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Abstract

We study three values for transferable utility games with coali-
tion structure, including the Owen coalitional value and two weighted
versions with weights given by the size of the coalitions. We pro-
vide three axiomatic characterizations using the properties of E¢ -
ciency, Linearity, Independence of Null Coalitions, and Coordination,
with two versions of Balanced Contributions inside a Coalition and
Weighted Sharing in Unanimity Games, respectively.
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1 Introduction

Coalition structures are important in many real-world contexts, such as the
formation of cartels or bidding rings, alliances or trading blocs among nation
states, research joint ventures, and political parties.
These situations can be modelled through transferable utility (TU , for

short) games, in which the players partition themselves into coalitions for
the purpose of bargaining. All players in the same coalition agree before
the play that any cooperation with other players will only by carried out
collectively. That is, either all the members of the coalition take part of it
or none of them (Malawski, 2004).
Given a coalition structure, bargaining occurs between coalitions and be-

tween players in the same coalition. The main idea is that the coalitions
play among themselves as individual agents in a game among coalitions, and
then, the pro�t obtained by each coalition is distributed among its members.
Owen (1977) studied the allocation that arises from applying the Shapley
value (Shapley, 1953b) twice: �rst in the game among coalitions, and then
in a reduced game inside each coalition. In this latter step, the worth a
subcoalition in the reduced game is de�ned as the Shapley value that the
subcoalition would get in the game among coalitions, assuming that their
partners are out.
Owen�s approach assumes a symmetric treatment for each coalition. As

Harsanyi (1977) points out, in unanimity games this procedure implies that
players would be better o¤bargaining by themselves than joining forces. This
is know as the join-bargaining paradox, or the Harsanyi paradox.
An alternative approach is to give a di¤erent treatment, or weight, to each

coalition. Following this idea, Levy and McLean (1989) apply the weighted
Shapley value (Shapley, 1953a; Kalai and Samet, 1987, 1988) in the game
among coalitions, as well as in the reduced games.
A natural weight for each coalition is its own size. In fact, a motivation

for the weighted Shapley value is precisely the di¤erence in size1. Moreover,
Kalai and Samet (1987, Corollary 2 in Section 7) show that the size of coali-
tions are appropriate weights for the players. The reason is that if we force
the players in a coalition to work together (by destroying their resources
when they are not all together), then the aggregated Shapley value of each

1Kalai and Samet (1987) present the example of large constituencies with many indi-
viduals, in contrast with constituencies composed by a small number of individuals.
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coalition in the new game coincides with the weighted Shapley value of the
game among coalitions, with weights given by the size of the coalition2.
It is then reasonable to apply the Levy and McLean value with intracoali-

tional symmetry and weights given by the size of the coalition. However, in
Levy and McLean�s model, the weight of the subcoalitions in the reduced
game remains constant, even though these subcoalitions may have di¤er-
ent size. An alternative approach is to vary the weight of the coalitions in
the reduced game. Vidal-Puga (2006) follows this approach to de�ne a new
coalitional value. This new coalitional value does not present the Harsanyi
paradox.
In this paper, we characterize the above coalitional values: the coalitional

Owen value (Owen, 1977), the coalitional Levy-McLean weighted value (Levy
and McLean, 1989) with the weights given by the size of the coalition, and
the new value presented by Vidal-Puga (2006). These three values have in
common the following feature: First, the worth of the grand coalition is di-
vided among the coalitions following either the Shapley value (Owen), or the
weighted Shapley value with weights given by the size of the coalitions (Levy
and McLean, Vidal-Puga), and then the pro�t obtained by each coalition is
distributed among its members following the Shapley value.
Some of the axioms used in the characterizations (e¢ ciency, intracoali-

tional symmetry, and linearity) are standard in the literature, others (in-
dependence of null coalitions and two intracoalitional versions of balanced
contributions) are used in many di¤erent frameworks. Moreover, we intro-
duce new properties in this kind of problems: coordination (which asserts
that internal changes in a coalition which do no a¤ect the game among coali-
tions, do not in�uence the �nal payment of the rest of the players) and two
properties of sharing in unanimity games (which establish how should the
payment be under the grand coalition unanimity game).
The properties of e¢ ciency, linearity, intracoalitional symmetry and inde-

pendence of null coalitions are natural extensions of the classical properties
that characterize the Shapley value (e¢ ciency, linearity, symmetry and null
player, respectively) to the game among coalitions. On the other hand, the
properties of balanced contributions are applied to the game inside a coali-
tion, and each of them is a natural extension of the property of balanced

2Another possibility is to give the worth of any coalition to any of its nonempty sub-
coalitions. In this case, the aggregated Shapley value of each coalition coincides with the
weigthed Shapley value of the dual game among coalitions (see Kalai and Samet, 1987,
Section 7, for further details).
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contributions that also characterizes, with e¢ ciency, the Shapley value (My-
erson, 1980). Hence, the three values proposed here can be seen as natural
extensions of the Shapley value for games with coalition structure. Addi-
tionally, the property of coordination formalizes the idea presented by Owen
that the players inside a coalition negotiate among them, but always assum-
ing that the rest of the coalitions remain together (see for example the game
v1 de�ned by Kalai and Samet, 1987, Section 7).
The paper is organized as follows. In Section 2 we introduce the model.

In Section 3 we de�ne a family that includes the three coalitional values.
In Section 4 we present the properties used in the characterization and we
study which properties satisfy the coalitional values. In Section 5 we present
the characterization results. In Section 6 we prove that the properties are
independent. In Section 7 we present some concluding remarks.

2 Notation

Let U = f1; 2; :::g be the (in�nite) set of potential players.
Given a �nite subset N � U , let �(N) denote the set of all orders in

N . Given � 2 �(N); let Pre(i; �) denote the set of the elements in N which
come before i in the order given by �, i.e. Pre(i; �) = fj 2 N : �(j) < �(i)g.
For any S � N , �S denotes the order induced in S by � (for all i; j 2 S;
�S(i) < �S(j) if and only if �(i) < �(j)).
A transfer utility game, TU game, or simply a game, is a pair (N; v) where

N � U is �nite and v : 2N ! R satis�es v(;) = 0. When N is clear, we can
also denote (N; v) as v. Given a TU game (N; v) and S � N , v(S) is called
the worth of S. Given S � N , we denote the restriction of (N; v) to S as
(S; v).
For simplicity, we write S [ i instead of S [ fig, Nni instead of Nnfig,

and v (i) instead of v (fig).
Two players i; j 2 N are symmetric in (N; v) if v (S [ i) = v (S [ j) for

all S � Nn fi; jg. A player i 2 N is null in (N; v) if v(T [ i) = v(T ) for
all T � Nni. The set of non-null players in (N; v) is the carrier of (N; v),
and we denote it as Carr (N; v). Given two games (N; v), (N;w), the game
(N; v+w) is de�ned as (v+w)(S) = v(S)+w(S) for all S � N . Given a game
(N; v) and a real number �, the game (N;�v) is de�ned as (�v) (S) = �v (S)
for all S � N .
Given N � U �nite, we call coalition structure over N a partition of the
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player set N , i.e. C = fC1; C2; ::::; Cmg � 2N is a coalition structure if it
satis�es

S
Cq2C Cq = N and Cq \Cr = ; when q 6= r: We also assume Cq 6= ;

for all q:
We say that Cq 2 C is a null coalition if all its members are null players.
For any S � N; we denote the restriction of C to the players in S as CS;

i:e: CS = fCq \ S : Cq 2 C and Cq \ S 6= ;g:
For any S � Cq 2 C, we will frequently study the case in which the

players in CqnS leave the game. In this case, we write CS instead of the more
cumbersome CNn(CqnS).
Given a game (N; v) and a coalition structure C = fC1; C2; ::::; Cmg

over N , the game among coalitions is the TU game (M; v=C) where M =

f1; 2; :::mg and (v=C) (Q) = v
�S

q2QCq

�
for all Q �M .

We denote the game (N; v) with coalition structure C = fC1; C2; ::::; Cmg
over N as (N; v; C) or (v; C):When N and C are clear, we also write v instead
of (N; v; C).
Given S � N , S 6= ;, the unanimity game with carrier S, (N; uSN) is

de�ned as uSN(T ) = 1 if S � T and uSN(T ) = 0 otherwise, for all T � N .
A value is a function that assigns to each game (N; v) a vector in RN

representing the amount that each player in N expects to get in the game.
One of the most important values in TU games is the Shapley value (Shapley,
1953b). We denote the Shapley value of the TU game (N; v) as Sh(N; v) 2
RN .
Similarly, a coalitional value is a function that assigns to each game with

coalition structure (N; v; C) a vector in RN . Each value can also be considered
as a coalitional value by simply ignoring the coalition structure. Hence, we
de�ne the coalitional Shapley value of the game (N; v; C) as Sh (N; v; C) =
Sh (N; v). One of the most important coalitional values is the Owen value
(Owen, 1977).
Another generalization for a value is the following: a weighted value �! is

a function that assigns to each TU game (N; v) and each x 2 RN++ a vector
�x in RN . For each i 2 N , xi is the weight of player i. We will say that
a weighted value �! extends or generalizes a value � if �x (N; v) = � (N; v)
for any weight vector x with xi = xj for all i; j 2 N . The most prominent
weighted generalization of the Shapley value is the weighted Shapley value
Sh! (Shapley (1953a), Kalai and Samet (1987, 1988)).
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3 Games with coalition structure

We now focus on games with coalition structure. Fix C = fC1; :::; Cmg and
let M = f1; :::;mg. For each pair (
; �!), where 
 is a value and �! is a
weighted value, we de�ne two coalitional values 
 [�!] and 
 h�!i. In both
cases, the idea is to divide the worth of the grand coalition in two steps: In
the �rst step, �! is used to divide the worth of the grand coalition in the
game among coalitions, with weights given by the size of each coalition. In
the second step, 
 is used to divide the worth inside each coalition.
For each coalition structure C = fC1; C2; :::; Cmg over N , let � (C) 2 RM+

be de�ned as �q (C) = jCqj for all3 q 2 M . Given Cq 2 C, the reduced TU
game with �xed weights

�
Cq; v

[�! ]N
Cq

�
is de�ned as

v
[�! ]N
Cq

(S) := ��(C)q

�
M; v=CS

�
for all S � Cq. The reduced TU game with relaxed weights

�
Cq; v

h�!iN
Cq

�
is

de�ned as
v
h�!iN
Cq

(S) := �
�(CS)
q

�
M; v=CS

�
for all S � Cq.
Thus, both v[�

! ]N
Cq

(S) and vh�
!iN

Cq
(S) are interpreted as the value that

�! assigns to coalition S in the game among coalitions assuming that the
members of CqnS are out. In the �rst case, coalition S maintains the weight
of the original coalition Cq. In the second case, coalition S plays with a
weight proportional to its own (reduced) size.
In the particular case �x = � for all x, both reduced TU games coincide

and we write
�
Cq; v

(�)N
Cq

�
instead of

�
Cq; v

[�! ]N
Cq

�
or
�
Cq; v

h�!iN
Cq

�
.

De�nition 1 Given a value 
 and a weighted value �!, we de�ne respectively
the coalitional values 
 [�!] and 
 h�!i as


 [�!]i (N; v; C) := 
i
�
Cq; v

[�! ]N
Cq

�
and


 h�!ii (N; v; C) := 
i
�
Cq; v

h�!iN
Cq

�
3To be precise, given C = fC1; C2; :::; Cmg over N , � (C) = � (C;M; f) where f : C !M

is a one-to-one correspondence that matches each coalition in C with each index in M .
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for all i 2 Cq 2 C.
In the particular case �x = � for all x, both expressions coincide and

hence we write 
 (�) := 
 [�!] = 
 h�!i :

We concentrate on three particular members of this family, that have
been previously studied in the literature:

Example 2 Sh (Sh) is the Owen value (Owen, 1977).
Sh [Sh!] is the weighted coalitional value with intracoalitional symmetry,

and weights given by the size of the coalitions (Levy and McLean, 1989).
Sh hSh!i has been studied by Vidal-Puga (2006).

There exist other relevant coalitional values that belong to this family.
Let Ba be the Banzhaf value (Banzhaf 1965, Owen 1975). Let In be the
individual value (Owen4, 1978) de�ned as Ini (N; v) = v (fig) for all i 2 N .
Given p 2 [0; 1], let Bp be the p-binomial value (Puente, 2000). Let DP be
the Deegan-Packel value (Deegan and Packel, 1979). Let LSP be the least
square prenucleolus (Ruiz, Valenciano and Zarzuelo, 1996).

Example 3 Sh (In) is the Aumann-Drèze value (Aumann and Drèze, 1974).
Ba (Ba) is the Banzhaf-Owen value (Owen 1975).
Sh (Ba) is the symmetric coalitional Banzhaf value (Alonso-Meijide and

Fiestras-Janeiro, 2002).
Ba (Sh) is de�ned and studied by Amer, Carreras and Giménez (2002).
fSh (Bp)gp2[0;1] is the family of symmetric coalitional binomial values

(Carreras and Puente, 2006).
DP (DP ) and LSP (LSP ) are de�ned and studied by M÷odak (2003).

4 Properties

In this section we present some properties of the values. Moreover, we provide
several results.

4Owen uses the term dictatorial instead of individual.
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4.1 Classical properties

E¢ ciency (Eff) For any game (N; v; C);
P
i2N

fi (N; v; C) = v (N) :

That is, the worth of the grand coalition is distributed.

Linearity (Lin) Given (N; v; C), (N;w; C) and real numbers � and �;

f (N;�v + �w; C) = �f (N; v; C) + �f (N;w; C) :

That is, if a game is a linear combination of two games, the value assigns
the linear combination of the values of the games.

Symmetry (Sym) Given two symmetric players i; j 2 N in a game (N; v; C),
fi (N; v; C) = fj (N; v; C).

That is, two symmetric players in (N; v) receive the same.

Null Player (NP ) Given a null player i 2 N in a game (N; v; C), fi (N; v; C) =
0:

That is, any null player receives zero.

Independence of Null Players (INP ) Given a null player i 2 N in a
game (N; v; C) ;

fj (N; v; C) = fj
�
Nni; v; CNni

�
for all j 2 Nni.

That is, no agent gets a di¤erent value if a null player is removed from
the game.
We say that a weighted value �! satis�es some property if �x satis�es this

property for each x.

Proposition 4 a) The Shapley value Sh is the only value that satis�es Eff ,
Lin, Sym and INP .
b) The weighted Shapley value Sh! satis�es INP .
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Proof. a) It is well-known that Sh satis�es Eff , Lin and Sym. It is also
clear that Sh satis�es INP . On the other hand, it is straightforward to check
that Eff and INP imply NP . Since Sh is the only value that satis�es Eff ,
Lin, Sym and NP (Shapley, 1953b), we deduce the result.
b) From Kalai and Samet (1987, Theorem 1) and a classical induction

hypothesis on the number of players, it is straightforward to check that Sh!

satis�es INP .
Lin and Eff can be adapted to games with coalition structure without

changes. For Sym and INP , we will apply them inside the coalitions and to
null coalitions, respectively:

Intracoalitional Symmetry (IS) Given two symmetric players in the same
coalition i; j 2 Cq 2 C, fi (N; v; C) = fj (N; v; C) :

Independence of Null Coalitions (INC) Given a game (N; v; C) and a
null coalition Cq 2 C, fi (N; v; C) = fi

�
NnCq; v; CNnCq

�
for all i 2

NnCq.

INC asserts that if a coalition is null, it does not in�uence the allocation
within the rest of the players. It is a weaker property than INP . Notice
that INC and Eff imply that the aggregated payment of the agents in a
null coalition is zero.

Proposition 5 a) If both 
 and �! satisfy Eff , then both 
 [�!] and 
 h�!i
satisfy Eff .
b) If both 
 and �! satisfy Lin, then both 
 [�!] and 
 h�!i satisfy Lin.
c) If 
 satis�es Sym, then both 
 [�!] and 
 h�!i satisfy IS.
d) If �! satis�es INP , then both 
 [�!] and 
 h�!i satisfy INC.

Proof. Parts a), b) and c) are straightforward from the de�nition.
d) We prove the result for 
 [�!]. The result for 
 h�!i is analogous. Let

C = fC1; :::; Cmg and let Cq 2 C be a null coalition. DenoteM = f1; 2; :::;mg.
To prove that 
 [�!]i (N; v; C) = 
 [�

!]i (NnCq; v; CNnCq) for all i 2 NnCq it
is enough to prove that v[�

! ]N
Cr

(S) = v
[�! ]NnCq
Cr

(S) for all S � Cr 2 CnCq:
Take S � Cr 2 CnCq. By de�nition,

v
[�! ]N
Cr

(S) = ��(C)r (M; v=CS):

Since ��(C) satis�es INP , we have

��(C)r

�
M; v=CS

�
= ��(C)r

�
Mnq; v=CSNnCq

�
:
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Notice that there is no ambiguities in the notation v=CSNnCq because
�
CS
�
NnCq

=�
CNnCq

�S
. By de�nition,

��(C)r

�
Mnq; v=CSNnCq

�
= v

[�! ]NnCq
Cr

(S):

Combining the three last expressions we obtain the result.

Corollary 6 Sh (Sh), Sh [Sh!] and Sh hSh!i satisfy Eff , Lin, IS and
INC.

4.2 Properties of Balanced Contributions

The principle of Balanced Contributions is used in di¤erent contexts. Myer-
son (1977) was the �rst to use it for games with graphs. He called it Fairness.
Later, Myerson (1980) characterized the Shapley value with balanced con-
tributions and e¢ ciency. The principle of balanced contributions has also
been used in other contexts: Amer and Carreras (1995) and Calvo, Lasaga
and Winter (1996) characterized the Owen value; Calvo and Santos (2000)
characterized a value for multi-choice games; Bergantiños and Vidal-Puga
(2005) characterized an extension of the Owen value for non-transferable
utility games; Calvo and Santos (2006) characterized the subsidy-free ser-
ial cost sharing method (Moulin, 1995) in discrete cost allocation problems;
and Alonso-Meijide, Carreras and Puente (2007) characterized a parametric
family of coalitional values.

Balanced Contributions (BC) Given a game (N; v), for all i; j 2 N ,

fi (N; v)� fi (Nnj; v) = fj (N; v)� fj (Nni; v) :

This property states that for any two players, the amount that each player
would gain or lose by the other�s withdrawal from the game should be equal.
A remarkable property of this principle is that it completely characterizes

the Shapley value with the only help of e¢ ciency.

Proposition 7 (Myerson, 1980) Sh is the only value that satis�es Eff and
BC.
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A similar, yet di¤erent version of BC arises when we make the players to
become null, instead of leaving the game: Given (N; v) and i 2 N , we de�ne
(N; v�i) as v�i (S) = v (S \ (Nni)) for all S � N . Hence, in (N; v�i) player
i becomes a null player.

Null Balanced Contributions (NBC) Given a game (N; v), for all i; j 2
N ,

fi (N; v)� fi
�
N; v�j

�
= fj (N; v)� fj

�
N; v�i

�
:

Under Eff and Sym, NBC and BC are equivalent:

Proposition 8 Sh is the only value that satis�es Eff , NBC and Sym.

Proof. It is well-known that Sh satis�es Eff , Sym and INP . Since Sh
satis�es Eff and INP , we have Shi (N; v�j) = Shi (Nnj; v) for any null
player j and any i 2 Nnj. Hence, BC and NBC are equivalent for Sh.
Since Sh satis�es BC (Proposition 7), Sh also satis�es NBC.
To see the uniqueness, let f be a value satisfying these properties. Fix

(N; v). We proceed by induction on jCarr (N; v)j. If jCarr (N; v)j = 0,
the result holds from Eff and Sym. Assume the result holds for less than
jCarr (N; v)j non-null players, with jCarr (N; v)j > 0. Let i 2 N .
Assume �rst that player i is a null player. Obviously, (N; v) = (N; v�i).

For any j 2 Carr (N; v), under NBC,

fi (N; v)� fi
�
N; v�j

�
= fj (N; v)� fj

�
N; v�i

�
= 0

and hence fi (N; v) = fi (N; v
�j). By induction hypothesis, fi (N; v) =

Shi (N; v
�j) = 0 because i is also a null player in (N; v�j) :

Assume now i 2 Carrier (N; v). Under NBC, fi (N; v) � fi (N; v�j) =
fj (N; v)� fj (N; v�i) for all j 2 Nni, and hence

(n� 1) fi (N; v)�
X

j2NnCarr(N;v)

fi
�
N; v�j

�
�

X
j2Carr(N;v)ni

fi
�
N; v�j

�
=

X
j2Nni

fj (N; v)�
X
j2Nni

fj
�
N; v�i

�
:

Obviously, fi (N; v) = fi (N; v�j) for all j 2 NnCarr (N; v). Hence,

(jCarr (N; v)j � 1) fi (N; v)�
X

j2Carr(N;v)ni

fi
�
N; v�j

�
=
X
j2Nni

fj (N; v)�
X
j2Nni

fj
�
N; v�i

�
:
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Under Eff ,
P

j2Nni fi (N; v) = v (N)� fi (N; v) and hence,

fi (N; v) =
1

jCarr (N; v)j

24v (N) + X
j2Carr(N;v)ni

fi
�
N; v�j

�
�
X
j2Nni

fj
�
N; v�i

�35 :
Under the induction hypothesis, f (N; v�j) = Sh (N; v�j) for all j 2

Carr (N; v) and hence

fi (N; v) =
1

jCarr (N; v)j

24v (N) + X
j2Carr(N;v)ni

Shi
�
N; v�j

�
�
X
j2Nni

Shj
�
N; v�i

�35
from where we deduce that fi (N; v) is unique for all i 2 Carr (N; v).

Remark 9 Sym is needed in the previous characterization. Let f f1;2g be de-
�ned as follows: If f1; 2g � N , then f f1;2g1 (N; v) = Sh1 (N; v)+1, f

f1;2g
2 (N; v) =

Sh2 (N; v) � 1, and f f1;2gi (N; v) = Shi (N; v) otherwise. If f1; 2g * N ,
then f f1;2g (N; v) = Sh (N; v). This value satis�es Eff and NBC, but
f f1;2g 6= Sh.

Remark 10 Young (1985) characterized Sh as the only value that satis�es
Eff , Sym and Strong Monotonicity (SM). This last property says that
fi (N; v) � fi (N; v

0) whereas v (S [ i) � v (S) � v0 (S [ i) � v0 (S) for all
S � Nni. Hence, Proposition 8 implies that NBC and SM are equivalent
under Eff and Sym.

In order to keep the essence of the Shapley value at the intracoalitional
level, we force (null) balanced contributions inside a coalition:

Balanced Intracoalitional Contributions (BIC) Given a game (N; v; C),
for all i; j 2 Cq 2 C,

fi (N; v; C)� fi
�
Nnj; v; CNnj

�
= fj (N; v; C)� fj

�
Nni; v; CNni

�
:

This property states that for any two agents that belong to the same
coalition in C, the amount that each agent would gain or lose by the other�s
withdrawal from the game should be equal.

12



Null Balanced Intracoalitional Contributions (NBIC) Given a game
(N; v; C), for all i; j 2 Cq 2 C,

fi (N; v; C)� fi
�
N; v�j; C

�
= fj (N; v; C)� fj

�
N; v�i; C

�
:

This property states that for any two agents that belong to the same
coalition in C, the amount that each agent would gain or lose if the other
becomes null should be equal.

Proposition 11 a) If 
 satis�es NBC, then 
 [�!] satis�es NBIC:
b) If 
 satis�es BC, then 
 h�!i satis�es BIC:

Proof. Fix Cq 2 C and i; j 2 Cq.
a) By de�nition,


 [�!]i (N; v; C)� 
 [�
!]i (N; v

�j; C) = 
i
�
Cq; v

[�! ]N
Cq

�
� 
i

�
Cq;
�
v�j
�[�! ]N
Cq

�
:

By de�nition of (N; v�j), we have v[�
! ]N

Cq
(S) = (v�j)

[�! ]N
Cq

(S) for all

S � Cqnj. Hence,
�
v
[�! ]N
Cq

��j
(S) = (v�j)

[�! ]N
Cq

(S) for all S � Cq, which

implies that
�
Cq;
�
v
[�! ]N
Cq

��j�
coincides with

�
Cq; (v

�j)
[�! ]N
Cq

�
and so, ex-

pression above can be restated as


 [�!]i (N; v; C)� 
 [�
!]i (N; v

�j; C) = 
i
�
Cq; v

[�! ]N
Cq

�
� 
i

�
Cq;
�
v
[�! ]N
Cq

��j�
:

Since 
 satis�es NBC, we have


 [�!]i (N; v; C)� 
 [�
!]i (N; v

�j; C) = 
j
�
Cq; v

[�! ]N
Cq

�
� 
j

�
Cq;
�
v
[�! ]N
Cq

��i�
:

Reasoning as before, it is straightforward to check that


 [�!]j (N; v; C)� 
 [�
!]j (N; v

�i; C) = 
j
�
Cq; v

[�! ]N
Cq

�
� 
j

�
Cq;
�
v
[�! ]N
Cq

��i�
and hence the result.
b) By de�nition,


 h�!ii (N; v; C)�
 h�
!ii (Nnj; v; CNnj) = 
i

�
Cq; v

h�!iN
Cq

�
�
i

�
Cqnj; vh�

!iNnj
Cqnj

�
:

13



By de�nition of the reduced game, vh�
!iN

Cq
(S) = v

h�!iNnj
Cqnj (S) for all S �

Cqnj. Thus,
�
Cqnj; vh�

!iN
Cq

�
coincides with

�
Cqnj; vh�

!iNnj
Cqnj

�
and so, expres-

sion above can be restated as


 h�!ii (N; v; C)�
 h�
!ii (Nnj; v; CNnj) = 
i

�
Cq; v

h�!iN
Cq

�
�
i

�
Cqnj; vh�

!iN
Cq

�
:

Since 
 satis�es BC, we have


 h�!ii (N; v; C)�
 h�
!ii (Nnj; v; CNnj) = 
j

�
Cq; v

h�!iN
Cq

�
�
j

�
Cqni; vh�

!iN
Cq

�
:

Reasoning as before, it is straightforward to check that


 h�!ij (N; v; C)�
 h�
!ij (Nni; v; CNnj) = 
j

�
Cq; v

h�!iN
Cq

�
�
j

�
Cqni; vh�

!iN
Cq

�
and hence the result.

Corollary 12 The Owen value Sh (Sh) satis�es both BIC and NBIC; Sh [Sh!]
satis�es NBIC; Sh hSh!i satis�es BIC.

Even though Proposition 7 and Proposition 8 show thatBC andNBC are
equivalent under Eff and Sym, this is not the case for their intracoalitional
versions:

Remark 13 a) Sh [Sh!] does not satisfy BIC. Let N = f1; 2; 3g and v
de�ned as v (S) = 1 if f1; 2g � S or f1; 3g � S, and v (S) = 0 otherwise.
Let C = ff1; 2g ; f3gg. Then,

Sh [Sh!]1 (N; v; C)� Sh [Sh!]1
�
Nn2; v; CNn2

�
=

5

6
� 1
2
=
1

3

Sh [Sh!]2 (N; v; C)� Sh [Sh!]2
�
Nn1; v; CNn1

�
=

1

6
� 0 = 1

6
:

b) Sh hSh!i does not satisfy NBIC. Let (N; v; C) be de�ned as in the
previous section. Then,

Sh hSh!i1 (N; v; C)� Sh hSh!i1
�
N; v�2; C

�
=

3

4
� 7

12
=
�1
6

Sh hSh!i2 (N; v; C)� Sh hSh!i2
�
N; v�1; C

�
=

1

4
� 0 = 1

4
:

14



4.3 Other properties

Coordination (Co) For all v; v0 and Cq 2 C, if

v

 
T [

[
Cr2R

Cr

!
= v0

 
T [

[
Cr2R

Cr

!

for all T � Cq and all R � CnCq, then,

fi (N; v; C) = fi (N; v0; C) for all i 2 Cq:

This property says that, given a coalition Cq; if there are changes inside
other coalitions, but these changes do not a¤ect to the worth of any subset
of Cq with the rest of coalitions, then these internal changes in the other
coalitions do not a¤ect the �nal payment of each agent in Cq:

Proposition 14 
 (�), 
 [�!] and 
 h�!i satisfy Co.

Proof. Let C, v and v0 such that v
�
T [

S
Cr2R

Cr

�
= v0

�
T [

S
Cr2R

Cr

�
for all

T � Cq and all R � CnfCqg. It is enough to prove that v[�
! ]N

Cq
(S) = v

0[�! ]N
Cq

(S)

and vh�
!iN

Cq
(T ) = v

0h�!iN
Cq

(T ) for all S � Cq. By the condition satis�ed by

v and v0 we have that
�
M; v=CS

�
=
�
M; v0=CS

�
for all S � Cq. Hence,

��(C)q

�
M; v=CS

�
= ��(C)q

�
M; v0=CS

�
and �

�(CS)
q

�
M; v=CS

�
= �

�(CS)
q

�
M; v0=CS

�
for all S � Cq. By the de�nition of the reduced games, we have the result.

Frequently, is interpreted that players form coalitions in order to im-
prove their bargaining strength (Hart and Kurz, 1983). However, as Harsanyi
(1977) points out, the bargaining strength does not improve in general. An
individual can be worse o¤ bargaining as a member of a coalition than bar-
gaining alone. This is what is known as the �Harsanyi paradox�.
The following property avoids the �Harsanyi paradox�in the case where

all the agents are symmetric. In the unanimity game with carrier N all the
agents are necessary to obtain a positive payment. Hence it seems reasonable
that their assignment should be independent of the coalitional structure:
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Equal Sharing in Unanimity Games (ESUG) For any C,

fi
�
N; uNN ; C

�
= fj

�
N; uNN ; C

�
for all i; j 2 N .

This property asserts that under the unanimity game with carrierN , each
agent should receive the same payment, regardless of C.
The Owen value does not satisfy ESUG but a weighted version:

Inverse Proportional Sharing in Unanimity Games (IPSUG) For any
game

�
N; uNN ; C

�
; and any coalitions Cq; Cr 2 C,

jCqj fi
�
N; uNN ; C

�
= jCrj fj

�
N; uNN ; C

�
for all i 2 Cq and j 2 Cr:

This property asserts that under the unanimity game with carrier N ,
each agent should receive a payment inversely proportional to the size of the
coalition he belongs to. A similar property is the following:

Coalitional Symmetry in Unanimity Games (CSUG) For any game
�
N; uNN ; C

�
;

and any coalitions Cq; Cr 2 C,X
i2Cq

fi
�
N; uNN ; C

�
=
X
i2Cr

fj
�
N; uNN ; C

�
:

It is straightforward to check that, under IS, CSUG is equivalent to
IPSUG. We use IPSUG because it follows the same formulation as ESUG.
In addition to Eff , either ESUG or IPSUG would determine the coali-

tional value for
�
N; uNN ; C

�
:

Proposition 15 a) If a coalitional value f satis�es Eff and ESUG, then
fi
�
N; uNN ; C

�
= 1

jN j for all i 2 N .
b) If a coalitional value f satis�es Eff and IPSUG, then fi

�
N; uNN ; C

�
=

1
jCq jjCj for all i 2 Cq 2 C.
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Proof. Part a) is trivial. As for part b), notice that IPSUG implies that
all the coalitions should receive the same aggregate value, and hence, under
Eff , this value is 1

jCj . Moreover, IPSUG also implies that all the players in
the same coalition should receive the same value. Hence the result.
However, these properties are still very weak, since they only apply to

a very speci�c unanimity game uNN . The following result gives us su¢ cient
conditions to have these properties for the family of coalitional values de�ned
before:

Proposition 16 a) If both 
 and �! satisfy Eff and Sym, then 
 [�!] and

 h�!i satisfy IPSUG.
b) If 
 satis�es Eff and Sym, �! satis�es Eff , and �xi

�
N; uNN

�
=xi =

�xj
�
N; uNN

�
=xj for all i; j 2 N and all x 2 RN+ , then 
 [�!] and 
 h�!i satisfy

ESUG.
Proof. Clearly,

�
M;uNN=C

�
=
�
M;uMM

�
and

�
M;uNN=CS

�
= (M;null) for all

S  Cq 2 C, where null (Q) = 0 for all Q �M .
a) Under Eff and Sym of �!, we have

�
uNN
�[�! ]N
Cq

=
�
uNN
�h�!iN
Cq

= 1
jCju

Cq
Cq

for all Cq 2 C. Under Eff and Sym of 
, we conclude that 
 [�!]i (N; v; C) =

 h�!ii (N; v; C) = 1

jCq jjCj for all i 2 Cq 2 C and hence the result.
b) Under our hypothesis over �!, we have

�
uNN
�[�! ]N
Cq

=
�
uNN
�h�!iN
Cq

=
jCq j
jN j u

Cq
Cq
for all Cq 2 C. Under Eff and Sym of 
, we conclude that 
 [�!]i (N; v; C) =


 h�!ii (N; v; C) = 1
jCq j

jCq j
jN j =

1
jN j for all i 2 Cq 2 C and hence the result.

Corollary 17 a) The Owen value Sh (Sh) satis�es IPSUG.
b) Sh [Sh!] and Sh hSh!i satisfy ESUG:

5 Characterization

In this section, we present our main result:

Theorem 18 Among all the coalitional values that satisfy Eff , Lin, INC
and Co,
a) the Owen value Sh (Sh) is the only one that satis�es NBIC, IPSUG

and IS;
b) the Owen value Sh (Sh) is the only one that satis�es BIC and IPSUG;
c) Sh [Sh!] is the only one that satis�es NBIC, ESUG and IS; and
d) Sh hSh!i is the only one that satis�es BIC and ESUG.
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Proof. We know by Corollary 6, Corollary 12, Proposition 14 and Corollary
17 that these rules satisfy the corresponding properties. Let C = fC1; :::Cmg
be a coalition structure. Let M = f1; :::;mg:
Let f 1 and f 2 be two coalitional values satisfying Eff , Lin, INC, Co,

and the properties stated in one of the four sections. We prove f 1 = f 2 by
induction over the number of players n. If n = 1, under Eff , f 1(N; v; C) =
f 2(N; v; C) and hence the result holds.
Assume the result holds for less than n players. Now we prove that the

result holds for n players.
It is well-know that every TU game can be expressed as a linear combi-

nation of unanimity games. Since f 1 and f 2 satisfy Lin, we can restrict our
proof to unanimity games.
Let S � N , S 6= ;. Consider the game uSN . First, we will show that it

is enough to restrict the proof to the case where all the coalitions intersect
the carrier S. To prove that, suppose that there exists some coalition, say
Cm 2 C, that does not intersect the carrier; that is, S \ Cm = ;.
Clearly, Cm is a null coalition. Under INC, fxi (N; u

S
N ; C) = fxi (NnCm; uSNnCm ; CNnCm)

for all i 2 NnCm and x = 1; 2. By induction hypothesis,

f 1i
�
NnCm; uSNnCm ; CNnCm

�
= f 2i

�
NnCm; uSNnCm ; CNnCm

�
for all i 2 NnCm. Moreover, as an implication of INC andEff ,

P
i2Cm

fxi (N; u
S
N ; C) =

0 for x = 1; 2. We still need to prove that every agent in Cm receives the
same under both coalitional values. In particular, we will prove that each of
them receives zero. We have two possibilities:
Cases a and c (the coalitional values satisfy IS): Under IS, it is clear

that fxi (N; u
S
N ; C) = 0 for all i 2 Cm, x = 1; 2, because all the players in Cm

are symmetric and their values sum up zero.
Cases b and d (the coalitional values satisfy BIC): If jCmj = 1, it is

clear that fxi
�
N; uSN ; C

�
= 0 for all i 2 Cm, i = 1; 2. Assume fxi

�
N; uSN ; C

�
=

0 for all null coalitions with less than l players. If jCmj = l, l > 1, from BIC,

fxi (N; u
S
N ; C)� fxi (Nnj; uSNnj; CNnj) = fxj (N; uSN ; C)� fxj (Nni; uSNni; CNni)

for all i; j 2 Cm; x = 1; 2. By induction hypothesis on jCmj, fxi (Nnj; uSNnj; CNnj) =
fxj (Nni; uSNni; CNni) = 0, for all i; j 2 Cm; x = 1; 2. Hence, we have that
fxi (N; u

S
N ; C) = fxj (N; uSN ; C) for all i; j 2 Cm and x = 1; 2. Moreover, since
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P
i2Cm

fxi (N; u
S
N ; C) = 0, we obtain that fxi (N; u

S
N ; C) = 0 for all i 2 Cm and

x = 1; 2:

From now on, we assume that S \ Cq 6= ; for all Cq 2 C:
Fix i 2 Cq 2 C. We should prove that f 1i (N; uSN ; C) = f 2i (N; uSN ; C):
Let Sq := Cq \ S and T := Sq [ (NnCq).

Claim 19

uSN

 
T 0 [

[
Cr2R

Cr

!
= uTN

 
T 0 [

[
Cr2R

Cr

!
for all T 0 � Cq and all R � CnCq.
Proof. Fix T 0 � Cq. We distinguish three cases:

Case 1: Sq � T 0 and R = CnCq. In this case, S �
�
T 0 [

S
Cr2R

Cr

�
and T �

�
T 0 [

S
Cr2R

Cr

�
. Thus by de�nition of uSN and uTN , we have that

uSN

�
T 0 [

S
Cr2R

Cr

�
= uTN

�
T 0 [

S
Cr2R

Cr

�
= 1:

Case 2: Sq 6� T 0. In this case, there exists some i 2 Sq such that

i 62 T 0, and so, S 6�
�
T 0 [

S
Cr2R

Cr

�
and T 6�

�
T 0 [

S
Cr2R

Cr

�
. Hence,

uSN

�
T 0 [

S
Cr2R

Cr

�
= uTN

�
T 0 [

S
Cr2R

Cr

�
= 0:

Case 3: R 6= CnCq. In this case, there exists some Ck 2 CnCq such that
Ck 62 R. Since by hypothesis, Cr \ S 6= ; for all Cr 2 C, we have that S 6��
T 0 [

S
Cr2R

Cr

�
and T 6�

�
T 0 [

S
Cr2R

Cr

�
. Hence, uSN

�
T 0 [

S
Cr2R

Cr

�
=

uTN

�
T 0 [

S
Cr2R

Cr

�
= 0:

Since we are under the assumptions of Co (Claim 19), we have fxi (N; u
S
N ; C) =

fxi (N; u
T
N ; C) for x = 1; 2. Hence, it is enough to prove that f 1i (N; uTN ; C) =

f 2i (N; u
T
N ; C). As a previous step, consider the unanimity game

�
N; uNN

�
. By

an analogous argument as in the proof of Claim 19, we have

uTN

 
T 0 [

[
Cl2Q

Cl

!
= uNN

 
T 0 [

[
Cl2Q

Cl

!
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for all T 0 � Cr 2 CnCq and all Q � CnCr. Under Co,

fxj (N; u
N
N ; C) = fxj (N; uTN ; C) (1)

for all j 2 NnCq:
We have two possibilities:
Cases a and c (the coalitional values satisfyNBIC and IS): UnderEff

and ESUG=IPSUG, by Proposition 15, we have
P

i2Cq f
x
i (N; u

T
N ; C) = �q

where �q =
1
jCj (when f

x satis�es IPSUG) or �q =
jCq j
jN j (when f

x satis�es
ESUG).
Under IS, we have fxi (N; u

T
N ; C) = fxj (N; uTN ; C) for all i; j 2 Sq (respec-

tively, i; j 2 CqnSq) and x = 1; 2. Hence it is enough to prove fxi (N; uTN) = 0
for all i 2 CqnSq, x = 1; 2: This is clear for Sq = Cq. Let i 2 Sq and j 2 CqnSq.
Player j is a null player in (N; uTN) and hence (N; u

T
N) = (N;

�
uTN
��j
). Under

NBIC,

0 = fxi (N; u
T
N)� fxi

�
N;
�
uTN
��j�

= fxj (N; u
T
N)� fxj

�
N;
�
uTN
��i�

:

Obviously, (N;
�
uTN
��i
) is the null game

�
uTN
��i
(S) = 0 for all S � N

and thus Eff and IS imply fxj (N;
�
uTN
��i
) = 0. Thus, fxj (N; u

T
N) = 0 for

x = 1; 2:
Cases b and d (the coalitional values satisfy BIC): Fix x 2 f1; 2g.

Under BIC,

fxi (N; u
T
N ; C)� fxi (Nnj; uTNnj; CNnj) = fxj (N; uTN ; C)� fxj (Nni; uTNni; CNni)

for all j 2 Cqni. Hence,X
j2Cqni

�
fxi (N; u

T
N ; C)� fxi (Nnj; uTNnj; CNnj)

�
=

X
j2Cqni

�
fxj (N; u

T
N ; C)� fxj (Nni; uTNni; CNni)

�
:

Rearranging terms, (jCqj � 1) fxi
�
N; uTN ; C

�
=

=
X
j2Cqni

�
fxj (N; u

T
N ; C)� fxj (Nni; uTNni; CNni) + fxi (Nnj; uTNnj; CNnj)

�
: (2)
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On the other hand, by Proposition 15,

fxj (N; u
N
N ; C) = �q for all j 2 Cq 2 C (3)

where �q = 1
jN j (if f

x satis�es ESUG) and �q = 1
jCq jjCj (if f

x satis�es
IPSUG).
Hence,X

j2NnCq

fxj (N; u
T
N ; C)

(1)
=

X
j2NnCq

fxj (N; u
N
N ; C)

(3)
=

X
Cr2CnCq

jCrj�r:

Moreover, by Eff ,X
j2Cqni

fxj (N; u
T
N ; C) = uTN(N)� fxi (N; uTN ; C)�

X
Cr2CnCq

jCrj�r:

Since uTN(N) = 1,X
j2Cqni

fxj (N; u
T
N ; C) = 1� fxi (N; uTN ; C)�

X
Cr2CnCq

jCrj�r:

It is not di¢ cult to check that 1�
P

Cr2CnCq jCrj�r = �q (de�ned in the
previous case). HenceX

j2Cqni

fxj (N; u
T
N ; C) = �q � fxi (N; uTN ; C):

Replacing this expression in (2),
(jCqj � 1)fxi (N; uTN ; C) = �q � fxi (N; uTN ; C)�

P
j2Cqni

fxj (Nni; uTNni; CNni)

+
P

j2Cqni
fxi (Nnj; uTNnj; CNnj):

Rearranging terms:

jCqj fxi (N; uTN ; C) = �q�
X
j2Cqni

fxj (Nni; uTNni; CNni)+
X
j2Cqni

fxi (Nnj; uTNnj; CNnj):

And so, fxi (N; u
T
N ; C) =

1

jCqj

24�q � X
j2Cqni

fxj (Nni; uTNni; CNni) +
X
j2Cqni

fxi (Nnj; uTNnj; CNnj)

35
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But by induction hypothesis:

f 1j (Nni; uTNni; CNni) = f 2j (Nni; uTNni; CNni)
and

f 1i (Nnj; uTNnj; CNnj) = f 2i (Nnj; uTNnj; CNnj)
for all j 6= i. Hence we conclude that f 1i (N; uTN ; C) = f 2i (N; uTN ; C).
Remark 20 In parts a and c we need to add IS. Take for example the
coalitional value F given by F (N; v; C) = Sh [Sh!] (N; v; C) if f1; 2g =2 C or
f3g =2 C. When f1; 2g ; f3g 2 C, take Fi (N; v; C) = Sh [Sh!]i (N; v; C) for all
i 2 Nn f1; 2g and moreover

F1 (N; v; C) = Sh [Sh!]1 (N; v; C) + v (f3g)
F2 (N; v; C) = Sh [Sh!]2 (N; v; C)� v (f3g) :

This coalitional value satis�es Eff , Lin, INC, BIC, Co and ESUG,
but fails IS.
Analogously, de�ne the coalitional value F 0 as before, but taking Sh (Sh)

instead of Sh [Sh!]. Then, F 0 satis�es Eff , Lin, INC, NBIC, Co and
IPSUG, but fails IS.

6 Independence of the axioms

In this section we show that the axioms used in Theorem 18 are independent.
The Aumann-Drèze value Sh (In) satis�es Lin, INC, Co, BIC, NBIC,

IPSUG, ESUG, IS and fails Eff .
De�ne the bounded egalitarian value BE asBEi (N; v) = v (N) = jCarr (N; v)j

if i 2 Carr (N; v) and BEi (N; v) = 0 otherwise.
Sh (BE) satis�es Eff , INC, Co, BIC, NBIC, IPSUG, IS and fails

Lin.
De�ne the egalitarian value E as Ei (N; v) = v (N) = jN j for all i 2 N .
Sh (E) satis�es Eff , Lin, Co, BIC, NBIC, IPSUG, IS and fails INC.
Take the coalitional value G given by G (N; v; C) = Sh (Sh) (N; v; C) if

f3; 4g =2 C, 1; 2 =2 N or 1; 2 2 N and they belong to the same coalition in C.
When f3; 4g 2 C, 1; 2 2 N and 1; 2 do not belong to the same coalition in C,
take Gi (N; v; C) = Sh (Sh)i (N; v; C) for all i 2 Nn f1; 2g and moreover

G1 (N; v; C) = Sh (Sh)1 (N; v; C) + �
v
f1;2;3g

G2 (N; v; C) = Sh (Sh)2 (N; v; C)� �
v
f1;2;3g
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where �vf1;2;3g := v (f1; 2; 3g)�v (f1; 2g)�v (f1; 3g)�v (f2; 3g)+v (1)+v (2)+
v (3) is the Harsanyi dividend for uf1;2;3gN . This coalitional value G satis�es
Eff , Lin, INC, BIC, IPSUG, IS and fails Co.
E (Sh) satis�es Eff , Lin, INC, Co, IPSUG, IS and fails both BIC

and NBIC.
Sh hSh!i satis�es Eff , Lin, INC, Co, BIC, IS and fails IPSUG.
Sh [Sh!] satis�es Eff , Lin, INC, Co, NBIC, IS and fails IPSUG.
The second coalitional value presented in Remark 20 satis�es Eff , Lin,

INC, Co, NBIC, IPSUG and fails IS.
De�ne the weighted bounded egalitarian value BE! as BExi (N; v) =

xiv (N) =
P

j2Carr(N;v) xj if i 2 Carr (N; v) and BExi (N; v) = 0 otherwise,
for all x 2 RN++.
Sh [BE!] satis�es Eff , INC, Co, NBIC, ESUG, IS and fails Lin.
Sh hBE!i satis�es Eff , INC, Co, BIC, ESUG and fails Lin.
Sh [E!] satis�es Eff , Lin, Co, NBIC, ESUG, IS and fails INC.
Sh hE!i satis�es Eff , Lin, Co, BIC, ESUG and fails INC.
The coalitional Shapley value Sh satis�es Eff , Lin, INC, NBIC, BIC,

ESUG, IS and fails Co.
E [Sh!] satis�es Eff , Lin, INC, Co, ESUG, IS and fails both NBIC

and BIC.
The Owen value Sh (Sh) satis�es Eff , Lin, INC, Co, NBIC, BIC, IS

and fails ESUG.
The coalitional value F presented in Remark 20 satis�es Eff , Lin, INC,

Co, NBIC, ESUG and fails IS.
In the following table we summarize the results presented in this Section:
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Eff Lin INC BIC NBIC Co ESUG=IPSUG IS

Sh (Sh) OK�+ OK�+ OK�+ OK� OK+ OK�+ IPSUG�+ OK+

Sh [Sh!] OK� OK� OK� no OK� OK� ESUG� OK�

Sh hSh!i OK� OK� OK� OK� no OK� ESUG� OK
Sh (In) no OK OK OK OK OK BOTH OK
Sh (BE) OK no OK OK OK OK IPSUG OK
Sh (E) OK OK no OK OK OK IPSUG OK
G OK OK OK OK OK no IPSUG OK
E (Sh) OK OK OK no no OK IPSUG OK
F 0 OK OK OK no OK OK IPSUG no
Sh [BE!] OK no OK no OK OK ESUG OK
Sh hBE!i OK no OK OK no OK ESUG OK
Sh [E!] OK OK no no OK OK ESUG OK
Sh hE!i OK OK no OK no OK ESUG OK
Sh OK OK OK OK OK no ESUG OK
E [Sh!] OK OK OK no no OK ESUG OK
F OK OK OK no OK OK ESUG no

Table 1: Properties satis�ed by the coalitional values. �*�(resp. �+�)
means that this property together with the others with �*�(resp. �+�) in

the line, characterizes the coalitional value.

7 Concluding remarks

In this paper we characterize three generalizations of the Shapley value. As
for the Owen value, one of its most controversial properties is that of sym-
metry in the game among coalitions. In our characterization, this symmetry
is in fact implied by IPSUG. Other characterizations of the Owen value
also include some property that leads to this symmetry. This is the case of
property A3 in the original characterization by Owen (1977); the coalitional
symmetry in Winter (1989) and Albizuri (2008); the intermediate game prop-
erty in Peleg (1989), called game between coalitions property in Winter (1992)
and quotient game property in Vázquez-Brage et al. (1997); the property of
symmetry among coalitions in Zhang (1995); the property of block strong
symmetry in Amer and Carreras (1995), called balanced contributions in the
coalitions in Calvo et al. (1996); the property of symmetry in Chae and
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Heidhues (2004); and the properties of unanimity coalitional game, symme-
try between exchangeable coalitions and coalitional symmetry in the various
characterizations presented in Bergantiños et al. (2007).
Hart and Kurz (1983) presented an alternative characterization of the

Owen value without the property of symmetry in the game among coali-
tions. Instead, they used a property of Carrier, which implies that the value
should not be a¤ected by the presence of null players. Various axiomatic
characterizations of the Owen value also use this property: Hamiache (1999
and 2001), Albizuri and Zarzuelo (2004), and Albizuri (2008).
One may wonder whether the Carrier axiom is a reasonable requirement

in games with coalition structure. Since null players a¤ect the size of the
coalition, we should admit that they are not so null (as far as we accept
that size is important). Take for example the unanimity game

�
N; uSN

�
with

N = f1; 2; 3g and S = f1; 2g. Take C = ff1g ; f2; 3gg. This game models
the following situation, as described in Hart and Kurz (1983):

As an everyday example of such a situation, �I will have to
check this with my wife/husband�may (but not necessarily) lead
to a better bargaining position, due to the fact that the other
party has to convince both the player and the spouse.

The Owen value would simply ignore the presence of player 3:

Sh (Sh)
�
N; uSN ; C

�
=

�
1

2
;
1

2
; 0

�
:

In this example, the role of the symmetry in the game among coalitions
is clear: since both f1g and f2; 3g are equally necessary to get a positive
payo¤, this payo¤ should be shared equally among them, irrespectively of
their respective size. This idea is appropriate to describe situations where
the negotiations take place among representatives with the same power of
negotiation.
As opposed, Sh [Sh!] would assign twice as much to coalition f2; 3g than

to coalition f1g, but still maintaining the null player property:

Sh [Sh!]
�
N; uSN ; C

�
=

�
1

3
;
2

3
; 0

�
:

This idea is appropriate to describe situations where the power of nego-
tiation among coalitions depend on their size. One may think for example
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on political parties that join forces in a Parliament, maintaining however
their respective proposal prerogatives. In fact, Kalandrakis (2006) shows
that proposal making has a very signi�cant impact on outcomes.
Notice that player 2 would only expect to get 1

2
in case player 3 be not

present. Hence, the bene�t of cooperation between players 2 and 3 is 2
3
� 1
2
=

1
6
. Sh hSh!i proposes to share this bene�t equally between players 2 and 3:

Sh hSh!i
�
N; uSN ; C

�
=

�
1

3
;
7

12
;
1

12

�
:

In this case, the null player property is not satis�ed. However, one may
�nd examples of real situations where this null player property also fails.
Consider the Basque Country5 Parliament that arose in 2001 election. Five
parties got representation: Coalition EAJ-PNV / EA, Partido Popular (PP),
Partido Socialista de Euskadi - Euskadiko Ezquerra (PSE-EE / PSOE), Eu-
skal Herritarrok (EH) and Ezker Batua-Izquierda Unida (EB-IU). The num-
ber of representatives is given in Table 2. The number of seats needed to win
a vote is 38.

Party Number of Seats
EAJ-PNV / EA 33
PP 19
PSE-EE / PSOE 13
EH 7
EB-IU 3

Table 2: Number of seats in the Basque Country Parliament.

Even though EB-IU is a null player in the associated voting game6, a minority
government was formed with the coalition of EAJ-PNV / EA and EB-IU.
Whatever the reason for this decision could be, it suggests that null players
can also play a signi�cant role.

5Autonomous community of Spain.
6This game is de�ned as v (S) = 1 if the members of S sum up at least 38 seats, and

v (S) = 0 otherwise.
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