
 

 
Universidade de Vigo 

 
 
 
 
 
 

Additive Models in  
Censored Regression 

 
Jacobo de Uña Álvarez and Javier Roca Pardiñas. 

 

Report 08/01 

 

 
 
 

Discussion Papers in Statistics and Operation Research 

 
 

Departamento de Estatística e Investigación Operativa 
 

Facultade de Ciencias Económicas e Empresariales 
Lagoas-Marcosende, s/n · 36310 Vigo 

Tfno.: +34 986 812440 - Fax: +34 986 812401 
http://eioweb.uvigo.es/ 

E-mail: depc05@uvigo.es 





 

 
Universidade de Vigo 

 
 
 
 
 
 

Additive Models in  
Censored Regression 

 
Jacobo de Uña Álvarez and Javier Roca Pardiñas. 

 

Report 08/01 

 

 
 
 

Discussion Papers in Statistics and Operation Research 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Imprime: GAMESAL 

Edita: Universidade de Vigo 
Facultade de CC. Económicas e Empresariales 
Departamento de Estatística e Investigación Operativa 
As Lagoas Marcosende, s/n 36310 Vigo 
Tfno.: +34 986 812440 
 

I.S.S.N: 1888-5756 

Depósito Legal: VG 1402-2007 

 



 



 



Additive Models in Censored Regression

Jacobo de Uña Álvarez
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Abstract

In this paper we consider additive models in censored regression. We

propose a randomly weighted version of the backfitting algorithm that

allows for the nonparametric estimation of the effects of the covariates

on the response. Given the high computational cost involved, binning

techniques are used to speed up the computation in the estimation and

testing process. Simulation results and the application to real data

reveal that the predictor obtained with the additive model performs

well, and that it is a convenient alternative to the linear predictor

when some nonlinear effects are suspected. 1

Keywords: additive models, backfitting

1 Introduction

Let Y be a lifetime which is observed under censoring from the right. Let
X = (X1, ..., Xp)

′ be a vector of p covariates. Put f(x) = E [ψ(Y ) | X = x]

1Javier Roca Pardiñas was supported by grants MTM2005-00818 (European

FEDER funding included) and SEJ2004-04583 /ECON. Jacobo de Uña Álvarez

was supported by grants MTM2005-01274 (European FEDER funding included) and

PGIDIT06PXIC300117PN.
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for the regression function of ψ(Y ) on X, so the model becomes

ψ(Y ) = f(X) + ε = f(X1, ..., Xp) + ε (1)

where the error term satisfies E [ε | X] = 0. Here ψ denotes a time trans-
formation such as the logarithm. Taking ψ(y) = ln y is useful in regression
analysis because ψ(Y ) is no longer restricted to (0,∞). Indeed, under (1) we
have, provided that X and ε are independent,

F
Y |X(y | X) = FW (e−f(X)y), y ≥ 0,

where F
Y |X and FW are the cumulative distribution functions of Y given

X and of the transformed error W = eε, respectively. This is the so-called
accelerated failure time model, widely used to analyze survival data in the
regression framework. Note that an increasing value of f(X) results in a

decreasing value of the time acceleration factor e−f(X), thus leading to a
better survival prognosis.

In the censored setup, we observe (X1, Z1, δ1) , ..., (Xn, Zn, δn) indepen-
dent observations with the same distribution as (X, Z, δ), where Z = min(Y, C),
C is the right-censoring variable assumed to be independent of Y , and
δ = I (Y ≤ C). Unlike in the ”iid” scenario (in which each observation
receives mass or weight 1/n), the weight associated to the i-th observation
(Xi, Zi, δi) under censoring will be typically the jump of the Kaplan-Meier
estimator at each point Zi (i = 1, ..., n), namely

Wi =
δi

n− RankZi + 1

∏
RankZj<RankZi

[
1 − δj

n− RankZj + 1

]

where RankZi is the rank of Zi among the ordered Z’s and where (in case
of ties) uncensored observations are assumed to preceed the censored ones.
When the error distribution is unknown, an approach that leads to consistent
estimators is choosing f in order to minimize

f ∈ F �→
n∑

i=1

Wi (ψ(Zi) − f(Xi1, ..., Xip))
2

where the family F represents the a priori knowledge on the true regression.
See Stute (1993, 1996, 1999) for the parametric linear and nonlinear case, in
which it is assumed f ∈ {f(.; β)}β, and see Orbe, Ferreira and Núñez-Antón
(2003) for the partly linear case f(X) = β1X1 + ... + βp−1Xp−1 + g(Xp).
Another possible approach (which we will not follow here) is that based in
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the so-called synthetic data, see for example Leurgans (1987) and Qin and
Jing (2000) who considered the parametric linear case and the partial linear
model, respectively (see also Liang and Zhou, 1998, for the latter setup).

In some instances linear model can be very restrictive. This constraint
can be avoided by replacing the linear index with a non-parametric structure.
Here we consider a flexible approach to estimate the regression function f(x)
through a semiparametric model under which the effect of each covariate on
the response is represented in an additive way, the qualitative form of this
effect being unknown otherwise. We assume the additive model

f(X) = f1(X1) + ...+ fp(Xp) (2)

(Hastie and Tibshirani, 1990), where α is a constant and f1, ..., fp are one
dimensional functions. If the influence of the covariates Xj is linear, then the
corresponding partial functions can be expressed parametrically as fj(Xj) =
βjXj. Therefore, the model given in (2) nests the linear model. Moreover,
on assuming that effects are additive, this type of models maintain the in-
terpretability of linear models. Yet, at the same time, they incorporate the
flexibility of non-parametric smoothing methods because, rather than follow-
ing a fixed parametric form, the effect of each of the covariates, Xj , depends
on a totally unknown function, fj , which is only required to possess a certain
degree of smoothness so that it can be estimated. The compromise between
flexibility, dimensionality and interpretability, ranks these types of models
among the statistical tools with the greatest capacity for data analysis in
different fields of research.

Additive models have been used for relaxing the linear hypothesis in the
scope of Cox proportional hazards model, which is the most popular re-
gression model when analyzing censored survival data. For example, Huang
(1999) introduced efficient estimation for a partly additive Cox model. Huang
and Liu (2006) considered a nonparametric link function which controls for
the effect of the parametric predictor under proportional hazards. See also
Ganguli and Wand (2006) and references therein for extensions of the Cox
proportional hazards model via additive regression. However, the propor-
tional hazards assumption may not hold in some applications, and hence
there is some need of additive models which can be a valid alternative to
Cox regression. For the best of our knowledge, additive models in the scope
of the censored accelerated failure time model have not been explored so far.
This is the gap we fill through the present work.

The layout of this paper is as follows. In Section 2 is given a description
of weighted kernel smoothing backfitting we use for fitting additive models
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with censored response. Moreover, in Section 2.1 we discuss the bandwidth
selection problem and some related practical issues. To assess the validity
of this estimation procedure, a simulation study is performed in Section 3.
In Section 4 we apply the proposed methodology to real data. Finally, we
conclude with a discussion in Section 5.

2 Fitting censored additive models

This section describes an algorithm for fitting the model effects f1, . . . , fp in
(2) for censored response. The algorithm discussed below is a modification of
the backfitting algorithm (Opsomer, 2000) used for fitting additive models.
The backfitting algorithm cycles through the covariates Xj (j = 1, . . . , p
), and estimates each fj by applying local linear kernel smoothers to the
partial residuals. These residuals are obtained by removing the estimated
effects of the other covariates. Although our focus is on local scoring, there
are other types of procedures that allow for non-parametric estimation of
General Additive Models (GAMs). Sperlich et al. (2002) presented methods
based on marginal integration. Wahba (1990) and Guo (2002) proposed the
use of smoothing spline ANOVA methods. Coull et al. (2001) and Ruppert
et al. (2003) investigated alternative methods based on penalised splines,
and Wood (2003) used thin plate regression splines. Other studies, such
as the paper by Brezger & Lang (2006), also used P-splines, and developed
Bayesian versions of GAMs and extensions to generalised structured additive
regression.

Given a sample {(Xi, Zi, δi)}n
i=1 of (X, Z, δ), the steps of the estimation

algorihm are as follows:

Initialisation. Compute the initial estimates α̂ =
∑n

i=1Wiψ(Zi)/
∑n

i=1Wi

and f̂ 0
j (Xij), for i = 1, . . . , n and j = 1, . . . , p

Step 1. For j = 1, . . . , p calculate residuals by removing the estimated
effects of all the other covariates:

Zj
i = ψ(Zi) − α̂−

∑j−1

s=1
f̂s (Xis) −

∑p

s=j+1
f̂ 0

s (Xis),

and compute for i = 1, ..., n the weighted local linear kernel estimators (Wand
and Jones, 1995)

f̂j (Xij) =
(

1 0
)(

s0
j (Xij) s1

j (Xij)
s1

j (Xij) s2
j (Xij)

)−1 (
u0

j (Xij)
u1

j (Xij)

)
(3)
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where sr
j (x) =

∑n
i=1

(
Wi · Lr

j (x,Xij)
)

and ur
j (x) =

∑n
i=1

(
Wi · Lr

j (x,Xij) · Zj
i

)
,

with

Lr
j (x, y) = (2π)−1/2 (x− y)r exp

(
−0.5

(
h−1

j (x− y)
)2

)
,

with hj being the bandwidth associated with the estimation of f̂j

Step 2. Repeat Step 1 with f̂ 0
j replaced by f̂j, until the convergence

criterion ∑n

i=1

[
f̂j (Zij) − f̂ 0

j (Zij)
]2

/∑n

i=1
f̂ 0

j (Zij)
2

is below some small threshold ε for all the j = 1, . . . , p.

The algorithm above is expected to show a good behaviour if some in-
dependence assumptions are fulfilled. First, we assume that the error term
in (1) is independent of the covariate vector. This implies that the model is
homocedastic, and hence no extra efficiency should be gained through further
weighting of the squared residuals. On the other hand, it is also assumed
that the censoring variable is independent of everything else, i.e., that C
gives no information on (X, Y ). This assumption guarantees that weighting
the squared, censored residuals through the jumps of the Kaplan-Meier es-
timator pertaining to the lifetime df, leads to consistent estimation of the
fj(x)’s. Besides, these independence hypotheses will be crucial for justifying
the bootstrap resampling plan introduced in Section 4.

2.1 Bandwidth selection. Computational aspects

It is well known that the estimates obtained for the model heavily depend
on the bandwidths (h1 . . . , hp) used in the local linear kernel estimates of
the partial functions (f1 . . . , fp). The bandwidths are a trade-off between
the bias and the variance of the resulting estimates. Various proposals for
an optimal selection have been suggested for the additive models, yet the
difficulty of asymptotic theory in a backfitting context means that nowadays
optimal selection is still a challenging open problem. Cross-validation was
used for the automatic choice of bandwidths.

In each of the cycles of the algorithm, the bandwidth (hj) used to obtain

the estimates f̂j in equation (3) was automatically selected by minimizing
the following weighted cross-validation error criterion:

CVj =
∑n

i=1
Wi

(
Zj

i − f̂
(−i)
j (Xij)

)2
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where f̂
(−i)
j is the estimate obtained without the ith element of the sample.

Cross-validation implies a high computational cost, inasmuch as it is nec-
essary to repeat the estimation operations several times in order to select the
optimal bandwidths. To speed up this process, we used binning-type acceler-
ation techniques (Fan and Marron, 1994; Wand, 1994) to obtain the binning
approximations of f̂j in each of the iterations of the estimation algorithm.

The binning approximations were obtained from the binning sample {X•j
r , Z

•j
r }

and the weights {W •
r } (1 ≤ r ≤ N), being

X•j
1 < . . . < X•j

N

a grid of equidistant points along the jth direction. Let us consider δ the
distance between consecutive grids. The binning responses Y •j

r and the bin-
ning weights W •

r are constructed according to W •
r =

∑n
i=1W

•i
r and Y •j

r =∑n
i=1W

•i
r Z

j
i with

W •i
r = Wi

(
1 − ∣∣Xij −X•j

r

∣∣/δ)
+

The binning approximation of the estimator f̂j (x) is obtained by applying
the approximations

sr
j (x) ≈

∑N

l=1
Lr

j

(
x,X•j

l ; hj

)
W •

l and trj (x) ≈
∑N

l=1
Lr

j

(
x,X•j

l ; hj

)
W •

l Z
•j
l

As in the estimation algorithm, with the binning technique the cross
validation error CVj can be approximated by:

CVj ≈
∑N

r=1
W •j

r

(
f̂
−(r)
j

(
X•j

r

) − Z•j
r

W •j
r

)2

,

where f̂
−(r,s)
jk is obtained without the (r, s) element of the binning sample.

The finer the grid of points selected, the better the binning approxima-
tions. The choice of the number of grid points is a compromise between
approximation error and computational speed. In this paper, we used 40grid
points covering the range of each Xj . In practice, depending on de sample
size n and on the distribution of the covariates a larger amount of grid points
might be more appropriate.
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3 Simulation study

A simulation study was conducted to assess the finite sample behavior of our
proposed algorithm. Given the vector of covariables X = (X1, X2, X3) in R3,
the response variable Y was generated according the model

lnY =
∑3

j=1
fj (Xj) + ε (4)

with ε ∼ N (0, 1). The censored variable C was drawn independently from a
Uniform[0, a]. Note that the constant a determines the expected proportion
of censored responses. We have chosen several values for a in order to get
censoring percentages of about 0%, 15%, 33%, 50% and 67%. In all the
cases, the covariates X1, X2 and X3 were chosen as independent random
variables distributed as Uniform[−2, 2], being independent of the gaussian
error and the censoring time otherwise. Then, the δ and observed variable Z
were respectively given by δ = I (Y ≤ C) and Z = min(Y, C).One thousand
independent samples {(Xi, Zi, δi)}n

i=1 of size n were generated from the model
(4) under two different scenarios:

(i): f1 (X1) = X1, f2 (X2) = X2 and f3 (X3) = X3

(ii). f1 (X1) = X1, f2 (X2) = X2
2 and f3 (X3) = sin (0.5πX3)

Clearly, scenario (i) is suitable for the linear model and scenario (ii) for
the nonparametric additive model.

Model behaviour was evaluated for different sample sizes n = 200, n =
500 and n = 1000 in a new set consisting in 250 points {X•

i , Z
•
i , δ

•
i }250

i=1,
generated independently from the original sample used for the estimation.

Firstly, in order to compare the response predictions l̂nY •
i =

∑3
j=1 f̂j

(
X•

ij

)
we examined the mean squared error (MSE) defined as follows:

MSE = (1/250)
∑250

i=1

(
lnY •

i − l̂nY •
i

)2

.

In addition, to evaluate the performance of each partial function fj we
used again the MSE criterion

MSEj = (1/250)
∑250

i=1

(
f̂j

(
X•

ij

) − fj

(
X•

ij

))2

Table 1 summarizes numerical average results of the considered errors
over 1000 replicated samples according to each model of the corresponding
scenario. The results are presented in terms of the average of the errors
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(along with their corresponding standard deviations) over the 1000 simulated
samples.

From this table, we obtain the following conclusions. As one would ex-
pect, the linear model presents the lowest errors in scenario (i), though the
additive model shows a satisfactory behavior in this situation. For scenario
(ii), the shapes of f2 and f3 are far from linear, and therefore the f̂2 and f̂3

estimates obtained by the lineal model result in large errors. In this scenario
(ii) the flexibility provided by the nonparametric estimation of the partial
functions makes the additive model preferable to the parametric model.

Graphical average results are displayed in Figures 1 to 4. These figures
plot the data generating functions and point-wise 95% confidence bands of the
estimates f̂1,f̂2 and f̂3 for percentages of censored data of 0%, 50% and 80%.
The good performance of the resulting estimates f̂1, f̂2, and f̂3 is evident for
the additive model, recovering the functional forms of the corresponding true
curves very successfully.

4 Application to real data

Between January, 1974, and May, 1984, the Mayo Clinic conducted a double-
blinded randomized trial in Primary Biliary Cirrhosis (PBC) of the liver. A
total of n = 312 patients agreed to participate in this clinical trial. The data
were analyzed in 1986 for presentation in clinical literature (see Fleming
and Harrington, 1991). Main variable of interest (the Y ) was the number
of days between registration and death, possibly censored because of end
of study or liver transplantation. By July, 1986, 125 of the 312 patients
had died, resulting in a 60% of censoring. Among 14 clinical, biochemical
and histological variables, only five of them were identified as important
risk factors: age at study registration, albumin (measured in gm/dl), serum
bilirubin (in mg/dl), presence of edema (0=abscence, 0.5=edema present
but no diuretic therapy was given, and 1=edema present despite diuretic
therapy), and prothrombin time (in seconds), see Fleming and Harrington
(1991), pp. 156-161. We use the notation X1, ..., X5 for these five variables
in our illustration, where logarithm scale was taken for albumin, bilirubin,
and prothrombin time. These data are downloadable from the R package
randomSurvivalForest.
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Figure 1: Data generating functions and point-wise 95% confidence bands

of the estimates f̂1,f̂2 and f̂3. Estimates for linear model with n = 1000 in

Scenario (i) for percentage of censored data of 0%, 50% and 80%.

We consider the additive model

lnY = α +

5∑
j=1

fj(Xj) + ε (5)

Figure 5 depicts the linear estimates versus the nonparametric estimates for
the fj(.)’s, together with pointwise confidence bands based on the boostrap.
We used the following bootstrap resampling plan:

Step 1. Fit Model (5), and obtain the predicted values ln Ŷi = α +∑5
j=1 f̂j(Xij) and the corresponding censored residuals ε̂i = lnZi − ln Ŷi,

i = 1, ..., n.

Step 2. For b = 1, ..., B, generate the bootstrap resample
{(

Xi, Z
∗b
i , δ

∗b
i

)}n

i=1
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Figure 2: Data generating functions and point-wise 95% confidence bands of

the estimates f̂1,f̂2 and f̂3. Estimates for additive model with n = 1000 in

Scenario (i) for percentage of censored data of 0%, 50% and 80%.

where Z∗b
i = min(Y ∗b

i , C∗b
i ) and δ∗bi = I(Y ∗b

i ≤ C∗b
i ). Here, Y ∗b

i = exp
{

ln Ŷi + ε̂∗bi

}
,

and the ε̂∗bi ’s and the C∗b
i ’s are drawn from the Kaplan-Meier estimator of

the residual and the censoring time df’s respectively.

Note that in Step 2 the bootstrap censoring times are generated from a
distribution which is not conditioned by the covariates. This is consistent
with our model, under which the C and the (X, Y ) are assumed to be inde-
pendent. Similarly, since the error is independent of the covariate vector, the
resampling of the residuals is performed in an unconditional way. Note that,
under our model assumptions, the true residual ε is independently censored
by lnC−α−∑5

j=1 fj(Xj), and hence the Kaplan-Meier method for estimat-
ing the residual df works. Our bootstrap resampling plan is similar to that
in Pardo-Fernández and van Keilegom (2006), who considered a model with
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Figure 3: Data generating functions and point-wise 95% confidence bands of

the estimates f̂1,f̂2 and f̂3. Estimates for lineal with n = 1000 in Scenario

(ii) for noncensored data.

censoring times possibly correlated to the covariates. In our setup, however,
due to our independence assumptions, we avoid the problem of choosing a
bandwidth for the bootstrap. Upon completion, the 100(1−α)% confidence
interval for fj(x) is given by(

f̂j(x) − f̂
α/2
j (x), f̂j(x) − f̂

1−α/2
j (x)

)
where f̂ p

j (x) represents the 1 − p percentile of the B differences f̂ ∗1
j (x) −

f̂j(x), ..., f̂
∗B
j (x) − f̂j(x).

Figure 5, left, shows that, under the linear additive model fj(x) = βjx,
j = 1, ..., 5, the effect of albumin, bilirubin level and presence of edema is
statistically significative, with the same type of correlation with survival as
found through the Cox regression analysis (Fleming and Harrington, 1991).
However, unlike for Cox regression, age and prothrombin time do not influ-
ence survival in a significative way. Note that our model imposes an acceler-
ated failure time structure rather than proportional hazards, so these results
should not be taken as surprising. Real findings appear when moving to the
nonparametric additive regression model (Figure 5, right), under which no
parametric form is assumed a priori for the fj(x)’s. For example, the ef-
fect of bilirubin level seems to be nonlinear (also true for prothrombin time),
showing a negative correlation with survival only for the largest values of the
covariate (the sample median of log bilirubin is .2994), and with no correla-
tion for the rest of values. Also interestingly, a significant positive correlation
of the prothrombin time is found for the lowest quarter of covariate values
(the sample first quartile is 2.303), while no significative effect is present
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Figure 4: Data generating functions and point-wise 95% confidence bands of

the estimates f̂1,f̂2 and f̂3. Estimates for additive model with n = 1000 in

Scenario (ii) for percentage of censored data of 0%, 50% and 80%.

for intermediate or high levels of the covariate. This gives new insight with
respect to the Cox regression analysis, for which an increasing value of the
prothrombin time along its whole support would result in a higher risk of
death, see the discussion in Fleming and Harrington (1991), page 161. In-
deed, as recognized by Fleming and Harrington (1991), page 191 (see also the
plot in their Figure 4.6.11(e) in page 192), Cox proportional hazards model
could not represent the effect for prothrombin time in a proper manner. The
alternative analysis offered by our additive model (which does not rely on the
proportionality of the hazard functions) may have relevance to this regard.
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5 Discussion

In this paper we introduce a new approach to the estimation of additive
models in censored regression. Specifically, we propose an extension of the
accelerated failure time regression model through additive regression, which
constitutes a novelty in the context of censored regression. Weighted back-
fitting based on kernel smoothers has been used for estimating the model,
and the smoothing windows were selected employing the cross-validation
technique. Using cross validation bandwidths implies estimating the model
several times, and as a consequence we have used binning acceleration tech-
niques to speed up the estimation process.

Simulation results have shown that the proposed algorithm works well in
practice, and that the additive model is a convenient alternative to linear
regression in the presence of nonlinear effects. Besides, an application to
real data has served for illustrating the potential advantages of our censored
additive model when compared to more classical regression approaches.

Although our work is mainly focused on additive models with main effects,
extensions of our methodology to factor-by-curve or curve-by-curve interac-
tions is also possible by using bivariate kernel smoothers (Roca-Pardiñas,
Cadarso-Surez and Gonzlez-Mateiga, 2005; Cadarso-Surez, Roca-Pardias and
Figueiras, 2006). Moreover, the bootstrap method proposed in Section 4
could be probably used to develop statistical tests for interactions. The
study of the performance of these extensions is a topic for further research.

A FORTRAN program implementing the non-parametric model estima-
tion (with binning), and the bootstrap-based tests proposed in this paper
can be obtained by contacting the first author at roca@uvigo.es.
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Scenario (i) Scenario (ii)

Cens. Error LM AM LM AM

0.00

MSE 0.020 0.110 2.075 0.126

MSE1 0.005 0.038 0.004 0.042

MSE2 0.005 0.037 1.479 0.041

MSE3 0.006 0.040 0.435 0.049

0.15

MSE 0.028 0.152 2.107 0.180

MSE1 0.007 0.051 0.010 0.057

MSE2 0.006 0.047 1.496 0.062

MSE3 0.007 0.058 0.441 0.068

0.33

MSE 0.040 0.208 2.133 0.240

MSE1 0.009 0.068 0.018 0.076

MSE2 0.007 0.062 1.508 0.083

MSE3 0.010 0.080 0.445 0.092

0.50

MSE 0.059 0.314 2.187 0.364

MSE1 0.012 0.096 0.029 0.110

MSE2 0.010 0.097 1.532 0.133

MSE3 0.012 0.119 0.456 0.137

0.67

MSE 0.102 0.633 2.293 0.636

MSE1 0.017 0.189 0.052 0.192

MSE2 0.017 0.242 1.572 0.216

MSE3 0.018 0.231 0.473 0.237

0.80

MSE 0.210 0.918 2.521 1.108

MSE1 0.031 0.272 0.096 0.349

MSE2 0.036 0.256 1.675 0.392

MSE3 0.033 0.326 0.510 0.349

Table 1: Simulation-based averages for MSE errors of fitted LM and AM

from 1000 replications for sample size n = 200
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Scenario (i) Scenario (ii)

Cens. Error LM AM LM AM

0.00

MSE 0.010 0.057 1.690 0.071

MSE1 0.003 0.020 0.003 0.019

MSE2 0.003 0.018 1.317 0.021

MSE3 0.003 0.019 0.435 0.030

0.15

MSE 0.014 0.078 1.703 0.089

MSE1 0.004 0.027 0.004 0.025

MSE2 0.003 0.024 1.322 0.029

MSE3 0.004 0.026 0.438 0.035

0.33

MSE 0.018 0.099 1.719 0.117

MSE1 0.004 0.034 0.007 0.033

MSE2 0.004 0.030 1.331 0.038

MSE3 0.004 0.032 0.441 0.045

0.50

MSE 0.029 0.145 1.746 0.176

MSE1 0.006 0.048 0.012 0.050

MSE2 0.005 0.043 1.340 0.056

MSE3 0.006 0.048 0.447 0.063

0.67

MSE 0.049 0.249 1.778 0.262

MSE1 0.009 0.086 0.021 0.078

MSE2 0.008 0.071 1.352 0.085

MSE3 0.008 0.076 0.453 0.091

0.80

MSE 0.089 0.471 1.842 0.562

MSE1 0.013 0.154 0.031 0.192

MSE2 0.014 0.137 1.372 0.172

MSE3 0.013 0.147 0.468 0.186

Table 2: The same as in Table 1 for sample size n = 400
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Scenario (i) Scenario (ii)

Cens. Error LM AM LM AM

0.00

MSE 0.004 0.024 1.807 0.029

MSE1 0.001 0.007 0.001 0.007

MSE2 0.001 0.008 1.412 0.008

MSE3 0.001 0.008 0.427 0.013

0.15

MSE 0.005 0.031 1.813 0.038

MSE1 0.001 0.010 0.002 0.010

MSE2 0.002 0.010 1.416 0.011

MSE3 0.001 0.010 0.429 0.017

0.33

MSE 0.008 0.042 1.819 0.049

MSE1 0.002 0.013 0.003 0.013

MSE2 0.002 0.014 1.419 0.014

MSE3 0.001 0.013 0.430 0.021

0.50

MSE 0.012 0.059 1.828 0.064

MSE1 0.002 0.018 0.004 0.017

MSE2 0.003 0.019 1.423 0.019

MSE3 0.002 0.018 0.431 0.024

0.67

MSE 0.019 0.091 1.846 0.100

MSE1 0.003 0.027 0.007 0.027

MSE2 0.004 0.027 1.431 0.031

MSE3 0.004 0.030 0.434 0.035

0.80

MSE 0.036 0.174 1.877 0.174

MSE1 0.005 0.053 0.012 0.047

MSE2 0.007 0.053 1.445 0.057

MSE3 0.006 0.053 0.440 0.058

Table 3: The same as in Table 1 for sample size n = 1000
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Linear Model Additive Model 
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Figure 5: Estimated partial functions fj fitted from the LM and AM together

with the corresponding 95 % confidence bands.
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