if i; j 2 Gk [ f0g ; then
c0ij = cij: If i 2 Gk and j = il with l 2 Mnfkg; then c0ij = cGkl: If i = 0 and
j = il with l 2 Mnfkg; then c0ij = cG0l: If i = il, j = il0 and k =2 fl; l0g ; then
c0ij = cGll0 :
In Bergantiños and Gómez-Rúa (2007) (Claim 13 in Proposition 11) we

prove that:
Fi (N0; C;G) = Fi (N

0
0; C

0; G0) :

We proceed with several claims.

Claim 4 Owi (N; vC� ; G) = Owi (N
0; vC0� ; G

0) :
Proof. We know that

Owi (N; vC� ; G) =
1

j�Gj
X
�2�G

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))] and

Owi (N
0; vC0� ; G

0) =
1

j�G0j
X
�02�G0

[vC0� (Pre (i; �
0) [ fig)� vC0� (Pre (i; �

0))] .

For each �0 2 �G
0
let O (�0) denote the set of orders of �G inducing

the same order than �0 among the agents in Gk and among the coalitions.
Namely, O (�0) is the set of orders � 2 �G satisfying two conditions:
1. �Gk = �0

Gk
:

2. Given j 2 Gl; j0 2 Gl
0
; k =2 fl; l0g we have that � (j) < � (j0) if and

only if �0 (il) < �0 (il0) :

Thus, for all �0 2 �G0 ; jO (�0)j =
Y
l 6=k

���Gl��!� :
We now prove that given �0 2 �G0 and � 2 O (�0) ; we have that

vC0� (Pre (i; �
0) [ fig)�vC0� (Pre (i; �0)) = vC� (Pre (i; �) [ fig)�vC� (Pre (i; �)) :

By Lemma 1,

vC0� (Pre (i; �
0) [ fig)� vC0� (Pre (i; �

0)) = min
j2Pre(i;�0)0

�
c0�ij
	
and

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
j2Pre(i;�)0

�
c�ij
	
:

We consider two cases:
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� Pre (i; �0) \Gk 6= ?:

We know that for all l 2M; max
j;j02Gl

fcjj0g � min
j2Gl;j0 =2Gl

fcjj0g. Because of the
de�nition of the irreducible matrix as the minimal network associated with
the minimal tree given by Lemma 2, it is easy to deduce that for all l 2 M;
max
j;j02Gl

�
c�jj0
	
� min

j2Gl;j0 =2Gl

�
c�jj0
	
: Now,

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
j2(Pre(i;�)\Gk)

0

�
c�ij
	
:

Analogously,

vC0� (Pre (i; �
0) [ fig)� vC0� (Pre (i; �

0)) = min
j2(Pre(i;�0)\Gk)

0

�
c0�ij
	
:

Because of the de�nition of C 0, c�ij = c0�ij for all j 2 Gk: Since � 2 O (�0) ;
P re (i; �) \Gk = Pre (i; �0) \Gk:
Then, the result holds.

� Pre (i; �0) \Gk = ?:
Let t be the mt given by Lemma 2. We can compute C� as the minimal

network associated with t:
By Lemma 2, we know that tGk is an mt in

�
Gk; C

�
and the tree tG =�

(k; k0) : 9i 2 Gk; j 2 Gk0 with (i; j) 2 t
	
is an mt in

�
M0; C

G
�
: Now it is

easy to deduce that t0 = tGk [ tG induces an mt in (N 0
0; C

0; G0) : Then, we can
compute C 0� as the minimal network associated with t0:
Since Pre (i; �0)\Gk = ?; we can assume that min

j2Pre(i;�0)0

�
c0�ij
	
= c0�iil with

l 6= k (il = i0 = 0 is also possible). Let giil be the unique path in t
0 joining i

and il. Then, c0�iil = c0iaib where (ia; ib) 2 giil. By de�nition of C
0; c0iaib = cjajb

where ja 2 Ga and jb 2 Gb:
Since min

j2Pre(i;�0)0

�
c0�ij
	
= c0�iil ; G

l � Pre (i; �)0 : Now, there exists jl 2 Gl

such that
min

j2Pre(i;�)0

�
c�ij
	
= c�ijl :

Because of the de�nition of C� as the minimal network associated with t
we have that (ja; jb) belongs to the unique path in t joining i and jl: Thus,

min
j2Pre(i;�)0

�
c�ij
	
= c�ijl � cjajb = min

j2Pre(i;�0)0

�
c0�ij
	
:
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Using arguments similar to those used above we can prove that min
j2Pre(i;�)0

�
c�ij
	
�

min
j2Pre(i;�0)0

�
c0�ij
	
:

It is easy to see that,
���G�� = m!

 
mY
l=1

���Gl��!�! ; ���G0�� = m!
���Gk��!� ; and

for each �0 2 �G0 ; jO (�0)j =
Y

l2Mnfkg

���Gl��!� : Thus,
Owi (N; vC� ; G) =

1

j�Gj
X
�02�G0

X
�2O(�0)

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

=
1

j�Gj
X
�02�G0

X
�2O(�0)

[vC0� (Pre (i; �
0) [ fig)� vC0� (Pre (i; �

0))]

=
1

j�Gj
X
�02�G0

0@ Y
l2Mnfkg

��Gl��!
1A [vC0� (Pre (i; �0) [ fig)� vC0� (Pre (i; �

0))]

=
1

j�G0j
X
�02�G0

[vC0� (Pre (i; �
0) [ fig)� vC0� (Pre (i; �

0))]

= Owi (N
0; vC0� ; G

0) :

Thus, we can assume that (N0; C;G) satis�es that
��Gl�� = 1 for all l 6= k:

Claim 5 Let � 2 �G such that Pre (i; �) \Gk 6= ?: Thus,

vC� (Pre (i; �) [ fig)�vC� (Pre (i; �)) = v(C')� (Pre (i; �Gk) [ fig)�v(C')� (Pre (i; �Gk)) :

Proof. We have seen in the proof of Claim 4 that

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
j2(Pre(i;�)\Gk)

0

�
c�ij
	
:

By Lemma 1,

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = min
j2Pre(i;�Gk)0

�
c'�ij
	
:
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Let t be an mt as in Lemma 2. Thus, tk = tGk [ f(0; i)g is an mt in�
Gk0; C

'
�
: Because of the proof of Lemma 2, (See Bergantiños and Gómez-

Rúa (2007), Lemma 3), for all (j; j0) 2 tk; c'jj0 � c'0i: Since (C
')� is the

minimal network associated with tk; we deduce that

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = min
j2(Pre(i;�Gk)\Gk)0

�
c'�ij
	
:

Since Pre (i; �Gk) \ Gk = Pre (i; �) \ Gk, it is enough to prove that for
all j 2 Pre (i; �) \Gk; c'�ij = c�ij: Let j 2 Gk:
We know that (C')� is the minimal network associated with tk and C� is

the minimal network associated with t: Let g'ij denote the unique path in t
k

joining i and j: Let gij denote the unique path in t joining i and j: By Lemma
2, tGk is a tree in

�
Gk; C'

�
: Since tk

Gk
= tGk ; we deduce that g

'
ij = gij � tGk :

Then,
c'�ij = max

(a;b)2g'ij
fc'abg = max

(a;b)2gij
fc'abg :

By de�nition of C'; c'ij0 = cij0 for all j0 2 Gk: Now, c'�ij = max
(a;b)2gij

fcabg =
c�ij:

Claim 6 Let � 2 �G such that Pre (i; �)\Gk = ?: Let �0 denote the order
induced by � in M: Namely, �0 (l) < �0 (l0) if and only if there exist j 2 Gl

and j0 2 Gl0 such that � (j) � � (j0) : Since � 2 �G; �0 is well de�ned. Thus,

1. vC� (Pre (i; �) [ fig) � vC� (Pre (i; �)) = v(CG)� (Pre (k; �
0) [ fkg) �

v(CG)� (Pre (k; �
0)).

2. v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = 'k
�
M0; C

G
�
:

Proof. 1. By Lemma 1,

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
l2Pre(i;�)0

fc�ilg and

v(CG)� (Pre (k; �
0) [ fkg)� v(CG)� (Pre (k; �

0)) = min
l2Pre(k;�0)0

�
cG�kl
	
:

It is obvious that Pre (i; �) coincides with Pre (k; �0) : Let t be an mt
as in Lemma 2. Thus, tG =

�
(k; k0) : 9i 2 Gk; j 2 Gk0 with (i; j) 2 t

	
is

an mt in
�
M0; C

G
�
: Using arguments similar to those used in the proof of

11



Claim 5, we can prove that for all l 2 Pre (i; �) and its equivalent coalition
l0 2 Pre (k; �0) ; c�il = cG�kl0 :

2. By Lemma 1,

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = min
j2Pre(i;�Gk)0

�
c'�ij
	
:

Since Pre (i; �) \Gk = ?, Pre (i; �Gk)0 = f0g : Thus,

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = c'�0i :

By Lemma 2, (iii) ; tk = tGk [ f(0; i)g is an mt in
�
Gk0; C

'
�
: Since C'�

is the minimal network associated with tk;

c'�0i = c'0i = 'k
�
M0; C

G
�
:

Claim 7 Fi (N0; C;G) = Owi (N; vC� ; G) :
Proof. We know that

Fi (N0; C;G) = 'i
�
Gk0; C

'
�
= Shi

�
Gk; v(C')�

�
=

1

j�Gk j
X
�2�

Gk

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
:

Let Xk
1 ; X

k
2 the partition of �Gk where

Xk
1 =

�
� 2 �Gk : Pre (i; �) \Gk 6= ?

	
and

Xk
2 =

�
� 2 �Gk : Pre (i; �) \Gk = ?

	
:

Since j�Gk j =
��Gk��!;

Fi (N0; C;G) =
1

jGkj!
X
�2Xk

1

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
+

1

jGkj!
X
�2Xk

2

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
:
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By Claim 6.2,

1

jGkj!
X
�2Xk

2

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
=

1

jGkj!
��Xk

2

��'k �M0; C
G
�

=
1

jGkj'k
�
M0; C

G
�
:

We know that

Owi (N; vC� ; G) =
1

j�Gj
X
�2�G

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))] :

Let X1; X2 the partition of �G where

X1 =
�
� 2 �G : Pre (i; �) \Gk 6= ?

	
and

X2 =
�
� 2 �G : Pre (i; �) \Gk = ?

	
:

Since
���G�� = m!

��Gk��!,
Owi (N; vC� ; G) =

1

m! jGkj!
X
�2X1

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

+
1

m! jGkj!
X
�2X2

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))] :

By Claim 5,

1

m! jGkj!
X
�2X1

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

=
1

m! jGkj!
X
�2X1

�
v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk))

�
:

For each �k 2 �Gk ;
���� 2 X1 : �Gk = �k

	�� = m!: Thus, the last expres-
sion coincides with

=
1

jGkj!
X
�k2Xk

1

�
v(C')�

�
Pre

�
i; �k

�
[ fig

�
� v(C')�

�
Pre

�
i; �k

���
:

13



Let �G denote the set of all orders of the m coalitions fG1; :::; Gmg : Given
� 2 �N ; let �0 denote the order induced by � among the coalitions (as in
Claim 6). For each �G 2 �G;

jf� 2 X2 : �
0 = �Ggj =

���Gk��� 1�!
By Claim 6.1,

1

m! jGkj!
X
�2X2

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

=
1

m! jGkj!
X
�2X2

�
v(CG)� (Pre (k; �

0) [ fkg)� v(CG)� (Pre (k; �
0))
�

=
1

m! jGkj
X
�02�G

�
v(CG)� (Pre (k; �

0) [ fkg)� v(CG)� (Pre (k; �
0))
�

=
1

jGkj'k
�
M0; C

G
�
:

Then, Fi (N0; C;G) = Owi (N; vC� ; G) :

And the proof of Theorem 3 is completed
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