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Minimum cost spanning tree problems with
coalition structure�

Gustavo Bergantiños, Research Group in Economic Analysis
Universidade de Vigo (Spain)

María Gómez-Rúa. Departamento de Estatística e I.O.
Universidade de Vigo (Spain)

Abstract

We study minimum cost spanning tree problems with coalition
structure. We assume that agents are located in di¤erent villages. We
introduce a rule for dividing the cost of connecting all agents to the
source among the agents taking into account the coalition structure.
We characterize this rule.

1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp). A
group of agents (denoted by N), located at di¤erent geographical places,
want a particular service which can only be provided by a common supplier,
called the source (denoted by 0). Agents will be served through connections
which involve some cost. Moreover, they do not care whether they are con-
nected directly or indirectly to the source. This situation is described by a
symmetric matrix C, where cij denotes the connection costs between i and j
(i; j 2 N [ f0g) :
There are many economic situations that can be modeled in this way. For

instance, several towns may draw power from a common power plant, and
hence have to share the cost of the distribution network (Dutta and Kar,
2004). Bergantiños and Lorenzo (2004, 2005) study a real situation where
villagers had to pay the cost of constructing pipes from their respective houses

�Financial support from Ministerio de Ciencia y Tecnología and FEDER
through grant SEJ2005-07637-C02-01 and from Xunta de Galicia through grants
PGIDIT06PXIB362390PR and PGIDIT06PXIC300184PN is gratefully acknowledged.
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to a water supplier. Other examples include communication networks, such
as telephone, internet, or cable television.
We assume that agents construct a minimum cost spanning tree (mt):

The question is how to divide the cost associated with the mt between the
agents. Di¤erent rules give di¤erent answers to this question. One of the
most important topics is the axiomatic characterization of rules. The idea
is to propose desirable properties and to �nd out which of them characterize
each rule. Properties often help agents to compare di¤erent rules and to
decide which rule is preferred in a particular situation.
In some cases, as in Dutta and Kar (2004) or Bergantiños and Lorenzo

(2004, 2005), agents are located in di¤erent villages. This means, in terms
of the cost matrix, that the connection cost between two agents of the same
village is not larger than the connection cost between an agent of this village
and an agent from other village.
The classical model of mcstp; as described above, can also model these

situations. Nevertheless, it ignores the fact that some group of agents are
located in the same city or village. It could be interesting to include this fact
in the model. We do it by considering an extra element in the model. Namely
a partition G = fG1; :::; Gmg of the set of agents N: For each k = 1; :::;m,
Gk represents the coalition of agents located in the same village, city, ...
In this paper we follow the axiomatic approach and we introduce a rule

as the unique rule satisfying a set of desirable properties. Our idea is to
generalize the axiomatic characterization of the rule ' given by Bergantiños
and Vidal-Puga (2007c), which involves three properties. Restricted Addi-
tivity (RA) which says that the rule must be additive on the cost matrix;
Population Monotonicity (PM) ; which says that if a new agent comes, no
agent of the initial society can be worse o¤; and Symmetry (SYM) ; which
says that symmetric agents (with respect to the cost matrix) must pay the
same.
We adapt these properties to mcstp with coalition structure. The prop-

erty of RA could be formulated in a similar way. Nevertheless, PM and
SYM should be adapted. The main idea for adapting each of these prop-
erties is claiming both twice. First among the coalitions and then among
agents inside the same coalition.
In order to adapt these properties a question comes to our mind. Should

the cost paid by the agents of a village depend on the internal characteristics
of the other village? For instance, should this cost depend on the number of
agents of the other villages? We consider that both answers, "yes" or "no",
are reasonable. In this paper we have chosen "no". Then, we have adapted
the properties of PM and SYM taking it into account.
We consider two properties of SYM: Symmetry among agents in the
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same coalition (SYMA) says that if two agents are symmetric and belong
to the same coalition, they must pay the same. Symmetry among coalitions
(SYMC) says that if two coalitions are symmetric the total amount paid by
the members of each coalition minus the cost of connecting agents inside the
coalition among themselves must be the same. Two coalitions are symmetric
if their connection costs to the other coalitions are the same.
We also consider two properties of PM: Population monotonicity over

agents (PMA) says that if agent i enters coalition Gk, no agent of coalition
Gk can be worse o¤. Moreover, if the connection costs between coalition Gk

and the other coalitions do not change, agents of the other coalitions must
pay the same. Population monotonicity over coalitions (PMC) says that if
a new coalition joins the society, no agent of the initial society can be worse
o¤.
The main result of the paper says that there is a unique rule, we call it

F; satisfying RA; SYMA; SYMC; PMA; and PMC:
We now describe the rule F . F can be considered as a two-steps rule.

In the �rst step we compute the amount that each coalition should pay in
order to be connected to the source. We do it applying the rule ' de�ned
in Bergantiños and Vidal-Puga (2007a). In the second step we decide the
amount that each agent of each coalition has to pay. For each coalition
Gk; we consider the mcstp inside each coalition

�
Gk0; C

'
�
: In

�
Gk0; C

'
�
the

connection cost between two agents in Gk is the same as in C. Nevertheless,
the connection cost between any agent of Gk and the source is the amount
computed for the coalition Gk in the �rst step.
The paper is organized as follows. In Section 2 we introduce mcstp: In

Section 3 we introduce mcstp with coalition structure. In Section 4 we de�ne
the rule F and we present the axiomatic characterization.

2 Minimum cost spanning tree problems

Let N = f1; 2; :::g be the set of all possible agents. Given a �nite set N � N ,
let �N be the set of all permutations over N . Given � 2 �N , let Pre (i; �)
denote the set of the elements of N which come before i in the order given
by �, i:e: Pre (i; �) = fj 2 N : � (j) < � (i)g. Given S � N , let �S denote
the order induced by � among the agents in S.
We are interested in networks whose nodes are elements of a set N0 =

N [ f0g, where N � N is �nite and 0 is a special node called the source.
Usually we take N = f1; :::; ng.
A cost matrix C = (cij)i;j2N0 on N represents the cost of direct link

between any pair of nodes. We assume that cij = cji � 0 for each i; j 2 N0
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and cii = 0 for each i 2 N0. Since cij = cji we work with undirected arcs, i:e:
(i; j) = (j; i).
We denote the set of all cost matrices over N as CN . Given C; C 0 2 CN

we say C � C 0 if cij � c0ij for all i; j 2 N0:
Aminimum cost spanning tree problem, brie�y anmcstp; is a pair (N0; C)

where N � N is a �nite set of agents, 0 is the source, and C 2 CN is the
cost matrix.
Given an mcstp (N0; C), we de�ne the mcstp induced by C in S � N as

(S0; C).
A network g over N0 is a subset of f(i; j) : i; j 2 N0g : The elements

of g are called arcs: Given a network g over N0 and S � N0 we denote
by gS the network induced by g among the elements of S: Namely, gS =
f(i; j) 2 g : fi; jg � Sg :
Given a network g and a pair of nodes i and j, a path from i to j in g

is a sequence of di¤erent arcs f(ih�1; ih)glh=1 satisfying (ih�1; ih) 2 g for all
h 2 f1; 2; :::; lg, i = i0, and j = il.
A tree is a network such that for all i 2 N there is a unique path from i to

the source. If t is a tree, we usually write t = f(i0; i)gi2N where i0 represents
the �rst agent in the unique path in t from i to 0.
Let GN denote the set of all networks over N0. Let GN0 denote the set of

all networks where every agent i 2 N is connected to the source, i:e: there
exists a path from i to 0 in the network.
Given an mcstp (N0; C) and g 2 GN , we de�ne the cost associated with

g as
c (N0; C; g) =

X
(i;j)2g

cij:

When there is no ambiguity, we write c (g) or c (C; g) instead of c (N0; C; g).
A minimum cost spanning tree for (N0; C), brie�y an mt, is a tree t over

N0 such that c (t) = min
g2GN0

c (g). It is well-known that an mt exists, even

though it is not necessarily unique. Given an mcstp (N0; C), we denote the
cost associated with any mt as m (N0; C).

Given an mcstp, Prim (1957) provides an algorithm for solving the prob-
lem of connecting all agents to the source such that the total cost of creating
the network is minimal. The idea of this algorithm is simple: starting from
the source we construct a network by sequentially adding arcs with the lowest
cost and without introducing cycles.
Formally, Prim�s algorithm is de�ned as follows. We start with S0 = f0g

and g0 = ;:

4



Stage 1 : Take an arc (0; i1) such that c0i1 = min
j2N

fc0jg. If there are
several arcs satisfying this condition, select just one. Now, S1 = f0; i1g and
g1 = f(0; i1)g.
Stage p + 1: Assume that we have de�ned Sp � N0 and gp 2 GN . We

now de�ne Sp+1 and gp+1. Take an arc
�
i0p+1; ip+1

�
with i0p+1 2 Sp and

ip+1 2 N0nSp such that ci0p+1ip+1 = min
k2Sp;l2N0nSp

fcklg. If there are several

arcs satisfying this condition, select just one. Now, Sp+1 = Sp [ fip+1g and
gp+1 = gp [

��
i0p+1; ip+1

�	
.

This process is completed in n stages. We say that gn is a tree obtained
following Prim�s algorithm. Notice that this algorithm leads to a tree, but
this is not always unique.

Given an mcstp (N0; C) and an mt t, Bird (1976) de�ned the minimal
network (N0; Ct) associated with t as follows: ctij = max

(k;l)2gij
fcklg, where gij

denotes the unique path in t from i to j. Even though gij depends on the
choice of t, ctij is independent of the chosen t. Proof of this can be found, for
instance, in Aarts and Driessen (1993).
The irreducible form of an mcstp (N0; C) is de�ned as the minimal net-

work (N0; C�) associated with a particular mt t. If (N0; C�) is an irreducible
form, we say that C� is an irreducible matrix.

One of the most important issues addressed in the literature about mcstp
is how to divide the cost of connecting agents to the source between them.
We now brie�y describe some of the rules studied in the literature.
A (cost allocation) rule is a function f such that f (N0; C) 2 RN andP

i2N
fi (N0; C) = m (N0; C) for each mcstp (N0; C). As usual,  i (N0; C) rep-

resents the cost allocated to agent i.
Notice that we implicitly assume that the agents build an mt. As far as

we know, all the rules proposed in the literature make this assumption.

A coalitional game with transferable utility, brie�y a TU game, is a pair
(N; v) where v : 2N ! R satis�es v (?) = 0. Sh (N; v) denotes the Shapley
value (Shapley (1953)) of (N; v).
For each mcstp (N0; C) ; Bird (1976) introduces the TU game (N; vC).

For each coalition S � N ,

vC (S) = m (S0; C) :

There are several rules studied in the literature. We mention, for instance,
the rules studied in Bird (1976), Kar (2002), and Dutta and Kar (2004). In
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this paper the rule introduced by Feltkamp et al (1994) and called Equal
Remaining Obligations rule (ERO) will be very important. ERO is called
the P -value in Branzei et al (2004).
On the other hand, in Bergantiños and Vidal-Puga (2007a) it is de�ned

the rule ' as
' (N0; C) = Sh (N; vC�)

where C� is the irreducible matrix associated with C. Bergantiños and Vidal-
Puga (2007e) prove that, surprisingly, ' coincides with ERO. This rule is
also studied in Bergantiños and Vidal-Puga (2007b, 2007c, 2007d).

We now de�ne several properties formally.
We say that f satis�es Restricted Additivity (RA) if for all mcstp (N0; C)

and (N0; C 0) satisfying that there exists an mt t = f(i0; i)gi2N in (N0; C),
(N0; C

0), and (N0; C + C 0) and an order � = (i1; : : : ; ijN j) 2 �N such that
ci01i1 � ci02i2 � : : : � ci0jNjijNj and c

0
i01i1
� c0

i02i2
� : : : � c0

i0jNjijNj
, we have that

f(N0; C + C 0) = f(N0; C) + f(N0; C
0):

RA is an additivity property restricted to some subclass of problems. No
rule satis�es additivity over all mcstp. The reason is that in the de�nition of
a rule we are claiming that

P
i2N

fi (N0; C) = m (N0; C) ; which is incompatible

with additivity over all mcstp. See Bergantiños and Vidal-Puga (2007c) for
a detailed discussion of RA:

We say that f satis�es Population Monotonicity (PM) if for all mcstp
(N0; C) ; all S � N; and all i 2 S;

fi (N0; C) � fi (S0; C) :

PM says that, if new agents join a society, no agent of the initial society
can be worse o¤. This is a well-known property, which has been used in many
di¤erent situations.

We say that i; j 2 N are symmetric if for all k 2 N0 n fi; jg, cik = cjk.
We say that f satis�es Symmetry (SYM) if for all mcstp (N0; C) and all

pair of symmetric agents i; j 2 N ,

fi (N0; C) = fj (N0; C) :

We say that f satis�es Strong Cost Monotonicity (SCM) if for all mcstp
(N0; C) and (N0; C 0) such that C � C 0 and all i 2 N;

fi(N0; C) � fi(N0; C
0):
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SCM implies that if a number of connection costs increase and the rest
of connection cost (if any) remain the same, no agent can be better o¤. This
property is called solidarity in Bergantiños and Vidal-Puga (2007a).

In Lemma 1 below we present some results used in the paper. The proof
can be found in Bergantiños and Vidal-Puga (2007a, 2007b, 2007c, 2007d).

Lemma 1 (a) (N0; C) is irreducible if and only if there exists an mt t in
(N0; C) satisfying the two following conditions:

(A1) t = f(ip�1; ip)gjN jp=1 where i0 = 0.
(A2) Given ip; iq 2 N0, p < q, then cipiq = max

p<r�q

�
cir�1ir

	
.

(b) If C is an irreducible matrix, then for all S � N0, i =2 S we have that

vC (S [ fig)� vC (S) = min
j2S0

fcijg :

(c) If C is an irreducible matrix, then vC is a concave game. Namely, if
S � T � N and i =2 T; then

vC (S [ fig)� vC (S) � vC (T [ fig)� vC (T ) :

(d) If C and C 0 are under the conditions of RA; then for all S � N;

v(C+C0)� (S) = vC� (S) + vC0� (S) :

(e) ' is the unique rule on mcstp satisfying RA; PM; and SYM:
(f) ' satis�es SCM:

3 Minimum cost spanning tree problems with
coalition structure

There are many economic situations that can be modeled as a mcstp. Let
us mention some examples. Several towns may draw power from a common
power plant, and hence have to share the cost of the distribution network
(Dutta and Kar, 2004). Bergantiños and Lorenzo (2004, 2005) study a real
situation where a valley authority has to construct pipes from a dam to
several houses. These houses are located in di¤erent villages of the valley.
The classical model of mcstp; as described in the previous section can

also model this situation. Nevertheless, it ignores the fact that some groups
of agents are located in the same city or village. It could be interesting to
include this fact in the model. That is the main issue of this section.
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We do it by considering an extra element in the model. Namely a partition
G = fG1; :::; Gmg of the set of agents N: The interpretation of G is clear.
For each k = 1; :::;m, Gk represents a coalition of agents, which are located
in the same city, village, ...
In many situations, for instance the examples mentioned at the beginning

of this section, the cost between any pair of agents is closely related to the
distance between both agents. Under these circumstances, it seems reason-
able that the connection cost between two agents of city Gk is not larger than
the connection cost between an agent of city Gk and an agent from another
city (or the source).

We now introduce the model formally. An mcstp with coalition struc-
ture is a triple (N0; C;G) where (N0; C) is an mcstp, G = fG1; :::; Gmg is a
partition of N and for each k = 1; :::m

max
i;j2Gk

fcijg � min
i2Gk;j =2Gk

fcijg :

A rule inmcstp with coalition structure is a function f such that f (N0; C;G) 2
RN and

P
i2N

fi (N0; C;G) = m (N0; C) for each mcstp (N0; C).

As in classical mcstp; the main objective is to divide the cost associated
with an mt among the agents in a fair way.

Example 2 Consider the mcstp (N0; C;G) with coalition structure where
N = f1; 2; 3g ; G = fG1; G2g ; G1 = f1; 2g ; G2 = f3g ; and matrix C which
is represented in the following �gure:

In this case m (N0; C) = 14: Moreover, 12 units are associated with the cost
of connecting cities 1 and 2 with the source and 2 units are associated with
the cost of connecting agents 1 and 2 inside city 1.
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Since we are looking for fair shares it seems reasonable to divide these 2
units equally between agents 1 and 2.
The 12 units comes from the construction of the network in which some

of the three agents is connected with the source and some agent of G1 is
connected with agent 3: In order to divide the 12 units among the agents two
approaches seems reasonable.

1. The cost paid by each city does not depend on the characteristics of
the other city. Assuming it both cities are symmetric. Thus, each city
should pay 6. Since agents inside city 1 are also symmetric, both pay
the same. Then, agent 1 pays 1+3=4, agent 2 pays 1+3=4, agent 3
pays 6.

2. The cost paid by each city should take into account the number of agents
who get bene�ts from their connection. Thus, city 1 should pay twice
than city 2, i:e: city 1 pays 8 and city 2 pays 4. Since agents inside city
1 are also symmetric, both pay the same. Then, agent 1 pays 1+4=5,
agent 2 pays 1+4=5, agent 3 pays 4.

In this paper we have decided to follow the �rst approach. Thus, some
properties introduced later will be de�ned accordingly.

4 The rule and the axiomatic characteriza-
tion

In this Section we follow the axiomatic approach and introduce a rule as the
unique rule satisfying a set of desirable properties. Our idea is to generalize
the axiomatic characterization of the rule ' given by Bergantiños and Vidal-
Puga (2007d), which involves three properties: RA; PM; and SYM:
Now we adapt these properties to mcstp with coalition structure. The

property of RA could be formulated in a similar way. Nevertheless, PM and
SYM should be adapted. The main idea for adapting each of these properties
is claiming both twice. Once among the coalitions and other among agents
inside the same coalition.

We say that f satis�es Restricted Additivity (RA) if for all mcstp with
coalition structure (N0; C;G) and (N0; C 0; G) satisfying that there exists an
mt t = f(i0; i)gi2N in (N0; C;G), (N0; C 0; G), and (N0; C + C 0; G) and an
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order � = (i1; : : : ; ijN j) 2 �N such that ci01i1 � ci02i2 � : : : � ci0jNjijNj and
c0
i01i1
� c0

i02i2
� : : : � c0

i0jNjijNj
, we have that

f(N0; C + C 0; G) = f(N0; C;G) + f(N0; C
0; G):

We say that f satis�es Symmetry among Agents in the same Coalition
(SYMA) if for all mcstp with coalition structure (N0; C;G) and all pair of
symmetric agents i; j 2 Gk 2 G,

fi (N0; C;G) = fj (N0; C;G) :

We now de�ne symmetry among coalitions. We �rst de�ne symmetric
coalitions. Intuitively two coalitions of agents are symmetric if their connec-
tion costs to the other coalitions are the same. Because of the model each
pair of coalitions Gk and Gk

0
can connect in several ways. For each pair

of agents i 2 Gk; j 2 Gk
0
they can construct the arc (i; j) : Since we are

assuming that agents will construct an mt; it is reasonable to assume that
they will construct an arc (i; j) with minimum cost.
We say that two coalitions Gk and Gk

0
are symmetric if for all Gl 2

G0 n
�
Gk; Gk

0	
,

min
i2Gk;j2Gl

fcijg = min
i2Gk0 ;j2Gl

fcijg :

The next step is to say that symmetric coalitions should pay the same.
The amount paid by coalition Gk is

P
i2Gk

fi (N0; C;G) : Thus, we can decom-

pose this amount in two parts: the cost of connecting agents inside the
coalition among themselves, m

�
Gk; C

�
; and the cost of connecting the coali-

tion with the source (possibly through other coalitions),
P
i2Gk

fi (N0; C;G)�

m
�
Gk; C

�
:We are assuming that the amount paid by a coalition should not

depend on the internal characteristics of the other coalitions. Then, it seems
reasonable to say that m

�
Gk; C

�
should be paid by agents of Gk: Thus, we

formulate the second symmetry property as follows.
We say that f satis�es Symmetry among Coalitions (SYMC) if for all

mcstp with coalition structure (N0; C;G) and all pair symmetric coalitions
Gk; Gk

0 2 G,X
i2Gk

fi (N0; C;G)�m
�
Gk; C

�
=
X
i2Gk0

fi (N0; C;G)�m
�
Gk

0
; C
�
:

We now de�ne the two population monotonicity properties, over coalitions
and over agents.
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The idea of population monotonicity over coalitions is quite simple. If a
new coalition joins the society, no agent in the initial society can be worse
o¤. Formally, we say that f satis�es Population Monotonicity over Coalitions
(PMC) if for all mcstp with coalition structure (N0; C;G) ; all Gk 2 G; and
all i 2 NnGk;

fi (N0; C;G) � fi
��
NnGk

�
0
; C;GnGk

�
:

The population monotonicity over agents will apply when an agent enters
a coalition. We claim that no agent in the initial coalition can be worse o¤.
Furthermore, assume that after the entrance of agent i in coalition Gk the

minimum connection cost between coalition Gk and the rest of the coalitions
does not change, i:e: for each Gl; l 6= k; min

j2Gk;j02Gl
fcjj0g = min

j2Gk[fig;j02Gl
fcjj0g :

Since we are assuming that the amount paid by a coalition should not depend
on the internal characteristics of the other coalitions, and the entrance of
agent i does not change the connection cost among coalitions, we claim that
the agents in the others coalitions must pay the same.
Formally, we say that f satis�es Population Monotonicity over Agents

(PMA) if for all mcstp with coalition structure (N0; C;G) ; all Gk 2 G; and
all i 2 Gk such that Gkn fig 6= ?;

fj (N0; C;G) � fj
�
(Nn fig)0 ; C;

�
GnGk

�
[
�
Gkn fig

��
for all j 2 Gkn fig :
Moreover, if for each Gl with l 6= k; min

j2Gk;j02Gl
fcjj0g = min

j2Gknfig;j02Gl
fcjj0g ;

then
fj (N0; C;G) = fj

�
(Nn fig)0 ; C;

�
GnGk

�
[
�
Gkn fig

��
for all j 2 NnGk:

We now de�ne the rule F in mcstp with coalition structure. We �rst give
the intuitive idea. This rule can be considered as a two-steps rule. In the �rst
step we compute the amount that each coalition should pay in order to be
connected to the source. We do it applying the rule ' de�ned in Bergantiños
and Vidal-Puga (2007a).
In the second step we decide the amount that each agent of each coalition

has to pay. For each coalition Gk; we consider themcstp inside each coalition�
Gk0; C

'
�
: In this mcstp; the connection cost between two agents of Gk is the

same as in C but the connection cost between any agent of Gk and the source
is the amount computed by the coalition Gk in the �rst step.
We now present the de�nition formally. Given the mcstp with coalition

structure (N0; C;G) ; with G = fG1; :::; Gmg and M = f1; :::;mg we de�ne
the mcstp among coalitions

�
M0; C

G
�
as follows:
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� M0 = f0; 1; :::;mg :

� CG is the cost matrix and for each k; k0 2 M0 the connection cost
between k and k0 is denoted by

cGkk0 = min
i2Gk;j2Gk0

fcijg :

Let (N0; C;G) be anmcstp with coalition structure and i 2 Gk:We de�ne,

Fi (N0; C;G) = 'i
�
Gk0; C

'
�

where

c'jj0 =

�
cjj0 if 0 =2 fj; j0g
'k
�
M0; C

G
�
if 0 2 fj; j0g :

Before introducing the results of the paper, we present Lemma 3, which
will be used often in the proofs of the main results.

Lemma 3 Given (N0; C;G) we can �nd an mt t in (N0; C) satisfying:
(i) For each k = 1; :::;m; tGk induces an mt in

�
Gk; C

�
:

(ii)
�
(k; k0) : 9i 2 Gk; j 2 Gk0 with (i; j) 2 t

	
is an mt in

�
M0; C

G
�
:

(iii) For each k = 1; ::::;m and each i 2 Gk; tGk [ f(0; i)g is an mt in
(Gk0; C

'):
Proof. We prove that, when we apply Prim�s algorithm, if at Stage p;

Sp =

 
l[

j=1

Gkj

!
[G0 where G0 � Gkl+1 ; G0 6= ?; and G0 6= Gkl+1 ; then at Stage

p+ 1 we can select an arc
�
i0p+1; ip+1

�
where i0p+1 2 G0 and ip+1 2 Gkl+1nG0:

Let
�
i0p+1; ip+1

�
be such that i0p+1 2 G0, ip+1 2 Gkl+1nG0 and

ci0p+1ip+1 = min
i2G0;j2Gkl+1nG0

fcijg :

By de�nition of Prim�s algorithm it is enough to prove that ci0p+1ip+1 � cij
in the following cases:

1. i 2 G0; j 2 Nn
 
l+1[
j=1

Gkj

!
: Thus, ci0p+1ip+1 � cij because

�
i0p+1; ip+1

	
�

Gkl+1, i 2 Gkl+1 ; j 2 Gk0, k0 2 f1; :::;mg n fk1; :::; kl+1g, and kl+1 6= k0:
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2. i 2
l[

j=1

Gkj ; j 2 Gkl+1nG0: Thus, ci0p+1ip+1 � cij because
�
i0p+1; ip+1

	
�

Gkl+1, i 2 Gk0, k0 2 fk1; :::; klg ; j 2 Gkl+1, and kl+1 6= k0:

3. i 2
l[

j=1

Gkj ; j =2 Gkl+1nG0: Thus, ci0p+1ip+1 � cij because
�
i0p+1; ip+1

	
�

Gkl+1, i 2 Gk0 ; k0 2 fk1; :::; klg ; j 2 Gk
00
, k00 2 f1; :::;mg n fk1; :::; kl+1g

and k00 6= k0:

We now prove parts (i) and (ii) :
We apply Prim�s algorithm to (N0; C) : Let (0; i1) be the �rst arc selected

according Prim�s algorithm. We assume wlog that i1 2 G1: If G1n fi1g 6= ?;
by the previous statement, in Stage 2 of Prim�s algorithm we can select an
arc (i02; i2) satisfying that i

0
2 2 G1 \ S1 = fi1g and i2 2 G1n fi1g :

If we repeat this argument we can prove that for each p = 2; :::; jG1j the
arc

�
i0p; ip

�
selected at Stage p satis�es i0p 2 G1 and ip 2 G1:

In Stage p = jG1j+1 we select an arc
�
i0p; ip

�
where i0p 2 G1[f0g and ip =2

G1 [ f0g : We assume wlog that ip 2 G2: By de�nition of Prim�s algorithm,
ci0pip = cG12 when i

0
p 2 G1 whereas ci0pip = cG02 when i

0
p = 0: Repeating the same

argument as above we can prove that for each p = jG1j+ 2; :::; jG1 [G2j the
arc

�
i0p; ip

�
selected in Stage p satis�es i0p 2 G2 and ip 2 G2:

In general, for each q = 1; :::;m and for each p =
��[q�1l=1G

l
��+2; :::; ��[ql=1Gl��

the arc
�
i0p; ip

�
selected in Stage p satis�es i0p 2 Gq and ip 2 Gq: Moreover,

for each q = 1; :::;m and for each p =
��[q�1l=1G

l
��+1 the arc �i0p; ip� selected in

Stage p satis�es i0p 2 [
q�1
l=1G

l [ f0g and ip 2 [ml=q�1Gl:
Now it is easy to conclude that parts (i) and (ii) hold.
We now prove part (iii) : Let k 2 f1; :::;mg : Because of parts (i) and

(ii) it is enough to prove that for each i 2 Gk c'0i � max
j;j02Gk

�
c'jj0
	
: Since

c'0i = 'k(M0; C
G) for all i 2 Gk and c'jj0 = cjj0 for all j; j0 2 Gk; we must

prove that 'k(M0; C
G) � max

j;j02Gk
fcjj0g :

Given an mcstp (N0; C) ; for all i 2 N; 'i (N0; C) = Shi (N; vC�) : By
Lemma 1 (b) ; for all S � N; i =2 S; vC� (S [ fig) � vC� (S) = c�ij for some
j 2 S0n fig : So, 'i (N0; C) � min

j2N0nfig

�
c�ij
	
:

Thus, 'k(M0; C
G) � min

k02M0nfkg

��
cGkk0
��	

: Since the matrix irreducible is

the minimal network associated with an mt,

min
k02M0nfkg

��
cGkk0
��	 � min

k02M0nfkg

�
cGkk0
	
:
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Because of the de�nition of (N0; C;G) ; min
k02M0nfkg

�
cGkk0
	
� max

j;j02Gk
fcjj0g ;

Thus, Lemma 3 (iii) holds.

In the next Proposition we prove that F is a rule in mcstp with coalition
structure. We also prove that F generalizes the rule ' de�ned in Bergantiños
and Vidal-Puga (2007a).

Proposition 4 (a) For each mcstp with coalition structure (N0; C;G) ;X
i2N

Fi (N0; C;G) = m (N0; C) :

(b) Let (N0; C;G) be an mcstp with coalition structure where G = fNg.
Then, for each i 2 N;

Fi (N0; C;G) = 'i (N0; C) :

(c) Let (N0; C;G) be anmcstp with coalition structure where G = ffiggi2N :
Then, for each i 2 N;

Fi (N0; C;G) = 'i (N0; C) :

Proof. (a) By de�nition of F;

X
i2N

Fi (N0; C;G) =
mX
k=1

X
i2Gk

'i
�
Gk0; C

'
�
:

Since ' is a rule in mcstp, for each k = 1; :::;m;
P
i2Gk

'i
�
Gk0; C

'
�
=

m(Gk0; C
'): So, X

i2N
Fi (N0; C;G) =

mX
k=1

m(Gk0; C
'):

By Lemma 3 (iii), for any k = 1; :::;m; we can construct an mt in
(Gk0; C

'); tGk [ f(0; i)g with i 2 Gk: Thus, m(Gk0; C
') = m(Gk; C') +

'k(M0; C
G): Hence,

X
i2N

Fi (N0; C;G) =

mX
k=1

�
m(Gk; C') + 'k(M0; C

G)
�

=
mX
k=1

m(Gk; C') +
mX
k=1

'k(M0; C
G):
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Since ' is a rule in mcstp;
mP
k=1

'k(M0; C
G) = m(M0; C

G): Now,

X
i2N

Fi (N0; C;G) =
mX
k=1

m(Gk; C') +m(M0; C
G):

By de�nition of C'; c'ij = cij for all i; j 2 Gk. Thus, m(Gk; C') =
m(Gk; C): Hence,

X
i2N

Fi (N0; C;G) =
mX
k=1

m(Gk; C) +m(M0; C
G):

By Lemma 3 (i) and (ii), m(N0; C) =
mP
k=1

m(Gk; C) +m(M0; C
G):

Replacing this expression in equation above, we obtain the result.

(b) Let G = fNg: Thus, F (N0; C;G) = '(N0; C
'):

By de�nition, c'ij = cij for all i; j 2 N and c'0i = min
j2N

fc0jg for all i 2 N:
Thus, C � C': Since ' satis�es SCM; '(N0; C) � '(N0; C

'): By Lemma 3
(iii), m(N0; C) = m(N0; C

'): Now, '(N0; C) = '(N0; C
'):

(c) Let G = ffiggi2N : For each i 2 N;

Fi(N0; C;G) = 'i(fig0; C') = c'0i = 'i(M0; C
G)

Moreover, M0 coincides with N0 and CG coincides with C: Therefore,
F (N0; C;G) = '(N0; C).

We now present the main results of the Section.

Proposition 5 F satis�es RA; SYMC; SYMA; PMC; and PMA.
Proof. We divide the proof in several claims.

Claim 6 F satis�es RA:
Proof. Let (N0; C;G) and (N0; C 0; G) be two mcstp with coalition struc-

ture satisfying that there exists anmt t = f(i0; i)gi2N in (N0; C;G), (N0; C 0; G),
and (N0; C + C 0; G) and an order � = (i1; : : : ; ijN j) 2 �N such that ci01i1 �
ci02i2 � : : : � ci0jNjijNj and c

0
i01i1
� c0

i02i2
� : : : � c0

i0jNjijNj
.

We �rst prove that it is possible to �nd a tree t satisfying the conditions
of RA de�ned above and the three conditions of Lemma 3 for the problems
C; C 0; and C + C 0:
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Let t be the tree satisfying the conditions of RA: Assume that there exists
Gk 2 G such that tGk is not a tree in Gk: Since t is a tree in N0; tGk has no
cycles. Let fX1; :::; Xlg the partition of Gk in connected components induced
by tGk . Namely, if i; j 2 Xl0 for some l0 = 1; :::; l, then there is a path in tGk
from i to j: Moreover, if i 2 Xl0, j 2 Xl00 and l0 6= l00; then there is no path
in tGk from i to j:
Let i 2 Xl0, j 2 Xl00 and l0 6= l00: Since t is a tree there is a path gij in t

from i to j: For each arc (i0; j0) 2 gij we have that t1 = (tn f(i0; j0)g)[f(i; j)g
is a tree in (N0; C) : Since t is an mt in (N0; C) and (N0; C 0), cij � ci0j0
and c0ij � c0i0j0. Since i 2 Xl0 and j 2 Xl00 we can �nd (i0; j0) 2 gij such
that i0 2 Gk; j0 2 Gl; and l 6= k: Because of the de�nition of (N0; C;G) and
(N0; C

0; G0) we deduce that cij � ci0j0 and c0ij � c0i0j0 : Then, cij = ci0j0 and
c0ij = c0i0j0 : Hence, t

1 is an mt in (N0; C;G), (N0; C 0; G), and (N0; C+C 0; G):
The order �0 = (i01; : : : ; i

0
jN j) 2 �N obtained by changing in the order �

the arc (i0; j0) by (i; j) also satis�es the conditions of the de�nition of RA.
Now, t1

Gk
induces a partition of Gk in l � 1 connected components. If

l�1 = 1; then t1
Gk
induces a tree in Gk: Otherwise we proceed with t1 as with

t. Finally, we �nd an mt tl�1 such that tl�1
Gk

induces a tree in Gk:
Once we �nish with Gk we proceed with the other coalitions. At the end of

the procedure we �nd an mt tp such that tp
Gk
induces a tree in each Gk 2 G:

That is, tp satis�es the conditions of Lemma 3 (i). Since tp is a tree in N0; we
deduce that tp also satis�es the conditions of Lemma 3 (ii). Using arguments
similar to those used in the proof of Lemma 3 (iii), we can prove that tp also
satis�es the conditions of Lemma 3 (iii).
Thus, we can assume that the tree t also satis�es the conditions of Lemma

3.
Let Gk 2 G: Since t satis�es the conditions of Lemma 3 (ii),

�
M0; C

G
�

and
�
M0; C

0G� are under the conditions of RA: Since ' satis�es RA, 'k �M0; C
G
�
+

'k
�
M0; C

0G� = 'k
�
M0; C

G + C 0G
�
: Moreover, it is easy to see that CG +

C 0G = (C + C 0)G :
Since t satis�es the conditions of Lemma 3 (iii), we have that t� = tGk [

f(0; ij)g with ij 2 Gk is an mt in (Gk0; C'); (Gk0; C 0'); and (Gk0; (C + C 0)'):
Let �Gk = (i1; :::; ijGkj) be the order induced by � over the agents in G

k:

We have proved above that for all (j; j0) 2 tGk ; c
'
0i � c'jj0 and c

0'
0i � c0'jj0 :

Therefore, (Gk0; C
') and (Gk0; C

0') are under the conditions of RA: Since '
satis�es RA; 'i(G

k
0; C

') + 'i(G
k
0; C

0') = 'i(G
k
0; C

' + C 0') for all i 2 Gk:
Moreover, it is easy to see that C' + C 0' = (C + C 0) ':
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Now, for all Gk 2 G and all i 2 Gk;

Fi(N0; C;G) + Fi(N0; C
0; G) = 'i(G

k
0; C

') + 'i(G
k
0; C

0')

= 'i(G
k
0; (C + C 0)')

= Fi(N0; C + C 0; G):

Claim 7 F satis�es SYMC:
Proof. Let Gk and Gk0 be two symmetric coalitions. Then, for all Gl 2

GnfGk; Gk0g;

cGkl = min
i2Gk;j2Gl0

fcijg = min
i2Gk0 ;j2Gl0

fcijg = cGk0l:

That is, k and k0 are symmetric agents in
�
M0; C

G
�
: Since ' satis�es

SYM , 'k
�
M0; C

G
�
= 'k0

�
M0; C

G
�
:

By Lemma 3 (iii), m(Gk0; C
') = m(Gk; C) + 'k(M0; C

G): Thus,X
i2Gk

Fi(N0; C;G)�m(Gk; C) =
X
i2Gk

'i(G
k
0; C

')�m(Gk; C)

= m(Gk0; C
')�m(Gk; C)

= 'k(M0; C
G):

Repeating the same argument with Gk
0
instead of Gk; we obtain thatX

i2Gk0
Fi(N0; C;G)�m(Gk

0
; C) = 'k0(M0; C

G):

Thus, F satis�es SYMC:

Claim 8 F satis�es SYMA:
Proof. Let i; j 2 Gk 2 G be symmetric agents in (N0; C;G). By

de�nition of C'; for all j0 2 Gk; c'ij0 = cij0 and c'jj0 = cjj0 : Moreover,
c'0i = c'0j = 'k(M0; C

G). Hence, i and j are symmetric agents in
�
Gk0; C

'
�
:

Since ' satis�es SYM , 'i
�
Gk0; C

'
�
= 'j

�
Gk0; C

'
�
: Thus,

Fi(N0; C;G) = 'i
�
Gk0; C

'
�
= 'j

�
Gk0; C

'
�
= Fj(N0; C;G):

Hence, F satis�es SYMA:
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Claim 9 F satis�es PMC:
Proof. Let Gk 2 G: Since ' satis�es PM , 'l(M0; C

G) � 'l((Mnfkg)0; CG)
for all l 6= k:
Let C 0' denote the matrix C' associated with the problem (

�
NnGk

�
0
; C;GnGk):

Let Gl 2 GnGk. For all i; j 2 Gl; c'ij = c0'ij : For all i 2 Gl;

c'0i = 'l(M0; C
G) � 'l((Mnfkg)0; CG) = c0'0i :

That is C' � C 0': Let i 2 Gl: Since ' satis�es SCM , 'i(G
l
0; C

') �
'i(G

l
0; C

0'): So, Fi(N0; C;G) � Fi(
�
NnGk

�
0
; C;GnGk); i:e: F satis�es PMC:

Claim 10 F satis�es PMA:
Proof. Let Gk 2 G and i 2 Gk; Gk 6= fig: Let G0 = (GnGk) [ (Gknfig):

By convenience, let us denote as C 0 the cost matrix C restricted to the problem
((Nnfig)0; C;G0). Notice that C 0 coincides with C for the agents in (Nnfig)0:
We consider several cases:
1. Assume that cGkl = c0G

0
kl for all l 2 f0; 1; :::;mg : Thus, 'l

�
M0; C

G
�
=

'l
�
M0; C

0G0� for all l = 1; :::;m: Hence, �(Gknfig)0; C'� = �(Gknfig)0; C 0'� :
� Since ' satis�es PM; 'j

�
Gk0; C

'
�
� 'j

�
(Gknfig)0; C'

�
for all

j 2 Gknfig: Then,

Fj(N0; C;G) = 'j
�
Gk0; C

'
�
� 'j

�
(Gknfig)0; C'

�
= 'j

�
(Gknfig)0; C 0'

�
= Fj((Nnfig)0; C;G0)

for all j 2 Gknfig:
� Let Gl 2 G such that l 6= k: Then, c'jj0 = c0'jj0 for all j; j

0 2 Gl[f0g.
Hence, 'j(G

l
0; C

') = 'j(G
l
0; C

0') for all j 2 Gl: So,

Fj(N0; C;G) = 'j(G
l
0; C

') = 'j(G
l
0; C

0')

= Fj((Nnfig)0; C 0; G0)

for all j 2 Gl:
2. Assume that cGkk� 6= c0G

0
kk� for some k

� 2 f0; 1; :::;mg : Then, cGkk� < c0G
0

kk� :
Moreover, cGll� � c0G

0
ll� for all l; l

� 2 f0; 1; :::;mg :
Since ' satis�es SCM , 'k

�
M0; C

G
�
� 'k

�
M0; C

0G0� : Now, c'jj� = c0'jj�
for all j; j� 2 Gknfig and c'0j � c0'0j for all j 2 Gknfig: Since ' satis�es
SCM; 'j

�
(Gknfig)0; C'

�
� 'j

�
(Gknfig)0; C 0'

�
for all j 2 Gknfig:
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Since ' satis�es PM; we have that 'j
�
Gk0; C

'
�
� 'j

�
(Gknfig)0; C'

�
:

Then,

Fj(N0; C;G) = 'j
�
Gk0; C

'
�
� 'j

�
(Gknfig)0; C'

�
� 'j

�
(Gknfig)0; C 0'

�
= Fj((Nnfig)0; C 0; G0)

for all j 2 Gknfig:

Proposition 11 There is a unique rule satisfying RA; SYMC; SYMA;
PMC; and PMA.
Proof. Let f be a rule in mcstp with coalition structure satisfying RA;

SYMC; SYMA; PMC; PMA: We prove that f = F: We proceed with
several claims.

Claim 12 If G = ffiggi2N or G = fNg ; then f (N0; C;G) = ' (N0; C) :
Proof. Let G = ffiggi2N , i:e: each agent forms a coalition. Given an

mcstp (N0; C) we de�ne f 0 (N0; C) = f (N0; C;G) : Then,X
i2N

f 0i (N0; C) =
X
i2N

fi (N0; C;G) = m (N0; C) :

Hence, f 0 is a rule in mcstp:
Since f satis�es SYMC in mcstp with coalition structure, f 0 satis�es

SYM in mcstp: Since f satis�es PMC in mcstp with coalition structure, f 0

satis�es PM in mcstp: Moreover, f 0 also satis�es RA: By Lemma 1 (e) ; '
is the unique rule in mcstp satisfying SYM; RA; and PM: Thus,

f(N0; C;G) = f 0 (N0; C) = '(N0; C):

Let G = fNg, i:e: all agents are in the same coalition. Given an mcstp
(N0; C) we de�ne f 0 (N0; C) = f (N0; C;G) : As above, f 0 is a rule in mcstp:
Since f satis�es SYMA in mcstp with coalition structure, f 0 satis�es

SYM in mcstp: Since f satis�es PMA in mcstp with coalition structure, f 0

satis�es PM in mcstp: Moreover, f 0 also satis�es RA: By Lemma 1 (e) ; '
is the unique rule in mcstp satisfying SYM; RA; and PM: Thus,

f(N0; C;G) = f 0 (N0; C) = '(N0; C):
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Claim 13 For each mcstp with coalition structure (N0; C;G) and each Gk 2
G; let (N 0

0; C
0; G0) be the problem obtained from (N0; C;G) by considering that

the rest of the coalitions have a unique agent whose connection cost to the

rest of the agents is given by
�
M0; C

G
�
: Namely, N 0 = Gk [

 S
l2Mnfkg

filg
!
;

G0 = fGkg [ ffilggl2Mnfkg; and C 0 is de�ned as follows: if i; j 2 Gk [ f0g ;
then c0ij = cij: If i 2 Gk and j = il with l 2 Mnfkg; then c0ij = cGkl: If i = 0
and j = il with l 2 Mnfkg; then c0ij = cG0l: If i = il, j = il0 and k =2 fl; l0g ;
then c0ij = cGll0 :
Then, for each i 2 Gk;

fi (N0; C;G) = fi (N
0
0; C

0; G0) :

Proof. Let (N0; C;G) be an mcstp with coalition structure and Gk 2 G.
We assume, wlog; that k = m:
We take (N 00

0 ; C
00; G00) = (N0; C;G): For each l = 1; :::;m � 1 we de�ne

(N 0l
0 ; C

0l; G0l) as follows.
� N 0l = N

0l�1 [ filg :
�
�
G0l
�l
=
�
G0l�1

�l [ filg = Gl [ filg. For any l0 6= l;
�
G0l
�l0
=�

G0l�1
�l0
:
� C 0l is de�ned as follows:

c0lij =

8<:
cij if i; j 2 N 0l�1

0

0 if i = il, j 2 Gl
cGll0 if i = il, j 2 G0l

0
, l 6= l0

For each l = 1; :::;m� 1 and for each l0 6= l;

min
i2(G0l)

l
;j2(G0l)

l0
fc0lijg = min

i2(G0l�1)
l
;j2(G0l�1)

l0
fc0l�1ij g:

Since f satis�es PMA; for all i 2 Gm and all l = 1; :::;m� 1;

fi(N
0l�1
0 ; C 0l�1; G0l�1) = fi(N

0l
0 ; C

0l; G0l):

Now,

fi(N0; C;G) = fi(N
00
0 ; C

00; G00) = fi(N
0m�1
0 ; C 0m�1; G0m�1):

Since f satis�es PMA; for all i 2 Gk;

fi(N
0m�1
0 ; C 0m�1; G0m�1) = fi(N

0
0; C

0; G0):
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Claim 14 For each mcstp with coalition structure (N0; C;G) and each Gk 2
G; X

i2Gk
fi (N0; C;G) = fk

�
M0; C

G; fflggml=1
�
+m

�
Gk; C

�
:

Proof. Consider the problem among coalitions
�
M 0
0; C

0G0� associated with
(N 0

0; C
0; G0) de�ned in Claim 13. It is trivial to see that C 0G

0
coincides with

CG:
Applying Lemma 3 it is easy to deduce

m (N 0
0; C

0) = m
�
M0; C

G
�
+m(Gk; C):

By Claim 13,
P
i2Gk

fi (N0; C;G) =
P
i2Gk

fi (N
0
0; C

0; G0) : Then,

X
l2Mnfkg

fil (N
0
0; C

0; G0) +
X
i2Gk

fi (N0; C;G) =
X

l2Mnfkg

fil (N
0
0; C

0; G0) +
X
i2Gk

fi (N
0
0; C

0; G0)

= m
�
M0; C

G
�
+m(Gk; C)

=
mX
l=1

fl
�
M0; C

G; fflggml=1
�
+m(Gk; C):

Now, it is enough to prove that for all l 2Mnfkg;

fil (N
0
0; C

0; G0) = fl
�
M0; C

G; fflggml=1
�
:

Let l 2Mnfkg. Applying Claim 13 to (N 0
0; C

0; G0) with G0l instead of Gk

we obtain that
fil (N

0
0; C

0; G0) = fil (N
00
0 ; C

00; G00)

where N 00 = fi1; :::; img ; c00ijij0 = cGjj0 for all j; j
0 = 0; 1; :::;m; and G00 =

ffijggmj=1 : Notice that (N 00
0 ; C

00; G00) is equivalent to
�
M0; C

G; fflggml=1
�
. By

Claim 12 we have

fil (N
00
0 ; C

00; G00) = 'il (N
00
0 ; C

00) = 'l
�
M0; C

G
�
= fl

�
M0; C

G; fflggml=1
�
:

Claim 15 It is enough to prove that f is unique on the subclass of mcstp
(N0; C;G) satisfying that there exists x 2 R+ and a network g such that
cij = x if (i; j) 2 g and cij = 0 otherwise.
Proof. Norde et al. (2004) proved that if C is a cost matrix, then there

exists a family fCpgap=1 of cost matrices satisfying three conditions:
1. C =

Pa
p=1C

p:
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2. For each p 2 f1; :::; ag there exist xp 2 R and a network gp such that
cpij = xp if (i; j) 2 gp and cpij = 0 otherwise.
3. There exists � : f(i; j)gi;j2N0;i<j !

n
1; 2; :::; n(n+1)

2

o
such that if

i; j; k; l 2 N with i < j; k < l, and �(i; j) < �(k; l); then cij � ckl and
cpij � cpkl for all p 2 f1; :::; ag:

By condition 3, C1 and
Pa

p=2C
p satisfy the conditions of the de�nition

of RA: Hence,

f (N0; C;G) = f
�
N0; C

1; G
�
+ f

 
N0;

aX
p=2

Cp; G

!
:

By condition 3, C2 and
Pa

p=3C
p satisfy the conditions of the de�nition

of RA: Hence,

f

 
N0;

aX
p=2

Cp; G

!
= f

�
N0; C

2; G
�
+ f

 
N0;

aX
p=3

Cp; G

!
:

Repeating the same argument we obtain that

f (N0; C;G) =
aX
p=1

f (N0; C
p; G) :

By condition 2, Claim 15 holds.

Let (N0; C;G) be an mcstp with coalition structure and Gk 2 G: By Claim
13 we can assume that (N0; C;G) has the same structure as the problem
(N 0

0; C
0; G0) de�ned in Claim 13.

By Claim 15 we can assume that there exists x 2 R+ and a network g
such that cij = x if (i; j) 2 g and cij = 0 otherwise.

Claim 16 Let Gk 2 G: Assume that there exists l 2 M0nfkg; and i0 2 Gk

such that ci0il = 0. Then, for each i 2 Gk;

fi (N0; C;G) =
fk
�
M0; C

G; fflggml=1
�

jGkj :

Proof. We know that max
i;j2Gk

fcijg � min
i2Gk;j2N0nGk

fcijg : Since min
i2Gk;j2N0nGk

fcijg �

ci0il = 0; we have that cij = 0 for all i; j 2 Gk: Therefore, m(Gk; C) = 0: By
Claim 14, X

i2Gk
fi (N0; C;G) = fk

�
M0; C

G; fflggml=1
�
:
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Moreover, c0i 2 f0; xg for all i 2 Gk: Two cases are possible:
1. There exist i� 2 Gk such that c0i� = 0: Then, cG0k = min

i2Gk
fc0ig = 0:

By Lemma 3 (b) ; for all S � G; v(CG)� (S [ fkg)� v(CG)� (S) = 0: Thus,
'k
�
M0; C

G
�
= Shk

�
M; v(CG)�

�
= 0: By Claim 12, fk

�
M0; C

G; fflggml=0
�
=

'k
�
M0; C

G
�
: Thus,

fk
�
M0; C

G; fflggml=0
�
= 0:

Let i 2 Gk: By PMG; fi(N0; C;G) � fi
�
Gk0; C;

�
Gk
	�
: By Claim 12;

fi
�
Gk0; C;

�
Gk
	�
= 'i

�
Gk0; C

�
: Since cjj0 = 0 for all j; j0 2 Gk0; 'i

�
Gk0; C

�
=

0: Thus,
fi(N0; C;G) = 0:

2. c0i = x for all i 2 Gk:
We �rst prove that given i; i0 2 Gk; i and i0 are symmetric agents. We

know c0i = c0i0 = x: We have seen that cij = ci0j = 0 for all j 2 Gkn fi; i0g :
Since (N0; C;G) has the same structure as the problem (N 0

0; C
0; G0) de�ned

in Claim 13, cij = ci0j for all j 2 NnGk:
Since f satis�es SYMA; fi (N0; C;G) = fi0 (N0; C;G) for all i; i0 2 Gk:

Thus, for all i 2 Gk;

fi (N0; C;G) =

P
i2Gk fi (N0; C;G)

jGkj =
fk
�
M0; C

G; fflggml=1
�

jGkj :

Claim 17 Assume that for all l 2 M0nfkg and all i 2 Gk, ciil = x. Thus,
for each i 2 Gk;

fi (N0; C;G) = fi
�
Gk0; C;

�
Gk
	�
:

Proof. Let t0 be an mt in
�
Gk0; C

�
and let t00 be an mt in

��
NnGk

�
0
; C
�
:

Following Prim�s algorithm, we can construct an mt t in (N0; C;G) such that
t = t0 [ t00: Therefore,

m(N0; C) = m
�
Gk0; C

�
+m

��
NnGk

�
0
; C
�
:

Since f satis�es PMC; fi(N0; C;G) � fi
�
Gk0; C;

�
Gk
	�
for all i 2 Gk and

fi(N0; C;G) � fi

��
NnGk

�
0
; C;

��
Gl
		

l2Mnfkg

�
for all i 2 NnGk: Thus,

m(N0; C) =
X
i2Gk

fi(N0; C;G) +
X

i2NnGk
fi(N0; C;G)

�
X
i2Gk

fi
�
Gk0; C;

�
Gk
	�
+
X

i2NnGk
fi

��
NnGk

�
0
; C;

��
Gl
		

l2Mnfkg

�
= m

�
Gk0; C

�
+m

��
NnGk

�
0
; C
�
:

Thus, fi(N0; C;G) = fi
�
Gk0; C;

�
Gk
	�
for all i 2 Gk:
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Claim 18 For all i 2 Gk; fi (N0; C;G) = Fi (N0; C;G) :
Proof. We distinguish two cases, given by Claims 16 and 17.
1. There exists l 2M0nfkg; and i0 2 Gk such that ci0il = 0.
Let i 2 Gk: By Claim 16,

fi (N0; C;G) =
fk
�
M0; C

G; fflggml=0
�

jGkj :

By Claim 12, fk
�
M0; C

G; fflggml=0
�
= 'k(M0; C

G): So,

fi (N0; C;G) =
'k(M0; C

G)

jGkj :

Consider now the problem (Gk0; C
') where c'jj0 = cjj0 if 0 62 fj; j0g and

c'0j = 'k(M0; C
G) for all j 2 Gk:

We have seen in the proof of Claim 16 that cjj0 = 0 for all j; j0 2 Gk:
Therefore, m(Gk0; C

') = 'k(M0; C
G) and all agents in Gk are symmetric in

(Gk0; C
'). Since ' satis�es SYM;

'i(G
k
0; C

') =
'k(M0; C

G)

jGkj :

Then,
fi (N0; C;G) = 'i(G

k
0; C

') = Fi (N0; C;G) :

2. Assume that for all l 2M0nfkg and all i 2 Gk, ciil = x.
Let i 2 Gk: By Claim 17, fi (N0; C;G) = fi

�
Gk0; C;

�
Gk
	�
. By Claim 12,

fi
�
Gk0; C;

�
Gk
	�
= 'i

�
Gk0; C

�
. Thus,

fi (N0; C;G) = 'i
�
Gk0; C

�
:

Consider now the problem (Gk0; C
'):We know that c'jj0 = cjj0 if 0 62 fj; j0g

and c'0j = 'k(M0; C
G) for all j 2 Gk:

For all l 6= k; cGkl = x: Now it is not di¢ cult to prove that for all S �M0;
vCG� (S [ fkg)� vCG� (S) = x: Thus, 'k

�
M0; C

G
�
= Shk (M; vCG�) = x:

Hence, (Gk0; C
') =

�
Gk0; C

�
: Then,

fi (N0; C;G) = 'i
�
Gk0; C

�
= 'i(G

k
0; C

') = Fi (N0; C;G) :

And the proof of Proposition 11 is completed.
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The next theorem is a trivial consequence of Propositions 5 and 11.

Theorem 19 F is the unique rule satisfying RA; SYMC; SYMA; PMC;
and PMA.

Proposition 20 The properties used in Theorem 19 are independent.
Proof. We prove that if we remove some of the properties of Theorem 19,

we can �nd more rules satisfying the other properties. We do it by considering
several claims. In each claim we de�ne a rule satisfying four properties but
failing the other. We do not make the proofs rigorously in order not to enlarge
the paper. We simply give an idea of the proof.

Claim 21 There exist rules satisfying RA; SYMC; SYMA; and PMC but
failing PMA:
Proof. We de�ne the rule f 1 as follows. Let (N0; C;G) be an mcstp with

coalition structure and i 2 Gk 2 G: Then,

f 1i (N0; C;G) =
'k
�
M0; C

G
�
+m(Gk; C)

jGkj :

1. f 1 satis�es RA: Using arguments similar to those used in the proof of
Claim 6 we can prove that

'k
�
M0; (C + C 0)G

�
= 'k

�
M0; C

G
�
+ 'k

�
M0; C

0G�
and

m(Gk; C + C 0) = m(Gk; C) +m(Gk; C 0):

Now it is trivial to see that

f 1i (N0; C + C 0; G) = f 1i (N0; C;G) + f 1i (N0; C
0; G):

2. f 1 satis�es SYMC: Let Gk and Gk
0
be two symmetric coalitions.

Then, k and k0 are symmetric agents in
�
M0; C

G
�
: Since ' satis�es SYM ,

'k
�
M0; C

G
�
= 'k0

�
M0; C

G
�
: Now,X

i2Gk
f 1i (N0; C;G)�m(Gk; C) = 'k

�
M0; C

G
�

= 'k0
�
M0; C

G
�

=
X
i2Gk0

f 1i (N0; C;G)�m(Gk
0
; C):
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3. f 1 satis�es SYMA: It is trivial.
4. f 1 satis�es PMC: Let Gk 2 G: Since ' satis�es PM , 'l(M0; C

G) �
'l((Mnfkg)0; CG) for all l 6= k:
Thus, for all i 2 Gl; l 6= k;

f 1i (N0; C;G) =
'l
�
M0; C

G
�
+m(Gl; C)

jGlj

� 'l((Mnfkg)0; CG) +m(Gl; C)

jGlj
= f 1i (

�
NnGk

�
0
; C;GnGk):

5. f 1 fails PMA: Assume that G = fNg : Thus, f 1 divides m (N0; C)
equally among the agents. In this case it is trivial to see that f 1 does not
satisfy PMA:

Claim 22 There exist rules satisfying RA; SYMC; SYMA; and PMA but
failing PMC:
Proof. We de�ne the rule f 2 as follows. Let (N0; C;G) be an mcstp with

coalition structure and i 2 Gk: Thus,

f 2i (N0; C;G) = Shi
�
Gk; v0C

�
+
m
�
M0; C

G
�

jM j jGkj

where for all S � Gk; v0C (S) = m
�
S;C�jS

�
and C�jS is the irreducible matrix

associated with the problem (S;C) :
1. f 2 satis�es RA: By Lemma 1 (d) ; for all S � N; v(C+C0)� (S) =

vC� (S)+ vC0� (S) : Using similar arguments we can conclude that for all S �
Gk; v0C+C0 (S) = v0C (S)+v

0
C0 (S) : Since Sh is additive on v, we conclude that

Shi
�
Gk; v0C+C0

�
= Shi

�
Gk; v0C

�
+ Shi

�
Gk; v0C0

�
:

We have proved in the proof of Claim 6 that CG and C 0G are also under
the conditions of RA: Thus,

m
�
M0; (C + C 0)

G
�
= m

�
M0; C

G
�
+m

�
M0; C

0G� :
Now, it is obvious that f 2 satis�es RA:
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2. f 2 satis�es SYMC: Let Gk and Gk
0
be two symmetric coalitions.

X
i2Gk

f 2i (N0; C;G)�m(Gk; C) =
X
i2Gk

Shi
�
Gk; v0C

�
+
m
�
M0; C

G
�

jM j �m(Gk; C)

= v0C
�
Gk
�
+
m
�
M0; C

G
�

jM j �m(Gk; C)

= m(Gk; C�jGk) +
m
�
M0; C

G
�

jM j �m(Gk; C)

= m(Gk; C) +
m
�
M0; C

G
�

jM j �m(Gk; C)

=
m
�
M0; C

G
�

jM j :

Analogously,

X
i2Gk

f 2i (N0; C;G)�m(Gk; C) =
m
�
M0; C

G
�

jM j :

Hence, f 2 satis�es SYMC:
3. f 2 satis�es SYMA: Let i; j 2 Gk be a pair of symmetric agents. It is

trivial to see that i and j are also symmetric in
�
Gk; v0C

�
: Then, Shi

�
Gk; v0C

�
=

Shj
�
Gk; v0C

�
: Hence, f 2i (N0; C;G) = f 2j (N0; C;G):

4. f 2 satis�es PMA: Let i 2 Gk be such that Gkn fig 6= ?:
We know that for all j 2 Gkn fig ;

Shj
�
Gk; v0C

�
=

1

jGkj!
X
�2�

Gk

�
v0C (Pre (j; �) [ fjg)� v0C (Pre (j; �))

�
:

By Lemma 1 (c) ; vC� is a concave game. Using similar arguments we
can prove that v0C is a concave game. Then, for all � 2 �Gk ;

v0C (Pre (j; �) [ fjg)�v0C (Pre (j; �)) � v0C ((Pre (j; �) n fig) [ fjg)�v0C ((Pre (j; �) n fig)) :

Making some computations it is possible to prove that for all j 2 Gkn fig ;

Shj
�
Gk; v0C

�
� Shj

�
Gkn fig ; v0C

�
:

Let us denote (N�i; C;G�i) =
�
(Nn fig)0 ; C;

�
GnGk

�
[
�
Gkn fig

��
: Then,
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m
�
M0; C

G�i
�
� m

�
M0; C

G
�
: Now, for all j 2 Gkn fig ;

f 2j (N0; C;G) = Shj
�
Gk; v0C

�
+
m
�
M0; C

G
�

jM j jGkj

� Shj
�
Gkn fig ; v0C

�
+
m
�
M0; C

G�i
�

jM j (jGkj � 1)
= f 2j

�
N�i; C;G�i

�
:

Assume that for each Gl with l 6= k; min
j2Gk;j02Gl

fcjj0g = min
j2Gknfig;j02Gl

fcjj0g :

Let j 2 Gl 2 GnGk: Then

f 2j (N0; C;G) = Shj
�
Gl; v0C

�
+
m
�
M0; C

G�i
�

jM j jGlj

= Shj
�
Gl; v0C

�
+
m
�
M0; C

G
�

jM j jGlj :

5. f 2 fails PMC: Assume that G = ffiggi2N : Thus, f 2 divides m (N0; C)
equally among the agents. Now it is trivial to see that f 2 does not satisfy
PMC:

Claim 23 There exist rules satisfying RA; SYMC; PMC; and PMA but
failing SYMA:
Proof. We de�ne the rule f 3 as follows. Given T � N �nite, let �N

denote the order induced in N by the index of the agents. Namely, given
i; j 2 N; �N (i) < �N (j) if and only if i < j. For each mcstp (N0; C) and
i 2 N we de�ne

 i (N0; C) = vC�
�
Pre

�
i; �N

�
[ fig

�
� vC�

�
Pre

�
i; �N

��
:

Let (N0; C;G) be an mcstp with coalition structure and i 2 Gk: Thus,

f 3i (N0; C;G) =  i
�
Gk0; C

'
�
:

1. f 3 satis�es RA: Let C and C 0 as in the de�nition of RA: Proceeding
as in the proof of Claim 6, we obtain that (Gk0; C

') and (Gk0; C
0') are under

the conditions of RA: Bergantiños and Vidal-Puga (2007c) proved that  
satis�es RA: Therefore,  i(G

k
0; (C+C

0)') =  i(G
k
0; C

')+ i(G
k
0; C

0') for all
i 2 Gk: Thus, given i 2 Gk 2 G,

f 3i (N0; C + C 0; G) =  i(G
k
0; (C + C 0)')

=  i(G
k
0; C

') +  i(G
k
0; C

0')

= f 3i (N0; C;G) + f 3i (N0; C
0; G):
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2. f 3 satis�es SYMC. Let Gk and Gk
0
be two symmetric coalitions.

Then, k and k0 are symmetric agents in
�
M0; C

G
�
: Since ' satis�es SYM ,

'k
�
M0; C

G
�
= 'k0

�
M0; C

G
�
:

By Lemma 3 (iii), m(Gk0; C
') = 'k(M0; C

G) +m(Gk; C):
Therefore,X

i2Gk
f 3i (N0; C;G)�m(Gk; C) =

X
i2Gk

 i(G
k
0; C

')�m(Gk; C)

= m(Gk0; C
')�m(Gk; C)

= 'k(M0; C
G)

Proceeding in the same way for Gk
0
we obtain thatX

i2Gk0
f 3i (N0; C;G)�m(Gk

0
; C) = 'k0(M0; C

G):

Therefore, f 3 satis�es SYMC:
3. f 3 satis�es PMC. It is not di¢ cult to prove that  satis�es SCM:

Using arguments similar to those used in the proof of Claim 9, we can prove
that f 3 satis�es PMC:
4. f 3 satis�es PMA. It is not di¢ cult to prove that  satis�es PM:

Using arguments similar to those used in the proof of Claim 10, we can prove
that f 3 satis�es PMA:
5. f 3 fails SYMA: Consider the mcstp with coalition structure where

N = f1; 2; 3g; G = fG1; G2g, G1 = f1; 2g; G2 = f3g and matrix C which is
represented in the following �gure:

Agents 1 and 2 are symmetric. '1(M0; C
G) = '2(M0; C

G) = 4: Therefore,
c'01 = c'02 = 4 and c

'
23 = 1: Now, f

3
1 (N0; C;G) = 4 and f

3
2 (N0; C;G) = 1:

Claim 24 There exist rules satisfying RA; SYMA; PMC; and PMA but
failing SYMC:
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Proof. We de�ne the rule f 4 as follows. Let (N0; C;G) be an mcstp with
coalition structure and i 2 Gk 2 G:
Let �0 be an order over the set of all �nite subsets of N ; �0 induces an

order over the elements of G: We also denote this order as �0: We de�ne the
rule � over

�
M0; C

G
�
. For each Gl 2 G;

�l
�
M0; C

G
�
= v(CG)� (Pre (l; �

0) [ flg)� v(CG)� (Pre (l; �
0)) :

Now,
f 4i (N0; C;G) = 'i

�
Gk0; C

�
�

where

c�jj0 =

�
cjj0 if 0 =2 fj; j0g
�k
�
M0; C

G
�
if 0 2 fj; j0g :

1. f 4 satis�es RA:
We have proved in Claim 6 that

�
M0; C

G
�
and

�
M0; C

0G� are under the
conditions of RA: Moreover, (C + C 0)G = CG + C 0G:
By Lemma 1 (d) ; v(C+C0)� (S) = vC�(S) + vC0�(S) for all S � N: So, for

each Gl 2 G;

�l

�
M0; (C + C 0)

G
�
= �l

�
M0; C

G
�
+ �l

�
M0; C

0G� :
By Lemma 1 (b), for all S � N; vC� (S [ fig) � vC� (S) = min

j2S0
fc�ijg:

Therefore,
�k(M0; C

G) � min
k02M0nfkg

f(cGkk0)�g:

Since the irreducible matrix is the minimal network associated with an
mt;

min
k02M0nfkg

f(cGkk0)�g � min
k02M0nfkg

fcGkk0g:

Because of the de�nition of (N0; C;G);

min
k02M0nfkg

fcGkk0g � max
jj02Gk

fcjj0g:

A similar result can be obtained for C 0: Now, it is easy to conclude that
t� = tGk [ f(0; ij)g with ij 2 Gk is an mt in (Gk0; C

�); (Gk0; C
0�): Hence,

(Gk0; C
�) and (Gk0; C

0�) are under the conditions of RA: Moreover, C�+C 0� =
(C + C 0)� : Since ' satis�es RA; for all i 2 Gk;

f 4i (N0; C + C 0; G) = 'i(G
k
0; (C + C 0)�)

= 'i(G
k
0; C

� + C 0�)

= 'i
�
Gk0; C

�
�
+ 'i

�
Gk0; C

0��
= f 4i (N0; C;G) + f 4i (N0; C

0; G) :
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2. f 4 satis�es SYMA: Let i; j 2 Gk 2 G be symmetric agents in
(N0; C;G). By de�nition of C�; i and j are symmetric agents in

�
Gk0; C

�
�
:

Since ' satis�es SYM , 'i
�
Gk0; C

�
�
= 'j

�
Gk0; C

�
�
: Thus,

f 4i (N0; C;G) = 'i
�
Gk0; C

�
�
= 'j

�
Gk0; C

�
�
= f 4j (N0; C;G):

3. f 4 satis�es PMC: Let Gk 2 G: It is easy to prove that � satis�es PM .
Using arguments similar to those used in the proof of Claim 9 we can prove
that f 4 satis�es PMC:
4. f 4 satis�es PMA:
We �rst prove that � satis�es SCM: By Lemma 1 (b), for all S � N;

vC� (S [ fig) � vC� (S) = min
j2S0

fc�ijg: Bergantiños and Vidal-Puga (2007a)
prove that if C � C 0; then C� � C 0�: Now, it is easy to conclude that �
satis�es SCM:
Using arguments similar to those used in the proof of Claim 10 we can

prove that f 4 satis�es PMA:
5. f 4 fails SYMC: Consider the mcstp with coalition structure where

N = f1; 2g; G = fG1; G2g, G1 = f1g; G2 = f2g and matrix C which is
represented in the following �gure:

Assume that G1 comes before than G2 in �0: Coalitions G1 and G2 are
symmetric and m(G1; C) = m(G2; C) = 0: Nevertheless

f 41 (N0; C;G)�m(G1; C) = �1(M0; C
G) = 10 and

f 42 (N0; C;G)�m(G2; C) = �2(M0; C
G) = 2:

Claim 25 There exist rules satisfying SYMC; SYMA; PMC; and PMA
but failing RA:
Proof. We de�ne the rule f 5 as follows. Let (N0; C;G) be an mcstp with

coalition structure and i 2 Gk:
We �rst de�ne the rule � over

�
M0; C

G
�
. Let �eG be the subset of permu-

tations in which the coalitions with the expensive cost to the source connect
�rst, i:e:

�eG =
�
� 2 �G j cG0�(l) � cG0�(l0) when � (l) > � (l0)

	
:
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For each Gl 2 G; let � be the rule de�ned as

�l
�
M0; C

G
�
=

1

j�eGj
X
�2�eG

�
v(CG)� (Pre (l; �) [ flg)� v(CG)� (Pre (l; �))

�
:

Now,
f 5i (N0; C;G) = 'i

�
Gk0; C

�
�

where

c�jj0 =

�
cjj0 if 0 =2 fj; j0g
�k
�
M0; C

G
�
if 0 2 fj; j0g :

1. f 5 satis�es SYMC: It is trivial to see that � satis�es SYM: Using
arguments similar to those used in the proof of Claim 7 we can prove that f 5

satis�es SYMC:
2. f 5 satis�es SYMA: Using arguments similar to those used in the proof

of Claim 8 we can prove that f 5 satis�es SYMA:
3. f 5 satis�es PMC: Using arguments similar to those used in Bergan-

tiños and Vidal-Puga (2007a), it is possible to prove that � satis�es PM:
Using arguments similar to those used in the proof of Claim 9 we can prove
that f 5 satis�es PMC:
4. f 5 satis�es PMA: Let Gk 2 G and i 2 Gk; Gk 6= fig: Let us denote

as C 0 the cost matrix C restricted to the problem ((Nnfig)0; C; (GnGk) [
(Gknfig)) and G0 = (GnGk) [ (Gknfig). We consider two cases:

a) Assume that cGkl = c0G
0

kl for all l 2 M0: Thus, �l
�
M0; C

G
�
=

�l
�
M0; C

0G0� for all l = 1; :::;m: Hence, �(Gknfig)0; C�� = �(Gknfig)0; C 0�� :
Moreover, � satis�es PM: Using arguments similar to those used in the proof
of Claim 10 we can prove that for all j 2 Gknfig;

f 5j (N0; C;G) = f 5j ((Nnfig)0; C;G0)

and for all Gl 2 G, l 6= k and all j 2 Gl

f 5j (N0; C;G) = f 5j ((Nnfig)0; C 0; G0):

b) Assume that cGkk� 6= c0G
0

kk� for some k
� 2 M0: Then, cGkk� < c0G

0
kk� :

Moreover, cG0l = c0G
0

0l for all l 6= k:
This means that �eG0 � �eG: Moreover, if � 2 �eG and � =2 �eG0 there exists

�0 2 �eG0 such that �0GnGk = �GnGk and �0 (k) < � (k) : Intuitively, coalition k
comes �rst in the orders of �eG0 than in the orders of �

e
G:

By Lemma 1 (c) ; for each cost matrix C; vC� is a concave game. Making
some computations it is possible to prove that �k

�
M0; C

G
�
� �k

�
M0; C

0G0� :
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Now, using arguments similar to those used in the proof of Claim 10 we
can prove that for all j 2 Gkn fig ;

f 5j (N0; C;G) � f 5j ((Nnfig)0; C;G0):

5. f 5 fails RA: Consider the mcstp with coalition structure where N =
f1; 2g; G = fG1; G2g, G1 = f1g; G2 = f2g and matrices C and C 0 which are
represented in the following �gures:

(N0; C;G) (N0; C
0; G)

If we take t = f(0; 1) ; (1; 2)g we realize that C and C 0 are under the
conditions of RA:
Now �eG (C) = f12; 21g ; �eG (C 0) = f21g ; �eG (C + C 0) = f21g : Thus,

f 5 (N0; C;G) = (6; 6) ; f 5 (N0; C
0; G) = (2; 10) ; and f 5 (N0; C + C 0; G) =

(4; 20) :

And the proof of Proposition 20 is completed.
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